Semantic Characterization of Data Services through Ontologies

Gianluca Cima¹, Maurizio Lenzerini¹ and Antonella Poggi¹,²

¹Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma
²Dipartimento di Lettere e Culture Moderne, Sapienza Università di Roma
{cima, lenzerini, poggi}@diag.uniroma1.it

Abstract
We study the problem of associating formal semantic descriptions to data services. We base our proposal on the Ontology-based Data Access paradigm, where a domain ontology is used to provide a semantic layer mapped to the data sources of an organization. The basic idea is to explain the semantics of a data service in terms of a query over the ontology. We illustrate a formal framework for this problem, based on the notion of source-to-ontology (s-to-o) rewriting, which comes in three variants, called sound, complete and perfect, respectively. We present a thorough complexity analysis of two computational problems, namely verification (checking whether a query is an s-to-o rewriting of a given data service), and computation (computing an s-to-o rewriting of a data service).

1 Introduction
The architecture of many modern Information Systems is based on data services [Zheng et al., 2013], i.e., services deployed on top of data stores, other services, and/or applications to encapsulate a wide range of data-centric operations. Data services are also used to handle the programming logic for data virtualization in a cloud-hosted data storage infrastructure, so as to delegate most administrative tasks to the cloud infrastructure, and effectively realizing the idea of Data-As-A-Service. Furthermore, since big data, which is now imperative in many contexts, may be obtuse, disorganized, and may not make much sense to most potential users, in order to get value from them, it is reasonable to resort to data services built on top of massive amount of raw data.

In order to realize the promises of data services, in particular to foster their reuse, it is of vital importance to well document and clearly specify their semantics. While most current techniques manually associate APIs (Application Programming Interface) to data services, and describe their intended meaning with ad-hoc methods, often using natural language or complex metadata [Carey et al., 2012], we propose a new approach, whose goal is to automatically associate formal semantic descriptions to data services. We base our proposal on the Ontology-Based Data Access (OBDA) paradigm [Poggi et al., 2008]. An OBDA specification consists of an ontology expressed in Description Logic (DL) [Baader et al., 2003], the schema of the data sources forming the information system, and a mapping between the source schema and the ontology. The ontology is a formal representation of the underlying domain, and the mapping specifies the relationship between the data at the sources and the elements in the ontology. The semantics of data services can be thus expressed using the elements of the domain ontology, which is assumed to be familiar to the consumer of data services.

But how can we automatically produce a semantic characterization of a data service, having an OBDA specification available? The idea is to exploit a new reasoning task over the OBDA specification, that works as follows: we express the data service in terms of a query over the sources, and we aim at automatically deriving the query over the ontology that best describes the data service, given the mapping. The following example illustrates this idea.

Example 1. Let $\Sigma = \langle O, S, M \rangle$ be as follows:
$O = \{ \text{ErasmusStudent} \sqsubseteq \text{Student}, \text{MathStudent} \sqsubseteq \text{Student}, \text{Student} \sqsubseteq \text{Professor} \}$
$S = \{ s_1, s_2, s_3, s_4, s_5 \}$
$\begin{align*}
\{ \{x\} & \leftarrow s_1(x) \} \rightarrow \{ \{x\} \} \text{ Student}(x), \\
\{ \{x\} & \leftarrow s_2(x) \} \rightarrow \{ \{x\} \} \text{ Student}(x), \\
M = \{ \{x\} & \leftarrow s_3(x) \} \rightarrow \{ \{x\} \} \text{ Professor}(x), \\
\{ \{x, y\} & \leftarrow s_4(x, y) \} \rightarrow \{ \{x\} \} \text{ ErasmusStudent}(x), \\
\{ \{x\} & \leftarrow s_5(x, y) \} \rightarrow \{ \{x\} \} \text{ MathStudent}(x) \}
\end{align*}$

One can verify that the query over O that best describes the data service $q_S = \{ \{x\} | s_1(x) \} \vee \{ \{x\} | s_2(x) \}$ in terms of O is $q_O = \{ \{x\} | \text{Student}(x) \}$.

Most of (if not all) the literature about managing data sources through an ontology [Lenzerini, 2018; Xiao et al., 2018; Ortiz, 2018; Bienvenu, 2016] deals with user queries expressed over the ontology, and studies the problem of finding an ontology-to-source rewriting, i.e., a query over the source schema that, once executed over the data, provides the answers to the original query. Here, the problem is reversed, because we start with a source query and we aim at deriving a corresponding query over the ontology, called a source-to-ontology rewriting (s-to-o rewriting for short). Thus, we deal with a sort of reverse engineering problem, which is novel in the investigation of both OBDA and data integration.

The notions introduced in this paper are relevant in a plethora of scenarios. For the sake of brevity, we mention only three of them. Following the ideas in [Cima, 2017], it...
can be shown that our notions of s-to-o rewriting can be used to provide the semantics of open datasets and open APIs published by organizations, which is a key aspect for unchaining all the potentials of open data. In [Lutz et al., 2018], the concept of realization of source queries, similar to one of the notions studied here, is used for checking whether the mapping provides the right coverage for expressing the relevant data services at the ontology level. Our notions are also useful for a semantic-based approach to source profiling [Abedjan et al., 2017], in particular for describing the structure and the content of a data source in terms of the business vocabulary.

The contributions provided by this paper can be summarized as follows. We propose a formal framework for the problem of semantically characterizing a data service through an ontology (Section 3). We introduce the notions of perfect, sound, and complete s-to-o rewritings, and we define two basic reasoning tasks, namely verification and computation. The former checks whether a given query is an s-to-o rewriting of a data service, whereas the latter computes one such rewriting. We show that, although the ideal notion is the one of perfect s-to-o rewriting, there are cases where, with the given mapping, no query over the ontology can precisely characterize the data service at hand. Thus, we introduce maximally sound and minimally complete s-to-o rewritings, which intuitively aim at approximating the perfect s-to-o rewriting of a data service at best, with the goal of either precision (sound rewriting), or recall (complete rewriting). We study both the verification, and the computation problem for complete (Section 4), sound (Section 5) and perfect (Section 6) s-to-o rewritings in one of the most popular OBDA setting considered in the literature, namely where the ontology language is DL-Lite\textsubscript{R}, each mapping assertion maps a conjunctive query (CQ) over the source to a CQ over the ontology, and both the data service and the s-to-o rewriting are expressed as unions of CQs. For perfect and complete s-to-o rewritings we present algorithms for verification and computation, and characterize the complexity of both tasks. For the case of sound s-to-o rewritings, we do the same for verification, and then we precisely determine the cases where a maximally sound rewriting is not guaranteed to exist. We single out a restricted setting for OBDA specifications that is still meaningful from the point of view of expressive power, and guarantees the existence of maximally sound s-to-o rewritings (Section 7). For such restricted setting, we provide algorithms and complexity results for verification and computation of maximally sound s-to-o rewritings, Preliminaries (Section 2), and conclusions (Section 8) complete the paper.

To the best of our knowledge, the problem studied in this paper has been (partially) addressed only in [Cima, 2017; Lutz et al., 2018]. The former provides complexity upper bounds for complete s-to-o rewritings, and the latter focuses on both DL-Lite\textsubscript{R} and the \(EL\) family of ontology languages, and studies perfect s-to-o rewritings only, under a slightly different semantics with respect to the one proposed here.

2 Preliminaries

We assume basic knowledge about databases [Abiteboul et al., 1995] and DLs [Baader et al., 2003]. In what follows, we use \(\sigma(x)\) to denotes the size of \(x\).

A database schema is a set of predicate symbols, each with a specific arity, and a set of integrity constraints. Given a schema \(S\), an \(S\)-database \(D\) is a set of facts \(P(\bar{t})\) satisfying all integrity constraints in \(S\), where \(P\) is a predicate in \(S\) of arity \(n\), and \(\bar{t}\) is an \(n\)-tuple of constants, each taken from a denumerable infinite set of symbols, where each such symbol is called an \(S\)-constant, or simply constant.

In its general form, an \(L\)-query \(q\) over a schema \(S\) is a function in a certain class \(L\) that can be evaluated over an \(S\)-database \(D\) to return a set of answers \(q(D)\), each answer being a tuple of constants. A conjunctive query (CQ) \(q\) over a schema \(S\) is an expression of the form \(\{\bar{t} \mid \phi(\bar{t}, \bar{y})\}\), also denoted \(q(\bar{t})\), where \(\bar{t}\) is a tuple of terms, each term being either a constant or a variable. \(\bar{y}\) is a tuple of variables not appearing in \(\bar{t}\), called the existential variables of \(q\), and \(\phi(\bar{t}, \bar{y})\) is either \(\bot\) (in this case we also say that the whole \(q\) is \(\bot\)), or a finite conjunction of atoms of the form \(P(t_1, \ldots, t_n)\), where \(P\) is an \(n\)-ary predicate symbol of \(S\) and each \(t_j\) is either a constant, or a variable in \(\bar{t} \cup \bar{y}\). We call \(\phi\) and \(\bar{t}\) the body and target list of \(q\), respectively, and we sanction that every variable in \(\bar{t}\) appears in \(\phi\). If \(\bar{t}\) is empty, then the query is a boolean query. A union of CQs (UCQ) is a union of a finite set of conjunctive queries (called its disjuncts) with same arity. If not otherwise stated, we implicitly assume that all CQs of a UCQ have the same target list\(^1\). If \(q_1, q_2\) are two queries with the same arity over \(S\), \(q_1\) is contained in \(q_2\), denoted as \(q_1 \subseteq q_2\) if for every \(S\)-database \(D\), \(q_1^D \subseteq q_2^D\). Containment of CQs and UCQs is characterized in terms of homomorphism [Chandra and Merlin, 1977; Sagiv and Yannakakis, 1980]. In what follows, we also consider CQs with no existential variables occurring more than once (CQJFE), and unions thereof (UCQJFE).

We consider ontologies expressed in DL-Lite\textsubscript{R}, the member of the DL-Lite family [Calvanes et al., 2007] that underpins OWL 2 QL [Motik et al., 2012], i.e., the profile of OWL 2 especially designed for the OBDA scenarios. In DL-Lite\textsubscript{R} axioms have the following forms:

\[
\begin{align*}
 B_1 & \sqsubseteq B_2 & R_1 & \sqsubseteq R_2 & \text{(concept/role inclusion)} \\
 B_1 & \equiv \neg B_2 & R_1 & \equiv \neg R_2 & \text{(concept/role disjointness)} \\
 \end{align*}
\]

where \(B_1, B_2\) are basic concepts, i.e., expressions of the form \(A, \exists P, \text{ or } \exists P^-, \text{ with } A \text{ and } P \text{ atomic concept (atomic concepts include the universal concept } \top \text{) and atomic role, respectively, and } R_1 \text{ and } R_2 \text{ basic roles, i.e., expressions of the form } P, \text{ or } P^- \text{. We will also consider one sublanguage of DL-Lite\textsubscript{R}, namely DL-Lite\textsubscript{RDFS}, where both disjointness axioms, and concepts of the forms } \exists P \text{ or } \exists P^- \text{ in the right-hand side of the inclusion axioms, are ruled out.}

An OBDA specification \(\Sigma\) is a triple \(\langle \mathcal{O}, S, \mathcal{M} \rangle\) [Poggi et al., 2008], where \(\mathcal{O}\) is a DL ontology, \(S\) is a database schema, called the source schema, and \(\mathcal{M}\) is a set of mapping assertions (or simply mappings) relating \(\mathcal{O}\) to \(S\), i.e., assertions of the form \(q_\mathcal{S} \rightarrow q_\mathcal{O}\), where \(q_\mathcal{S}\) and \(q_\mathcal{O}\) are CQs of the same arity over \(S\) and \(\mathcal{O}\), respectively.

Mappings of the above form are called GLA V mappings. Special cases are GAV (Global-as-View) and LAV (Local-as-
Views) mappings [Doan et al., 2012]: in a GAV (resp., LAV) mapping, q_O (resp., q_S) is simply an atom without existential variables. A GAV mapping is called pure if q_O does not have constants or repeated variables, i.e., it is either of the form $A(x)$, or $R(x, y)$, with x, y different variables.

An interpretation B for O is a model for Σ relative to an S-database D if (i) it is a model of O, and (ii) for every mapping $q_S \rightarrow q_O$ in M, we have $D^B_S \subseteq D^B_O$, where D^B_O denotes the answers of q_O over the interpretation B (seen as a database). The set of models for Σ relative to D is denoted by $\text{Mod}_D(\Sigma)$, and D is said to be consistent with Σ if $\text{Mod}_D(\Sigma) \neq \emptyset$.

If q_S is a CQ, we denote by $M(q_S)$ the query obtained by applying the chase [Maier et al., 1979] w.r.t. M to the so-called freezing of q_S, with the proviso that $M(q_S)$ is \perp if q_S is \perp, and \top if its chase is empty. Note that the freezing of q_S is the database obtained by seeing the atoms of q_S as facts.

Given an OBDA specification $\Sigma = (O, S, M)$, a query q_O over O, and an S-database D, the certain answers of q_O w.r.t. Σ and D are the set of tuples t of S-constants such that $t \in D^B_O$, for every $B \in \text{Mod}_D(\Sigma)$. An O-to-S Σ-rewriting of a query q_O over O is a query q_S over S of the same arity as q_O such that for every S-database D, q_S^D is a subset of the certain answers of q_O w.r.t. Σ and D. A perfect O-to-S Σ-rewriting of q_O, denoted by $\text{cert}_{\Sigma, O, S}(q_O)$, is a query over S of the same arity as q_O such that for every S-database D, $\text{cert}_{\Sigma, O, S}(q_O)$ coincides with the certain answers of q_O w.r.t. Σ and D. We say that query q_1 over O is equivalent w.r.t. Σ to query q_2 over O if $\text{cert}_{\Sigma, O, S}(q_1) \equiv \text{cert}_{\Sigma, O, S}(q_2)$. It is easy to see that, with a slight modification for taking care of the presence of \perp and \top in queries, we can use the results in [Levy et al., 1995] to show that, if Σ has no axiom, and q_O is a UCQ over O, one can compute a UCQ over S, denoted by $\text{REW}_M(q_O)$, that is equivalent to $\text{cert}_{\Sigma, O, S}(q_O)$.

We conclude the section with some observations about the case where the ontology O in Σ is a DL-Lite$_\mathbb{Q}$ ontology. In this case, it is well-known (see, e.g., [Calvanese et al., 2009]) that an S-database D is consistent with Σ if and only if $\text{cert}_{\Sigma, O, S}(q_O) = \emptyset$, where Σ^P is obtained from Σ by eliminating the disjointness axioms from O, and Σ^O is the O-violations query, i.e., the boolean UCQ obtained by including a CQ q_d for each disjointness axiom, where q_d has the form $\{(y_1) (B_1(x, y_1) \wedge B_2(x, y_2))\}$ (resp., $\{(y_1) (R_1(x, y_1) \wedge R_2(x, y_2))\}$) for the axiom $B_1(x) \equiv B_2(x)$ (resp., $R_1(x) \equiv R_2(x)$). Also, we denote by $V_{\Sigma, O, S}^{\Sigma, O, S}$ the UCQ over O with target list (t_1, \ldots, t_n) obtained by adding $\top(t_1) \wedge \ldots \wedge \top(t_n)$ (written also as $\top(t_1, \ldots, t_n)$) to each of the disjuncts of $V_{\Sigma, O, S}$.

If q_O is a (UC)CQ-query over O, we denote by $\text{PerfRef}_{q_O, \Sigma}$ the UCQ computed by executing the algorithm PerfectRef described in [Calvanese et al., 2007] on q_O and O (again, slightly modified to take care of \perp and \top), and by $\text{PerfRef}_{q_O, \Sigma}$ the UCQ $\text{REW}_M(\text{PerfRef}_{q_O, \Sigma})$. Note that PerfectRef ignores the disjointness axioms in O, and if D is consistent with Σ, then $\text{PerfRef}_{q_O, \Sigma}$ computes exactly $\text{cert}_{\Sigma, O, S}(q_O)$. From these observations, and exploiting the results in [Calvanese et al., 2012; Levy et al., 1995], it is possible to prove that for an OBDA specification $\Sigma = (O, S, M)$, if O is a DL-Lite$_\mathbb{Q}$ ontology, and $q_O(\{ \})$ is a (UC)CQ-query over O, then $\text{cert}_{\Sigma, O, S}(q_O) \equiv \text{PerfRef}_{\Sigma, O, S} \lor \text{PerfRef}_{\Sigma, O, S}$.

3 Framework

We implicitly refer to an OBDA specification $\Sigma = (O, S, M)$. Intuitively, given a data service expressed as a query q_S over S, we aim at finding the query over O that precisely characterizes q_S w.r.t. Σ. Since the evaluation of queries over O is based on certain answers, this means that we aim at finding a query over O whose certain answers w.r.t. Σ and D exactly capture the answers of q_S w.r.t. D, for every S-database D. So, we are naturally led to the notion of perfect s-to-o rewriting. In what follows, q_S refers to a query over S, and q_O to a query over O of the same arity.

Definition 2. q_O is a perfect s-to-o Σ-rewriting of q_S if for every S-database D, $\text{Mod}_D(\Sigma) \neq \emptyset$ implies $q_S^D = \text{cert}_{\Sigma, O, S}^D(q_O)$.

The above notion is similar, but not equivalent, to the notion of realization in [Lutz et al., 2018]. Indeed, while the latter sanctions that $q_S^D = \text{cert}_{\Sigma, O, S}^D(q_O)$ for all S-databases, in our notion the condition is limited to the S-databases that are consistent with Σ. The difference between the two notions is highlighted by the following example.

Example 3. Refer to Example 1, and consider again the query $q_S = \{ \{x\} \mid s_1(x) \}$ over S, and the query $q_O = \{ \{x\} \mid \text{Student}(x) \}$ over O. For the S-database $D = \{s_1(a), s_3(a), s_4(a, b), b\}$, we have that $q_S^D = \{a\}$, while, since D is inconsistent with Σ, $\text{cert}_{\Sigma, O, S}^D(q_O)$ contains all S-constants of D (including, for example, the tuple $\{b\}$). It follows that q_O is not a realization of q_S in Σ, whereas, since $q_S^D = \text{cert}_{\Sigma, O, S}^D(q_O)$, for every S-database consistent with Σ, q_O is a perfect s-to-o Σ-rewriting of q_S.

As noted in [Cima, 2017; Lutz et al., 2018] and illustrated in the next example, perfect s-to-o rewritings may not exist.

Example 4. Refer again to Example 1, and consider the data service expressed as the source query $q_S = \{ \{x\} \mid s_1(x) \}$ by inspecting the mappings, one can see that, since the certain answers of Student include the values stored both in s_1, and in s_2, such concept is too general for exactly characterizing q_S.

On the other hand, both ErasmusStudent and MathStudent are too specific, and therefore we can conclude that no perfect s-to-o Σ-rewriting of q_S exists.

In order to cope with the situations illustrated in the example, we introduce the notions of sound and complete s-to-o rewritings, which, intuitively, provide sound and complete approximations of perfect rewritings, respectively.

Definition 5. q_O is a sound (respectively, complete) s-to-o Σ-rewriting of q_S if for every S-database D, $\text{Mod}_D(\Sigma) \neq \emptyset$ implies $\text{cert}_{\Sigma, O, S}^D(q_O) \subseteq q_S^D$ (resp., $q_S^D \subseteq \text{cert}_{\Sigma, O, S}^D(q_O)$).

Example 6. We refer to Example 4, and observe that $\{ \{x\} \mid \text{ErasmusStudent}(x) \}$ is a sound s-to-o Σ-rewriting of q_S; whereas $\{ \{x\} \mid \text{Student}(x) \}$ is a complete s-to-o Σ-rewriting of q_S.

Obviously, q_O is a perfect s-to-o Σ-rewriting of q_S if and only if q_O is both sound and complete s-to-o Σ-rewriting of q_S. There are also interesting relationships between the notions of s-to-o Σ-rewritings introduced here and the usual notions of rewritings studied in OBDA.
Proposition 7. If q_O is a complete S-to-O rewriting of q_S if and only if q_S is an O-to-S rewriting of q_O. If q_S is a perfect O-to-S rewriting of q_O, then q_O is a perfect S-to-O rewriting of q_S.

It is easy to see that different sound or complete s-to-o rewritings of q_S may exist, and therefore it is reasonable to look for the “best” approximations of q_S, at least relative to a certain class of queries.

Definition 8. $q_O \in L$ is an L-maximally sound (respectively, L-minimally complete) S-to-O rewriting of q_S if q_S is a sound (respectively, complete) S-to-O rewriting of q_S, and no $q' \in L$ exists such that (i) q' is a sound (resp., complete) S-to-O rewriting of q_S, (ii) $cert_{q_O, \Sigma} \subseteq cert_{q', \Sigma}$ (resp., $cert_{q', \Sigma} \subseteq cert_{q_O, \Sigma}$), and (iii) there exists an S-database D such that $cert_{q_O, \Sigma} \subset cert_{q', \Sigma}$ (resp., $cert_{q', \Sigma} \subset cert_{q_O, \Sigma}$).

Example 9. We refer again to Example 4, and observe that while $\{ (x) \mid \text{Student}(x) \}$ is a minimally complete S-to-O rewriting of q_S if q_S is a sound S-to-O rewriting of q_S, and no $q' \in L$ exists such that (i) q' is a sound (resp., complete) S-to-O rewriting of q_S, (ii) $cert_{q_O, \Sigma} \subseteq cert_{q', \Sigma}$ (resp., $cert_{q', \Sigma} \subseteq cert_{q_O, \Sigma}$), and (iii) there exists an S-database D such that $cert_{q_O, \Sigma} \subset cert_{q', \Sigma}$ (resp., $cert_{q', \Sigma} \subset cert_{q_O, \Sigma}$).

Given the general framework presented so far, it is natural to consider the following two basic computational problems, for classes L_S and L_O of queries:

- **Verification:** given $\Sigma = (\mathcal{O}, S, M)$, $q_S \in L_S$ over S and $q_O \in L_O$ over \mathcal{O} of the same arity as q_S, verify whether q_O is a sound (resp., complete, perfect) S-to-O rewritings of q_S.

- **Computation:** given $\Sigma = (\mathcal{O}, S, M)$, and $q_S \in L_S$ over S compute any L_O-maximally sound (resp., L_O-minimally complete, perfect) S-to-O Σ-rewritings of q_S, if it exists.

In the rest of this paper, if not otherwise stated, we refer to the most common setting studied in OBDA, i.e., where (i) the ontology is expressed in DL-Lite$_{Q}$, (ii) S is a relational database schema without integrity constraints, and (iii) both L_O and L_S denote the class of UCQs. Interestingly, in this case, we have the following.

Proposition 10. If q_S and q_O are UCQ-minimally complete (resp., UCQ-maximally sound) S-to-O Σ-rewritings of q_S, then they are equivalent w.r.t. Σ.

4 Complete Source-to-Ontology Rewritings

In this section, we study both the verification and the computation problem for complete s-to-o rewritings.

We first address the verification problem. Suppose we want to check whether q_O is a complete S-to-O Σ-rewriting of q_S. Obviously, if q_S is contained in $\text{PerfRef}_{q_O, \Sigma}$, then for every S-database D consistent with Σ, we have that $q_S \subseteq cert_{q_O, \Sigma}^D$ and therefore the answer is positive. However, if q_S is not contained in $\text{PerfRef}_{q_O, \Sigma}$, it might be that q_O is still a complete S-to-O Σ-rewriting of q_S, in particular in the case where the non-emptiness of q_S in D reveals the presence of inconsistencies. From this observation, we derive the following.

Algorithm 1 Compute complete s-to-o rewritings

Input: $\Sigma = (\mathcal{O}, S, M)$, $q_S(\overline{t}) = \bigvee_{i=1}^{n} q_S^{i}(\overline{t})$ over S

Output: $q_O(\overline{t})$ over \mathcal{O}

1. return $q_O = \bigvee_{i=1}^{n} \{ \overline{t} \mid M(q_S^{i}) \land T(\overline{t}) \}$

Proposition 11. q_O is a complete S-to-O Σ-rewriting of $q_S(\overline{t})$ if and only if $q_S \subseteq \text{PerfRef}_{q_O, \Sigma} \lor \text{PerfRef}_{V_{\mathcal{O}}}^{\mathcal{O}, \Sigma}$.

The following theorem characterizes the complexity of verification for complete s-to-o rewritings.

Theorem 12. The verification problem for complete s-to-o rewritings is NP-complete.

Proof sketch. As for the upper bound, we show how to check the containment $q_S(\overline{t}) \subseteq \text{PerfRef}_{q_O, \Sigma} \lor \text{PerfRef}_{V_{\mathcal{O}}}^{\mathcal{O}, \Sigma}$ in NP. For every disjunct q of q_S, (i) we guess a query $q' \overline{t}$ with the same arity of $q\overline{t}$ and size at most the maximum between $\sigma(q\overline{t})$ and $\sigma(V_{\mathcal{O}})$, a sequence ρ of ontology axioms, a query $q'' \overline{t}$ over \mathcal{O} of size $\sigma(M) \times \sigma(q')$ and a function ϕ from the variables of $q'' \overline{t}$ to the variables $q, q'' \overline{t}$, and (ii) we check in PTIME whether we can rewrite either q_O or $V_{\mathcal{O}} \overline{t}$ into $q'' \overline{t}$ through ρ, $q'' \overline{t}$ is in $\text{REW}_{M}(q'')$, and ϕ is a homomorphism from $q'' \overline{t}$ to q. As for the lower bound, the proof of NP-hardness is by a LOGSPACE reduction from the 3-COLOURABILITY problem, which is NP-complete [Garey et al., 1976].

We point out that the result of NP-hardness holds even when \mathcal{O} is empty, M is both a pure GAV mapping and a LAV mapping, and q_S, q_O are boolean CQs.

We now deal with the computation problem. In particular, we propose Algorithm 1 for computing UCQ-minimally complete s-to-o rewritings.

Intuitively, the algorithm computes the output query as union of CQs obtained by simply applying the mapping M to each CQ q_S^{i} in q_S, using T to bind the variables that are not involved in the application of M to q_S^{i}.

Theorem 13. Algorithm 1 computes the UCQ-minimally complete S-to-O Σ-rewriting of q_S.

The algorithm shows that the UCQ-minimally complete S-to-O Σ-rewriting of q_S always exists. Moreover, if q_S is a CQ, then it is a CQ. Finally, we observe that the complexity of Algorithm 1 does not depend on \mathcal{O} and is in PTIME in $\sigma(q_S)$.

Moreover, it is in EXPTIME in $\sigma(M)$, since it essentially applies the chase using the queries in the mapping. It can be shown that an algorithm for computing the UCQ-minimally complete s-to-o rewritings that is PTIME in the size of all inputs would imply a PTIME algorithm for CQ containment. So, assuming PTIME \neq NP, the computation problem cannot be solved in PTIME.

5 Sound Source-to-Ontology Rewritings

We now turn to both the verification and the computation problem for sound s-to-o rewritings.

As for verification, we remind the reader that, for an S-database D consistent with Σ, $\text{PerfRef}_{q_O, \Sigma}$ computes exactly
So, intuitively, checking whether \(q_O \) is a sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \) means checking whether for all \(S \)-databases \(D \), either \(\text{Mod}_D(\Sigma) = \emptyset \) or \(\text{PerfRef}_{q_O, \Sigma} \subseteq q_S^D \). This observation leads to the following characterization.

Proposition 14. \(q_O(\bar{t}) \) is a sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \) if and only if \(\text{PerfRef}_{q_O, \Sigma} \subseteq q_S \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \).

The following theorem characterizes the complexity of the verification problem for sound s-to-o rewritings.

Theorem 15. The verification problem for sound s-to-o rewritings is \(\Pi_2^P \)-complete.

Proof sketch. As for the upper bound, we show that checking \(\text{PerfRef}_{q_O(\bar{t}), \Sigma} \not\subseteq q_S \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \) can be done in \(\Sigma_2^P \): we guess a CQ \(q_1 \) over \(S \) whose size is at most \(\sigma(\mathcal{M}) \times \sigma(\sigma_C) \), we check in PTIME whether \(q_1 \) is a disjunct of \(\text{PerfRef}_{q_O, \Sigma} \), and then we use an NP oracle to check \(q_1 \not\subseteq q_S \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \). As for the lower bound, the proof of \(\Pi_2^P \)-hardness is by a LOGSPACE reduction from the \(\forall \exists \)-CNF problem.

We point out that the result of \(\Pi_2^P \)-hardness holds even when \(O \) is empty, \(\mathcal{M} \) is both a GAV mapping and a LAV mapping, and \(q_S, q_O \) are boolean CQs.

We now tackle the computation problem. Our main result is that there are many cases where a UCQ-maximally sound s-to-o rewriting of a query is not guaranteed to exist. To illustrate the result, we introduce a specific setting for OBDA specifications, that we call restricted, obtained from the general one by: (i) limiting the ontology language to DL-LiteRFS, (ii) limiting the mapping to pure GAV, and (iii) limiting \(q_O \) to UCQJFEs. We now show that, surprisingly, as soon as we try to extend such setting, we lose the guarantee of the existence of s-to-o rewritings that are maximally sound in the class of UCQs.

Theorem 16. UCQ-maximally sound s-to-o rewritings of a query \(q_O \) may not exist if we extend the restricted setting with any of the following features:

1. disjointness axioms in the ontology;
2. inclusion axioms with \(\exists R \) as right-hand side in the ontology;
3. LAV mapping assertions, even without joining involving existential variables in the right-hand side;
4. non-pure GAV mapping assertions;
5. \(q_S \) in a fragment of CQs going beyond CQJFEs.

Proof sketch. We present the proof for case 5. Consider the OBDA specification \(\Sigma = \langle O, S, \mathcal{M} \rangle \), where \(O \) has no axiom, and \(\mathcal{M} \) consists of the following pure GAV mappings:

\[
\begin{align*}
\{ (x, y) \mid s_1(x, y) \wedge s_3(x) \} &\subseteq \{ (x, y) \mid R(x, y) \} \\
\{ (x, y) \mid s_1(x, y) \} &\subseteq \{ (x, y) \mid R(x, y) \}
\end{align*}
\]

and let \(q_S \) be the query \(\{ () \mid s_1(x, y) \wedge s_1(y, z) \} \). Observe that \(q'_O = \{ () \mid R(x, y) \wedge R(y, z) \} \) is a complete \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \), but is not sound, because the query \(q''_S = \{ () \mid s_1(x, y) \wedge s_1(z, z) \wedge s_3(y) \} \) is a disjunct of \(\text{PerfRef}_{q_O, \Sigma} \) such that \(q_S \not\subseteq q''_S \). Conversely, one can verify that each of the following queries is a sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \):

- \(q_0 = \{ () \mid R(x, y) \wedge R(y, z) \} \);
- \(q_1 = \{ () \mid R(x, y) \wedge R(y, z_1) \wedge R(z_1, y) \} \);
- \(q_2 = \{ () \mid R(x, y) \wedge R(y, z_1) \wedge R(z_2, y) \} \);
- ... More precisely, if we define \(q_0 \) to be \(\{ () \mid R(x, y) \wedge R(y, z_1) \wedge R(z_1, z_2) \wedge \ldots \wedge R(z_{n-1}, z_n) \wedge R(z_n, y) \} \), for \(n \geq 2 \), then it can be shown that every \(q_n \) is a sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \), and for no pair \((i, j) \), with \(i \neq j \), \(i, j \geq 0 \), \(\text{cert}_{q_i, \Sigma} \not\subseteq \text{cert}_{q_j, \Sigma} \). It follows that the infinite union of \(q_0, q_1 \), and all \(q_n \)'s can be shown to be the maximally sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \) in the class of positive queries.

It remains to study sound s-to-o rewritings in the restricted setting. We do so in Section 7.

6 **Perfect Source-to-Ontology Rewritings**

Both the verification and the computation problem for perfect s-to-o rewritings can be addressed by combining the techniques illustrated in the previous sections. As for verification, we can check whether \(q_O(\bar{t}) \) is a perfect \(S \)-to-O \(\Sigma \)-rewriting of \(q_S(\bar{v}) \) by checking both \(\text{PerfRef}_{q_O, \Sigma} \subseteq q_S \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \) and \(q_S \subseteq \text{PerfRef}_{q_O, \Sigma} \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \). As for computation, we can first compute the query \(q_O \) that is the UCQ-minimally complete \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \), and then check whether \(q_O \) is a sound \(S \)-to-O \(\Sigma \)-rewriting of \(q_S \). If the answer is positive, we return \(q_O \), otherwise we report that no perfect rewriting exists. From the above observation we derive the following: (i) all complexity results illustrated for the case of sound s-to-o rewritings hold for perfect rewritings as well, and (ii) if \(q_S \) is a CQ, then either its perfect \(S \)-to-O \(\Sigma \)-rewriting does not exist, or it is a CQ as well.

Finally, we briefly discuss the case of perfect rewritings under the semantics used in [Lutz et al., 2018], that imposes the condition \(q_S^D = \text{cert}_{q_O, \Sigma}^D \) for all \(S \)-databases. From the results presented in the previous sections, it follows that \(q_O(\bar{t}) \) is a perfect \(S \)-to-O \(\Sigma \)-rewriting of \(q_S(\bar{v}) \) under such semantics if and only if \(q_S = \text{PerfRef}_{q_O, \Sigma} \lor \text{PerfRef}_{\bar{v}_O, \Sigma} \). This allows us to easily derive algorithms and complexity bounds for both verification and computation in this case, too.

7 **Restricted Setting**

We now deal with the restricted setting mentioned at the end of Section 5. Before delving into the technical part, we observe that, despite its limitations, the expressive power of this setting is sufficient for several meaningful applications. Indeed, several popular ontologies are expressive in DL-LiteRFS (e.g., Dublin Core [Webel et al., 1998] and SKOS [Miles and Bechhofer, 2009]), and the form of pure GAV mapping is exactly the one originally defined in the literature of data integration. Moreover, UCQJFEs captures data services expressive in the famous USP3 (Union, Select, Project, Join) fragment of Relational Algebra [Codd, 1970], with the only limitation that joining variables cannot be projected out. Note that such fragment is the one needed for all tasks related to source profiling [Abedjan et al., 2017].

Definition 17. Let \(q_1(\bar{t}) \) and \(q_2(\bar{t}) \) be two CQs, and let \(F_1 = S(t_1, \ldots, t_{1,n}) \) and \(F_2 = S(t_{2,1}, \ldots, t_{2,n}) \) be two atoms of \(q_1 \) and \(q_2 \), respectively. We say that \(F_1 \) instantiates \(F_2 \), if for
every \(i = 1, \ldots, n\), we have that if \(t_{2;i}\) is a term of \(t\) or a constant, then \(t_{2;i} = t_{1;i}\).

Clearly, given atoms \(F_1\) in \(q_1\) and \(F_2\) in \(q_2\), checking whether \(F_1\) instantiates \(F_2\) can be done in PTIME. Based on this observation, the following lemma shows that checking whether a UCQ is contained in a UCQIFE is tractable.

Lemma 18. Given a UCQ \(q_1\) and a UCQIFE \(q_2\) of the same arity, checking whether \(q_1 \subseteq q_2\) can be done in PTIME.

We are now ready to characterize the complexity of the verification problem in the restricted setting.

Theorem 19. The verification problem for sound s-to-o rewritings in the restricted setting is coNP-complete; it is in PTIME if \(q_2\) is a CQIFE.

Proof sketch. The coNP upper bound is obtained by noticing that we have to guess a disjunct \(q_1\) of \(\text{PerfRef}_{q_1, \Sigma}\) and then check whether \(q_1\) is not contained in \(q_2\), which, by virtue of Lemma 18, can be done in PTIME. The coNP lower bound is shown by a reduction from \textsc{Validity}. To show that verification is in PTIME when \(q_2\) is a CQIFE, we notice that, for the characteristics on the OBDA setting, for every \(\gamma(t)\) in \(q_2\), \(\text{PerfRef}_{q_1, \Sigma} = \bigwedge_{\gamma \in \text{PerfRef}_{q_1, \Sigma}}\), where \(\gamma\) is the query with body \(\alpha\) and target list the tuple of variables that occur both in \(t\) and \(\alpha\). Hence, verification can be solved by checking, for every atom \(F\) in \(q_2\) and every query \(q_2\) in \(q_2\), whether there is an atom \(G\) in \(q_1\) such that all disjuncts of \(\text{PerfRef}_{q_1, \Sigma}\) contain at least one atom that instantiates \(F\). Clearly, this can be done in PTIME w.r.t. \(\sigma(q_2), \sigma(M), \text{ and } \sigma(q_1)\).

We observe that the coNP upper bound holds even when \(q_2\) is expressed in the fragment of DL-Lite\(_A\) that does not admit disjunctive axioms, and \(M\) is a set of both pure GAV and LAV mappings, \(q_2\) is a CQ, and both \(q_2\) and \(q_1\) have no existential variables.

We now address the computation problem by providing an algorithm to compute maximally sound s-to-o rewritings, thus proving that in the restricted setting, for each query \(q_2\), the UCQ-maximally sound s-to-o rewriting of \(q_2\) always exists.

Let \(\gamma(M)\) be the number of mapping assertions in \(M\) and \(\eta(q_2)\) the number of distinct atoms appearing in \(q_2\). Moreover, let \(\text{bound}(q_2) = 1 + \gamma(M) + \eta(M)^2 + \ldots + \gamma(M)^{\eta(q_2)}\) if \(q_2\) is a UCQIFE, and \(\text{bound}(q_2) = \eta(q_2)\) if \(q_2\) is a CQIFE.

We now address the computation problem by providing an algorithm to compute maximally sound s-to-o rewritings, thus proving that in the restricted setting, for each query \(q_2\), the UCQ-maximally sound s-to-o rewriting of \(q_2\) always exists.

Let \(\gamma(M)\) be the number of mapping assertions in \(M\) and \(\eta(q_2)\) the number of distinct atoms appearing in \(q_2\). Moreover, let \(\text{bound}(q_2) = 1 + \gamma(M) + \eta(M)^2 + \ldots + \gamma(M)^{\eta(q_2)}\) if \(q_2\) is a UCQIFE, and \(\text{bound}(q_2) = \eta(q_2)\) if \(q_2\) is a CQIFE.

The following lemma, showing that we can limit our attention to queries with at most \(\text{bound}(q_2)\) atoms when we search for the maximally sound S-to-\(\Sigma\) rewriting of \(q_2\), allows us to immediately derive Algorithm 2.

Lemma 20. If a CQ \(q_0(t)\) is a sound S-to-\(\Sigma\) rewriting of \(q_2\), then there exists a CQ \(q'_0(t)\) which is a sound S-to-\(\Sigma\) rewriting of \(q_2\) whose body is the conjunction of \(m\) atoms appearing in \(q_0\), where \(m \leq \text{bound}(q_2)\).

Note that the disjuncts of query \(q_0\) computed by Algorithm 2 do not have necessarily the same target list.

Theorem 21. Algorithm 2 computes the UCQ-maximally sound S-to-\(\Sigma\) rewriting of \(q_2\).

Proof sketch. It is immediate to verify that the query returned by the algorithm is a sound S-to-\(\Sigma\) rewriting of \(q_2\).

Algorithm 2 Compute sound s-to-o rewritings

Input: \(\Sigma = (\mathcal{O}, S, M)\), \(q_2\) (U)CQIFE over \(S\)

Output: \(q_0\) over \(\mathcal{O}\)

1: \(q_0 := \bot\).
2: for each \(q\) over \(\mathcal{O}\) with at most \(\text{bound}(q_2)\) atoms, involving only constants from \(q_2\) and \(M\) do
3: \(q\) is a sound S-to-\(\Sigma\) rewriting of \(q_2\) then
4: \(q_o := q_o \lor q\).
5: end if
6: end for
7: return \(q_o\)

To show that it is the maximally sound S-to-\(\Sigma\) rewriting of \(q_2\), we proceed by contradiction, i.e., by assuming that there exists a CQ \(q'\) such that \(\text{PerfRef}_{q', \Sigma} \sqsubseteq q_2\) and \(\text{PerfRef}_{q_2, \Sigma} \not\sqsubseteq \text{PerfRef}_{q', \Sigma}\), for every disjunct \(q'_o\) of \(q_o\), where \(q_o\) is the query computed by Algorithm 2. Let \(q''\) be obtained by substituting \(q'\) in \(q''\) each constant neither in \(q_2\) nor in \(M\) (if any) with a new fresh existential variable. It can be shown that in the restricted case, \(q''\) would be such that \(\text{PerfRef}_{q'', \Sigma} \subseteq q_2\). Also, let \(m\) be the number of atoms of \(q''\). If \(m > \text{bound}(q_2)\), by Lemma 20, there exists a query \(q_p\) that is sound S-to-\(\Sigma\) rewriting of \(q_2\) whose body is the conjunction of \(m\) atoms appearing in \(q''\), \(m \leq \text{bound}(q_2)\). But then, since \(q_p\) possibly contains only constants in \(q_2\) or \(M\) and since \(m \leq \text{bound}(q_2)\), by construction, \(q_p\) would be a disjunct of \(q_o\) and we get a contradiction. Finally, if \(m \leq \text{bound}(q_2)\), we obtain a contradiction, by a similar argument.

It can be shown that Algorithm 2 (i) computes the unique (up to equivalence w.r.t. \(\Sigma\)) maximally sound S-to-\(\Sigma\) rewriting of \(q_2\) in the class of monotone queries, (ii) is PTIME in \(\sigma(\mathcal{O})\) and \(\sigma(M)\), and \(\text{ExpTime}\) in \(\eta(q_2)\). Finally, we can show that (i) assuming PTIME \(\neq\) NP, the computation problem cannot be solved in PTIME, and (ii) there are cases where the number of atoms of the maximally sound S-to-\(\Sigma\) rewriting of \(q_2\) is necessarily exponential w.r.t. \(\eta(q_2)\).

8 Conclusion

We have presented a framework for semantically characterizing data services through ontologies, and carried out a comprehensive analysis for the most common OBDA setting, including a restricted setting, still useful in practice. We plan to continue this work along several directions. For example, in the unrestricted setting, we will study the problem of checking for the existence of a UCQ-maximally sound source-to-ontology rewriting of a query, and we aim at singling out the minimal class \(\mathcal{L}\) of queries that guarantees the existence of an \(\mathcal{L}\)-maximally sound source-to-ontology rewriting of a query \(q_2\). Also, we will extend our analysis to OBDA settings going beyond the one based on DL-Lite\(_A\), e.g., by considering DL-Lite\(_R\) and the \(\mathcal{EL}\) family as ontology languages.

Acknowledgments

Work supported by Sapienza under the project “PRE-O-PRE” and by MIUR, under the SIR project “MODEUS” - grant n. RBSI14TQHQ, and under the PRIN 2017 project “HOPE”.
References

