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Abstract
In knowledge representation, obtaining a notion of
belief which is tractable, expressive, and eventually
complete has been a somewhat elusive goal. Ex-
pressivity here means that an agent should be able
to hold arbitrary beliefs in a very expressive lan-
guage like that of first-order logic, but without be-
ing required to perform full logical reasoning on
those beliefs. Eventual completeness means that
any logical consequence of what is believed will
eventually come to be believed, given enough rea-
soning effort. Tractability in a first-order setting
has been a research topic for many years, but in
most cases limitations were needed on the form of
what was believed, and eventual completeness was
so far restricted to the propositional case. In this
paper, we propose a novel logic of limited belief,
which has all three desired properties.

1 Introduction
The whole idea of a knowledge-based system, going all the
way back to [McCarthy, 1963], is to provide a system with a
knowledge base (KB) of facts expressed in a logical language
that the system would then draw conclusions from. But in
trying to characterize just what conclusions the system should
be able to draw, it has been difficult to come up with a notion
of belief that allows for full-first order logic on the one hand,
and is not overly demanding computationally on the other.

There has been considerable research on this topic (since
our first efforts 35 years ago in [Levesque, 1984]), and we
will review this research in a later section. In this paper, we
present a new model of belief that is the culmination of our
thoughts on this subject. Following [Liu et al., 2004], it is
based on a notion of mental effort, characterized by a single
parameter k. The idea is that when k = 0, the only sentences
believed are those that are in the given KB (or “easy” logical
consequences of them). At higher values of k, more and more
logical consequences of the KB are revealed. The main prop-
erties we are claiming for this new model are the following:

Expressiveness: Any sentence of a first-order logic with
equality and standard names can be a sentence in the
KB and therefore believed at k = 0. In particular, it will

be possible to believe (at k = 0) a disjunction without
having to believe either disjunct, and to believe an exis-
tential without having to believe any of its instances.

Eventual completeness: Every sentence believed (at any
level k) will be a logical consequence of the KB. In ad-
dition, if a sentence is a logical consequence of the KB,
there will be a level k at which the sentence will be be-
lieved. So with enough mental effort it will be possible
to do sound and complete first-order logical reasoning.

Tractability: The reasoning required to determine what is
believed will be tractable in the following specific sense.
Imagine that the KB consists of a potentially large num-
ber N of sentences each of which is bounded in size by
a constant c. Suppose that we are interested in determin-
ing whether some other sentence (of size also bounded
by c) is believed at some fixed level k. We will show that
there is procedure that is polynomial inN for doing this.

(Note that although the elements of the KB can be of arbi-
trary logical form, belief is guaranteed to be tractable only
when each individual sentence in the KB is small.) As far
as we know, no existing model of belief, including our own
earlier proposals, satisfy these properties. For example, cases
where belief is guaranteed to be tractable might end up be-
ing less expressive than full first-order logic with equality, as
in [Crawford and Etherington, 1998; Liu and Levesque, 2003;
Liu et al., 2004], for example. Cases where all of first-order
logic is allowed may fail to be eventually complete, that is,
there may be logical consequences of the KB that are out-
side the reach of what can be believed [Patel-Schneider, 1985;
Lakemeyer, 1996; Lakemeyer and Levesque, 2016].

The organization of the paper is as follows. In Section 2 we
sketch the main ideas of our approach. Section 3 introduces
the first-order logic with equality that our work is based on,
and other logical preliminaries. Section 4 formalizes the no-
tions of belief and only-believing that we are after, followed
by a description of the full logic. In Section 6 we show that
the logic indeed has all the desired properties and more. The
paper ends with a discussion of related work and conclusions.

2 The Approach
In order to talk about what the system is considered to be-
lieve at any point, it will be convenient to use a logic of belief,
where formulas Bkφ for k = 0, 1, 2 . . . are used to say that
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the system believes a first-order sentence φ at level k. (When
we say that a logic of belief is tractable, expressive, and even-
tually complete, we mean that the notion of belief it charac-
terizes has these properties.) In order to talk about the use of
a knowledge base, we also use a form of only-believing by
way of another modal operator O where Oφ means that φ is
believed (at level 0), but nothing stronger [Levesque, 1990].
This will allow us to write sentences like (OKB ⊃ Bkφ),
which can be read as “if the given knowledge base is KB,
then φ is believed at level k.” (When KB is used in a formula,
we mean the conjunction of its elements.) The limited beliefs
of a knowledge base can then be studied in terms of the valid
sentences of this form.

With this logic of belief in mind, the properties of limited
reasoning we are looking for are these:
• expressiveness: for any first-order φ, the sentence Oφ

will be satisfiable, and moreover |= (Oφ ⊃ B0φ).

• cumulativity: for any k and any φ,
|= (Bkφ ⊃ Bk+1φ).

• soundness: for any k, any KB and φ,
if |= (OKB ⊃ Bkφ), then |= (KB ⊃ φ).
• eventual completeness: for any KB and φ,

if |= (KB ⊃ φ), then there will be some k such that
|= (OKB ⊃ Bkφ).

• tractability: for any KB and φ, the question as to
whether |= (OKB ⊃ Bkφ) for fixed k will be decidable
with polynomial data complexity as described above.

So while it will be computationally feasible to determine if
Bkφ is true (with an effort that depends on the k), if an agent
really needs to determine whether or not φ is true, it may
have to look at higher and higher values of k. Because of the
undecidability of first-order logic, it will be undecidable to
determine whether there exists a k such that Bkφ is true.

2.1 Reduction to Clauses
One possible approach to satisfying the above requirements
is to start with a sound and complete logical reasoning proce-
dure (like Resolution, say), but cut it off after k steps. In other
words, we might have arranged the semantics so that Bkφ is
true iff φ can be derived from the KB by the reasoning proce-
dure in k or fewer steps.

However, such a straightforward interpretation of belief
levels is problematic, as it would likely mean that many de-
sirable properties of belief are lost. For example, Bk(α ∧ β)
and Bk(β∧α) may not be logically equivalent, since the rea-
soning procedure might need some extra steps to go from one
conjunction to the other. As we will see in Section 6, our
notion of belief will preserve these and other equivalences.

In the semantics of O and Bk to follow starting in the next
section, we obtain these desirable equivalences by reducing
the general definition of belief over arbitrary sentences to be-
lief over ground clauses, that is, disjunctions of literals. We
will be making use of reductions of the following forms:

1. Bkφ will hold iff Bk∃~x.ψ holds, where the formula ψ
is a Skolemized version of φ with no quantifiers;

2. Bk∃x.ψ will hold iff there are terms t0, . . . , tk such that
Bk(ψx

t0 ∨ · · · ∨ ψ
x
tk

) holds;

3. finally, when φ is quantifier-free, Bkφ will hold iff for
every ground clause c in the CNF of φ, Bk(c) holds.

The reduction in item (1) involves a conversion to prenex
form and the dual form of Skolemization (sometimes called
Herbrandization) where universally quantified variables are
eliminated using Skolem functions; item (2) is what amounts
to an application of a bounded version of Herbrand’s Theo-
rem [Buss, 1998]; finally, item (3) involves the usual conver-
sion to CNF.

This of course still leaves us with the problem of specify-
ing which ground clauses c are to be believed given a KB.
We need to be careful here, since the problem of determining
whether KB logically entails a ground clause c (even with-
out equality) is already undecidable. In fact, it is undecidable
even when the KB is a single universally quantified clause.

2.2 Epistemic States
In possible-world semantics [Kripke, 1959; Hintikka, 1962;
Chellas, 1980], perhaps the simplest model of the epistemic
state of a KB is the set of all worlds satisfying the KB, given a
fixed universe of discourse [Levesque and Lakemeyer, 2001].
For tractable reasoning however, this notion of epistemic state
is too coarse, as it lumps together all logically equivalent
knowledge bases. For example, for KB = {p, (p ⊃ q)},
we might want an epistemic state where B0(q) is false, but
for the logically equivalent KB = {p, (p ⊃ q), q}, we want a
different epistemic state where B0(q) would be true.

So in this paper, we will be using a much finer-grained no-
tion of epistemic state. There may be many ways of doing this
(and see future work), but we will show here that it is suffi-
cient to think of an epistemic state not as a set of worlds, but
as a finite set of clauses (which may contain variables). In-
tuitively, these clauses are the ones obtained by Skolemizing
the KB and converting it to CNF. This solves the problem
above since logically equivalent knowledge bases need not
correspond to the same epistemic state when they do not have
the same CNF (like the two examples above). (However, if
two of them have exactly the same CNF, only believing one
will end up being equivalent to only believing the other.)

The use of clauses as epistemic primitive is not new and
dates back to [Liu et al., 2004], where epistemic states were
possibly infinite sets of ground clauses (see also Section 7).
While we consider finite sets of clauses with variables, these
can be thought of as representing the (infinite) set of all
ground instances.

2.3 When Are Clauses Believed?
What we will be proposing for the belief of clauses is easiest
to understand in the propositional case (without the compli-
cations of quantifiers or equality). First, define a clause to be
trivial iff it contains complementary literals. Then define

RP(C) = C ∪ {(a ∪ b) | {ρ} ∪ a ∈ C, {ρ̄} ∪ b ∈ C}.

So RP(C) performs one step of Resolution on the elements of
C, RP(RP(C)) performs two steps, and so on. Then finally,
define a clause b to be believed at level k in an epistemic state
defined by a set of clauses C iff b is trivial or there is a clause
a ∈ RPk(C) such that a ⊆ b. For example, if the epistemic
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state is defined by {(p∨q), (¬p∨r), (¬q∨r)}, then the clauses
(p∨ q) and (s∨¬s) and their supersets are believed at levels
0 and above, the clause (p ∨ r) and its supersets are believed
at level 1 and above, and the clause r and its supersets are
believed at level 2 and above. The rest of the paper will make
all these ideas precise for a full first-order logic with equality
and standard names.

3 First-Order Preliminaries
We begin by introducing the logic L from [Levesque and
Lakemeyer, 2001] as our base logic, followed by various
other notions we need from first-order logic.

3.1 The Base Logic L
The language ofL is a first-order dialect with = and an infinite
supply of function and predicate symbols of every arity. In
addition, the language also features a setN of standard names
#1,#2,#3, . . . , which are syntactically treated like constants
but which are intended to be isomorphic to the (fixed) do-
main of discourse. In other words, standard names can be
thought of as constants that satisfy the unique name assump-
tion and an infinitary version of domain closure. Among other
things, standard names allow for a very simple, substitutional
account of quantifiers. See [Levesque and Lakemeyer, 2001]
for more discussion on why standard names are useful. In
the following we often simply write “name” instead of “stan-
dard name.” Terms and atomic formulas are defined in the
usual way, and so are formulas using the connectives ¬ and ∧
and the quantifier ∀. Other connectives like ∨,⊃,≡ and the
quantifier ∃ are freely used as syntactic abbreviations. Any
formula from L is also called an objective formula. A sen-
tence is a formula without free variables.

Function symbols with names as arguments are called
primitive terms, and predicate symbols with names as argu-
ments are called primitive atoms.

The semantics is defined in terms of worlds, which are
mappings from the primitive terms intoN and from the prim-
itive atoms into {0, 1}.

The meaning of an arbitrary ground term is given in terms
of its coreferring standard name. Formally, given a ground
term t and a world w we define |t|w (read: the coreferring
standard name for t given w) by:

1. If t ∈ N , then |t|w = t;
2. |h(t1, . . . , tk)|w = w[h(n1, . . . , nk)],

where ni = |ti|w.

The truth of a sentence wrt world w (written as w |= φ) is
defined inductively as follows:

1. w |= p(t1, . . . , tk) iff w[p(n1, . . . , nk)] = 1
where |ti|w = ni;

2. w |= (t1 = t2) iff |t1|w and |t2|w are the same names;

3. w |= ¬φ iff w 6|= φ;

4. w |= (φ ∧ ψ) iff w |= φ and w |= ψ;

5. w |= ∀x. φ iff w |= φxn for all names n;

Here φxn stands for φwith every free occurrence of x replaced
by n. A sentence φ is valid (|= φ) iff for all worlds w, w |= φ.

Apart from standard names and equality, L behaves ex-
actly like classical first-order logic: it is shown in [Levesque
and Lakemeyer, 2001] that a sentence without standard names
and equality is valid iff it is valid in classical logic. Standard
names are, of course, special in that sentences like (#6 6= #7)
are valid, for example. Also, since the domain of discourse is
infinite, sentences like ∃x∀y(x = y) are unsatisfiable in L.

3.2 Other Preliminaries
The logic of belief here uses the language L but incorpo-
rates some ideas from standard first-order logic that we re-
view here. First some notation. We use the following meta-
variables throughout: x, y for variables, t, u, v for terms, n
for standard names, f, g for function symbols, p, q for predi-
cate symbols, a, b, c, d for clauses (defined below), θ for sub-
stitutions, ρ, τ, µ for literals, ρ̄ for the complement of a lit-
eral, φ, ψ, χ for objective formulas, i, j, k,m, r, s for non-
negative integers. A capitalized version of any of these will
be used for sets. We assume throughout that all formulas
are rectified, that is, that no variable appears bound by two
quantifiers, one within the scope the other, as in something
like ∃x(φ ∧ ∀xψ)))). For any substitution θ, and any literal,
clause, formula, or set of clauses z, zθ is like z but with free
variables x in z replaced by θ(x). Two literals ρ and τ with
distinct variables unify if there is a θ such that ρθ = τθ. A
most general unifier of two literals is one where any other
unifier can be obtained by applying further substitutions.

A clause is a finite set of literals (including equalities and
inequalities) which we understand intuitively as a disjunction.
(The empty clause is understood as a formula that is always
false.) For any formula φ ∈ L without quantifiers, CNF(φ)
is the finite set of clauses that results from putting φ into con-
junctive normal form, defined as follows:

Definition 1 Assume that φ has no quantifiers and has been
rewritten so that it does not use ∨, ⊃, or ≡. Then CNF(φ) is
defined inductively by:

1. CNF(φ) = {{φ}}, when φ is a literal;

2. CNF(φ ∧ ψ) = CNF(φ) ∪ CNF(ψ);

3. CNF(¬¬φ) = CNF(φ);

4. CNF(¬(φ ∧ ψ)) =
{a ∪ b | a ∈ CNF(¬φ), b ∈ CNF(¬ψ)}.

We obtain the following property of CNF:

Proposition 1 Let φ be any formula with no quantifiers.
If CNF(φ) = {c1, . . . , ck},
then CNF(¬φ) = {{ρ1, . . . , ρk} | ρ̄i ∈ ci}.

For any formula φ ∈ L, SKO(φ) is the formula without quan-
tifiers that results from Skolemizing φ, defined as follows:

Definition 2 Assume that φ has been rewritten so that it does
not use ∃, ∨, ⊃, or ≡. Then let SKO(φ) = SKO′(φ, {}),
which is defined inductively by:

1. SKO′(φ,X) = φ, when φ is a literal;

2. SKO′((φ ∧ ψ), X) = (SKO′(φ,X) ∧ SKO′(ψ,X));

3. SKO′(¬¬φ), X) = SKO′(φ,X);

4. SKO′(¬(φ∧ψ), X) = (SKO′(¬φ,X)∨SKO′(¬ψ,X));
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5. SKO′(∀xφ,X) = SKO′(φ,X ∪ {x});

6. SKO′(¬∀xφ,X) = SKO′(¬φxt , X),
where t = f(x1, . . . , xn), whereX = {x1, . . . , xn} and
f is a function symbol (a so-called Skolem function) that
occurs nowhere else.

In a nutshell, Skolemization involves replacing each existen-
tially quantified variable in a formula by a new function ap-
plied to all the universally quantified variables that it appears
within the scope of. We can get a version of Skolemization
that replaces universally quantified variables instead of exis-
tential ones by using¬SKO(¬φ), which is sometimes referred
to as Herbrandization. This is made precise in the following
proposition:

Proposition 2 For any objective φ, let ψ be the formula that
results from removing all quantifiers from φ. Then there
are substitutions θ and θ′ such that SKO(φ) = ψθ and
SKO(¬φ) = ¬ψθ′. Moreover, θ and θ′ can be unified: there
is a θ∗ such that θθ∗ = θ′θ∗.

Definition 3 For any two literals ρ and τ, MGU[ρ, τ ] is the
set of most general unifiers of ρ and τ (empty if the two liter-
als do not unify).

Definition 4 UNA = {{¬(n = n′)} |
n and n′ are distinct standard names }.
Definition 5 For function symbols F and predicate symbols
P , EQF,P is the union of the following sets of clauses:

1. {(x = x)},
2. {¬(x = y), (y = x)},
3. {¬(x = y),¬(y = z), (x = z)},
4. {¬(x1 = y1), . . . ,¬(xk = yk),

(f(x1, . . . , xk) = f(y1, . . . , yk))}, for every k-ary
function symbol f ∈ F ,

5. {¬(x1 = y1), . . . ,¬(xk = yk),
¬p(x1, . . . , xk), p(y1, . . . , yk)},
for every k-ary predicate symbol p ∈ P.

Note that these clauses are equivalent to the standard axioms
of equality restricted to the symbols in F and P . When the
context is clear, we omit the F and P subscripts.

Finally, we say that a set of clauses (possibly with variables)
is first-order satisfiable (or fo-satisfiable) if it is satisfiable
in classical first-order logic. There is a close connection be-
tween these notions and L: a sentence φ is valid in L, that
is, |= φ iff the set of clauses EQ ∪UNA ∪ CNF(SKO(¬φ)) is
fo-unsatisfiable.

4 Believing and Only-Believing
To define the logic of belief in the next section, we begin by
defining what it means to believe a clause and a sentence,
following the approach outlined above in Section 2.

Definition 6 An epistemic state is any finite set of clauses,
where the variables in each clause are distinct.

Definition 7 A clause c is trivial iff it contains complemen-
tary literals or an element of UNA.

Note that (n = n) is not a trivial clause, but will be handled
as a consequence of the first item of EQ defined above.

Definition 8 For any set of clauses C let
F(C) =

⋃
c∈C F(c), where

F(c) = {c} ∪ F({cθ | {ρ, τ} ⊆ c, ρ 6= τ, θ ∈ MGU[ρ, τ ]}.
Definition 9 For any set of clauses C,
RP(C) = C ∪{(a∪ b)θ | {ρ}∪a ∈ F(C), {τ}∪ b ∈ F(C),

θ ∈ MGU[ρ̄, τ ]}.
In these definitions, we assume the clauses in C use dis-

tinct variables, and that just one θ is chosen (if one exists) so
that the new clauses cθ and (a ∪ b)θ also have distinct vari-
ables. Definition 8 realizes what is known as Factoring, that
is, the unification of literals within the same clause, which
is needed for Resolution to be complete. For example, if
[P (x), P (a), Q(x)] is in C, then [P (a), Q(a)] is in F(C).
Note that F(C), while recursive, is well defined, as in each
step newly added clauses have fewer literals than those from
which they were generated. Definition 9 then performs one
step of resolution on all clauses in C extended by those ob-
tainable by Factoring.

Definition 10 For any integer k ≥ 0, clause b, and set of
clauses C, we say that b is believed at level k in epistemic
state C (written C, k |= b) iff b is trivial or there exist θ and
a ∈ RPk(C ∪ EQF,P ) such that for every ρ ∈ aθ, ρ̄ ∈ UNA
or ρ ∈ b. (The F and P here are sets that contain the function
and predicate symbols in C or b.)

This definition goes well beyond the propositional version
given in Section 2. It handles equality by making EQ be part
of the argument to RP, and it handles standard names by first,
incorporating UNA in the definition of trivial, and second, by
allowing a ∈ RP to contain literals that are not in b as long
they are guaranteed to be false (like #5 = #7).

We can now define what it means to believe an arbitrary
objective sentence of L:

Definition 11 For any integer k ≥ 0, objective sentence ψ,
and set of clauses C, we say that ψ is believed at level k in
epistemic state C iff there are k+ 1 substitutions, θ0, . . . , θk,
such that for all clauses b ∈ CNF(ψ′θ0 ∨ · · · ∨ ψ′θk), where
ψ′ = ¬SKO(¬ψ), we have that C, k |= b.

Note that believing ψ involves Skolemizing ¬ψ (and then
negating the result) so that existentially quantified variables
remain but universally quantified ones disappear. So, for ex-
ample, ∀x.q(x) is believed at level k iff the clause {q(u)}
is believed at level k, where u is a new Skolem constant
appearing nowhere else. (Since the KB in question can-
not mention u, the sentence will only be believed if the
KB entails a suitable universal.) But ∃x.q(x) will be be-
lieved at level k iff there are terms t0, . . . , tk (not necessar-
ily new ones) such that the clause {q(t0), . . . , q(tk)} is be-
lieved at level k. For a concrete example, consider the sen-
tence ψ = ∃x∀y(¬P (y) ∨ P (x)), which is valid and equiv-
alent to ∀y¬P (y) ∨ ∃xP (x). After Skolemizing the uni-
versal we obtain ψ′ = (¬P (f(x)) ∨ P (x)). Now consider
two substitutions θ0 and θ1, where θ0 maps x to itself and
θ1 maps x to f(x). Then CNF(ψ′θ0 ∨ ψ′θ1) is the trivial
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clause [¬P (f(x)), P (x),¬P (f(f(x))), P (f(x))]. Hence, if
C is empty then ψ is believed at level 1 but not at level 0.

Finally, let us now consider what it means to say that φ is
all that is believed:

Definition 12 For any objective sentence φ and set of clauses
C, we say that φ is only-believed in epistemic stateC iff there
is a relabelling of the variables and Skolem functions in C
such that C = CNF(SKO(φ)).

As mentioned above, having φ logically equivalent to ψ does
not make only-believing φ the same as only-believing ψ. For
example, let φ = (p ∧ (¬p ∨ q)) and let ψ = (φ ∧ q). Then
only-believing φ requires an epistemic state with exactly two
clauses, while only-believing ψ requires an epistemic state
with three clauses. These two epistemic states will have dif-
ferent beliefs: the sentence q will not be believed at level 0
in the first one, but it will in the second. (They will agree,
however, on beliefs at level 1 and beyond.)

Note also that only-believing φ involves Skolemizing φ it-
self (and not its negation), so that universally quantified vari-
ables remain but existentially quantified ones now disappear.
So, for example, ∀x.q(x) is only-believed in C iff C consists
of the single clause {q(x)} (or a variant with some other vari-
able). But ∃x.q(x) is only-believed in C iff C consists of the
single clause {q(v)}, where v is a Skolem constant.

5 A Logic of Limited Reasoning
Our logic of belief extends L by adding belief operators. In
particular, for any objective formula φ and any non-negative
integer k, Bkφ and Oφ are also formulas. Note that we do not
consider nested beliefs here. A formula is called subjective if
all predicate and function symbols appear within the scope of
a modal operator.

The semantics of sentences of the extended language is de-
fined with respect to worlds and epistemic states, that is, sets
of clauses. For the objective part, the semantics is identical to
that of L.

Definition 13 For any set of clauses C, any world w, and
any sentence α, we say that α is true wrt C and w (written
C,w |= α) according to the following definition:

1. C,w |= p(t1, . . . , tm) iff w[p(|t1|w, . . . , |tm|w)] = 1;

2. C,w |= (t1 = t2) iff |t1|w and |t2|w are ident. names;

3. C,w |= ¬α iff C,w 6|= α;

4. C,w |= (α ∧ β) iff C,w |= α and C,w |= β;

5. C,w |= ∀x.α iff C,w |= αx
n for all standard names n;

6. C,w |= Bkφ iff φ is believed at level k in ep. state C;

7. C,w |= Oφ iff φ is only-believed in epistemic state C.

When α is subjective, we leave out the w and write C |= α.
We say that α is valid in this logic (written |= α) iff C,w |= α
for every finite set of clauses C and world w.

Before looking at the general properties of this logic, let us
consider a simple example:

We show that |= (O∀x(x 6= #5 ⊃ p(x)) ⊃ B0p(
#7)).

Suppose thatC |= O∀x(x 6= #5 ⊃ p(x)). ThenC consists of
one clause, {x = #5, p(x)}, modulo renaming of x. So that

clause is an element of RP0(C∪EQ). Now let θ0 be the empty
substitution. Let ψ′ = ¬SKO(¬p(#7)) = ¬¬p(#7), so that
CNF(ψ′θ0) = {{p(#7)}}. So for every b ∈ CNF(ψ′θ0) there
is indeed a clause a ∈ RP0(C∪EQ) (namely {x = #5, p(x)})
and a θ (namely [x/#7]), such that for each literal ρ ∈ aθ,
either ρ̄ ∈ UNA (when ρ is #7 = #5) or ρ ∈ b (when ρ is
p(#7)). Therefore, C |= B0p(

#7).

6 Properties of the Logic
In this section, we confirm that the logic of belief defined
above behaves appropriately. We prove that it has the desired
properties listed in Section 2.

6.1 Satisfying the Desiderata
Theorem 1 (Cumulativity) |= (Bkψ ⊃ Bk+1ψ).

Proof: The theorem follows easily from the fact that for
any a, k, and C, if C, k |= a then C, k + 1 |= a.

For expressiveness, we need this lemma:

Lemma 1 φ is believed at level 0 in the epistemic state
CNF(SKO(φ)).

Proof: Let C = CNF(SKO(φ)) and D =
CNF(¬SKO(¬φ)). We need to show that there is a θ0 such
that for every b ∈ CNF(Dθ0), C, 0 |= b. Let θ, θ′, and
θ∗ be as in Proposition 2. So C = CNF(ψ)θ and D =
CNF(ψ)θ′. Let θ0 = θ∗ and suppose b is any element of
Dθ0 = CNF(ψ)θ′θ∗. So there is a b′ ∈ CNF(ψ) such that
b = b′θ′θ∗. But b′θ′θ∗ = b′θθ∗. So b′θ ∈ C and b′θθ∗ = b.
Therefore, C, 0 |= b.

Theorem 2 (Expressiveness)
For any objective sentence φ, the sentence Oφ is satisfiable,
and moreover |= (Oφ ⊃ B0φ).

Proof: Let C = CNF(SKO(φ)). Then C |= Oφ. Now
assume that C ′ is any finite set of clauses. If C ′ |= Oφ, then
C ′ is like C except for a possible relabelling. By Lemma 1,
φ is believed at level 0 in C, and so C ′ |= B0φ.

Turning now to tractability, we have the following:

Lemma 2 There is a procedure which given b, k and C can
decide whether or not C, k |= b.

Proof: Here is a sketch of the procedure: First calculate
C ′ = RPk(C ∪ EQ) in the obvious way. (This C ′ will be
finite.) Then confirm that either b is trivial or there is a θ and
a c ∈ C ′ such that for every ρ ∈ cθ, ρ̄ ∈ UNA or ρ ∈ b. (This
is a small tweak to a procedure known to be decidable called
theta-subsumption.)

Theorem 3 (Tractability) Suppose that φ1, . . . , φN , ψ are
sentences such that |φi| < c and |ψ| < c, where c is some
constant. Let φ = (φ1 ∧ · · · ∧ φN ). Then for any k ≥ 0, the
validity of (Oφ ⊃ Bkψ) can be determined in time polyno-
mial in N .
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Proof: Here is a sketch of a decision procedure which
runs in time polynomial in N : First, calculate C =
CNF(SKO(φ)), ψ′ = ¬SKO(¬ψ), and guess at a Θ =
{θ0, . . . , θk}. Then calculate B = CNF(ψ′θ0 ∨ · · · ∨ ψ′θk).
Finally, use the procedure of Lemma 2 to confirm for each
b ∈ B that C, k |= b. The θi in question will be substitutions
that map the variables in ψ′ to the (finitely many) terms that
appear in SKO(φ) or SKO(¬ψ).

Note that this procedure requires converting the entire
knowledge base φ to CNF, which can be exponential in gen-
eral. However, it is polynomial here since φ is assumed to be
a conjunction of small sentences. For any fixed k, the calcu-
lation of C ′ = RPk(C ∪ EQ) required by Lemma 2 will be
polynomial in |C|, but of course, this will grow exponentially
as k increases. A similar argument applies when converting
(ψ′θ0∨· · ·∨ψ′θk) into CNF, since the query is also assumed
to be bounded in size. Note that, in the case of Factoring
(F), which is part of RP, for each clause at most a polynomial
number of new clauses is added. (Note also that the RPk cal-
culation only needs to be done once, however, and can even
be done offline before considering any queries.) The “guess-
ing” of an appropriate Θ in the proof can be made determinate
by trying all potential MGUs between terms in ψ′ and terms
in C, of which there are only polynomially many. Overall,
under the given assumptions and for any fixed k, the proce-
dure will be polynomial in the size of the knowledge base.

To obtain soundness and eventual completeness, we need
the following lemmas:

Lemma 3 Let C be a finite set of clauses, and φ an objective
formula. If for all d ∈ CNF(φ), C, k |= d, then C ∪ EQ ∪
UNA ∪ {¬φ} is fo-unsatisfiable.

Proof: SupposeM is a first-order interpretation andM sat-
isfies C∪EQ∪UNA. SinceM satisfies UNA, M satisfies any
trivial clause andM also satisfies RPk(C∪EQ) (by induction
on k). So for any d, if C, k |= d, then M satisfies d. There-
fore, M satisfies all the clauses in CNF(φ). So M satisfies φ
and does not satisfy ¬φ.

Lemma 4 Let C be a finite set of clauses, and φ a for-
mula. (Both can have variables.) Then the set of clauses
C∪EQ∪UNA∪CNF(φ) is fo-unsatisfiable iff there is a k and
substitutions θ0, . . . , θk such that for all d ∈ CNF(¬φθ0 ∨
· · · ∨ ¬φθk), C, k |= d.

Proof: (Sketch) (⇐) Suppose that for all d ∈ CNF(¬φθ0 ∨
· · ·∨¬φθk), C, k |= d. By Lemma 3, C∪EQ∪UNA∪{φθ0∧
· · · ∧φθk} is fo-unsatisfiable, and so the set C ∪EQ∪UNA∪
CNF(φ) must be fo-unsatisfiable also.

(⇒) Now suppose C ∪ EQ ∪ UNA ∪ CNF(φ) is fo-
unsatisfiable. Let D = CNF(φ). By the refutation com-
pleteness of Resolution, there is a resolution derivation of the
empty clause from the clauses in C ∪ EQ ∪ UNA ∪ D. Say
the derivation is b0, . . . br where br = {}. We prove the fol-
lowing claim: For every 0 ≤ j ≤ r, there is a k such that
for every θ, there are substitutions θ0, . . . , θk such that for all
clauses d ∈ CNF(¬φθ0 ∨ · · · ∨ ¬φθk), C, k |= bjθ ∪ d. The
theorem will then follow since br = {}.

The proof is by induction on j. For the base case (j = 0),
we have b0 ∈ C∪EQ∪UNA∪D, and it can be shown that the
lemma holds for k = 0. In the induction step, bj can be either
the result of a resolution step or factoring. In both cases, there
is a k such that C, k |= bjθ ∪ d.

Theorem 4 (Soundness and Eventual Completeness) Let
φ and ψ be objective sentences. Then |= (φ ⊃ ψ) iff for
some k, |= (Oφ ⊃ Bkψ).

Proof: We have |= (φ ⊃ ψ) iff EQ∪UNA∪CNF(SKO(φ∧
¬ψ)) is fo-unsatisfiable iff CNF(SKO(φ)) ∪ EQ ∪ UNA ∪
CNF(SKO(¬ψ)) is fo-unsatisfiable iff (by Lemma 4) for
some k, there are substitutions θ0, . . . , θk such that for all d ∈
CNF(ψ′θ0 ∨ · · · ∨ ψ′θk), C, k |= d, where ψ′ = ¬SKO(¬ψ)
iff for some k, ψ is believed at level k in epistemic state
CNF(SKO(φ)) iff for some k, |= (Oφ ⊃ Bkψ).

6.2 The Logical Properties of Belief
Theorem 5 (Equivalent beliefs) For any k and any objec-
tive sentences φ, ψ, and χ, the following sentences are valid:

Bkφ ≡ Bk(φ ∧ φ),
Bkφ ≡ Bk(φ ∨ φ),
Bkφ ≡ Bk¬¬φ,
Bk(φ ∧ ψ) ≡ Bk(ψ ∧ φ),
Bk(φ ∨ ψ) ≡ Bk(ψ ∨ φ),
Bk(¬(φ ∧ ψ)) ≡ Bk(¬φ ∨ ¬ψ),
Bk(¬(φ ∨ ψ)) ≡ Bk(¬φ ∧ ¬ψ).
Bk(φ ∧ (ψ ∧ χ)) ≡ Bk((φ ∧ ψ) ∧ χ)),
Bk(φ ∨ (ψ ∨ χ)) ≡ Bk((φ ∨ ψ) ∨ χ)),
Bk(φ ∧ (ψ ∨ χ)) ≡ Bk((φ ∧ ψ) ∨ (φ ∧ χ)),
Bk(φ ∨ (ψ ∧ χ)) ≡ Bk((φ ∨ ψ) ∧ (φ ∨ χ)),

These follow from the fact that CNF(¬SKO(¬φ)) =
CNF(¬SKO(¬ψ)) implies |= (Bkφ ≡ Bkψ).
Theorem 6 (Non-equivalent beliefs) There are obj. sen-
tences φ and ψ such that |= (φ ≡ ψ), but 6|= (Bkφ ≡ Bkψ).

Proof: Let p and q be distinct atomic sentences. Let φ =
(p ∧ (¬p ∨ q)) and ψ = (φ ∧ q). Then |= (φ ≡ ψ), but
6|= (B0φ ≡ B0ψ).

The final thing to show is the relationship between beliefs
and logical combinations of other beliefs.

Theorem 7 For any sentences φ and ψ and any formula χ
with a single-free variable x:

1. |= (Bkφ ∨Bkψ) ⊃ Bk(φ ∨ ψ).

2. |= ∃xBkχ ⊃ Bk∃xχ.
3. |= Bk(φ ∧ ψ) ⊃ (Bkφ ∧Bkψ), but the converse fails.
4. |= Bk∀xχ ⊃ ∀xBkχ, but the converse fails.

Proof: Here we only prove (3.): The formula ¬SKO(¬(φ∧
ψ)) is (¬SKO(¬φ) ∧ ¬SKO(¬ψ)). So CNF(¬SKO(¬(φ ∧
ψ))) = CNF(¬SKO(¬φ)) ∪ CNF(¬SKO(¬ψ)). So if C |=
Bk(φ ∧ ψ), then C |= Bkφ and C |= Bkψ. Regard-
ing the converse, let φ = ∃x.p(x), ψ = ∃y.q(y), and
C = {{p(#1), p(#2)}, {q(#1), q(#2)}}. Then C |= B1φ
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and C |= B1ψ, but C 6|= B1∃x∃y.p(x) ∧ q(y) and so
C 6|= B1(φ ∧ ψ).

We do however get “eventual” versions of the closure of be-
lief under conjunction and universal generalization:

Theorem 8 For any φ, ψ, χ as above, any k and finite C:

1. If C |= (Bkφ ∧Bkψ), then ∃ k′, C |= Bk′(φ ∧ ψ).

2. If C |= ∀xBkχ, then ∃ k′, C |= Bk′∀xχ.

7 Related Work
Perhaps the best understood formal models of belief are those
based on possible-world semantics [Kripke, 1959; Hintikka,
1962; Halpern and Moses, 1992]. However, it was recognized
early on that belief under this framework suffers from logical
omniscience [Hintikka, 1975], that is, beliefs are closed under
(classical) logical entailment and hence reasoning becomes
intractable in the propositional and even undecidable in the
first-order case.

Later, weaker logics of belief started to emerge with a fo-
cus on tractability, but initially restricted to the propositional
case. These include [Levesque, 1984; Cadoli and Schaerf,
1996; Frisch, 1987; Fagin et al., 1990; Delgrande, 1995;
Cadoli and Schaerf, 1996] and either provided an explicit
model of limited belief or a limited entailment relation, of-
ten based on tautological entailment [Dunn, 1976], a frag-
ment of relevance logic [Anderson and Belnap, 1975]. There
were also proposals for tractable entailment relations of in-
creasing complexity [Dalal, 1996; Crawford and Etherington,
1998; D’Agostino, 2015], again limited to the propositional
case. In a first-order setting, tractable reasoning was investi-
gated either in terms of limited inference [Levesque, 1998;
Liu and Levesque, 2003] or in terms of belief levels as in
this paper [Liu et al., 2004; Liu and Levesque, 2005; Lake-
meyer and Levesque, 2013; 2014; 2016; Schwering, 2017].
In this line of work, epistemic states, which they call setups.
are also sets of clauses, but in contrast to our approach they
need to be ground. Belief levels are defined in terms of split-
ting, either on a clause in the epistemic state [Liu et al., 2004;
Liu and Levesque, 2005; Lakemeyer and Levesque, 2013],
an arbitrary ground literal [Lakemeyer and Levesque, 2014],
or on the possible denotations of a term [Lakemeyer and
Levesque, 2016; Schwering, 2017]. For example, splitting on
a literal l at belief level k means adding l to the epistemic state
and then checking whether the belief in question obtains at
level k−1, and doing the same for the complement of l. These
approaches, as well as [Crawford and Etherington, 1998;
D’Agostino, 2015] discussed next, go further than us in al-
lowing the use of unit propagation, that is, resolution with a
clause containing a single literal, already at belief level 0. In
all cases reasoning is tractable for every belief level k. While
the knowledge base needs to be in CNF, query evaluation does
not require a transformation into CNF. Schwering [2017] also
provides an implementation for his logic with interesting re-
sults for games like Sudoku or Minesweeper.

Closely related to ours is the work by D’Agostino [2015],
who proposes a three-valued nondeterministic semantics
which was also considered in [Crawford and Etherington,

1998], together with a k-consequence relation, where split-
ting is allowed on arbitrary formulas at levels greater than 0.
Again, tractability results are obtained for every level k, and
here neither the KB nor the query need to be transformed into
CNF. The author also provides a sound and complete proof-
theoretic account of the k-consequence relation. But again,
this is all for a propositional language only.

There are very few expressive models of limited reasoning
handling full first-order logic such as [Patel-Schneider, 1985;
Lakemeyer, 1996; Lakemeyer and Levesque, 2016]. None
of the approaches are eventually complete for full first-order
logic, although a few proposals, such as [Lakemeyer and
Levesque, 2014; D’Agostino, 2015; Klassen et al., 2015;
Lakemeyer and Levesque, 2016], do exhibit eventually com-
pleteness for the propositional case.

Finally, returning to Hintikka, he considered ideas related
to ours a long time ago [Hintikka, 1973]. His proposal deals
with full first-order logic and distinguishes notions such as
trivial inconsistencies vs. those that need to be discovered.
In contrast to us, he uses a special disjunctive normal form,
where each disjunct represents possible worlds. There is no
discussion of tractability, however. We leave it to future work
to investigate what the exact connections are.

8 Conclusions
In this paper we proposed, for the first time, a first-order
logic of limited belief which is at once tractable, expres-
sive, and eventually complete. One possible direction for
future work involves simplifying the semantics by replac-
ing the use of clauses in the definition of belief by three-
valued interpretations. (Interestingly, this seems to work
fine in the propositional case, but in the first-order case,
the use of Skolemization and what amounts to the Her-
brand Theorem still appears to be needed.) There are at
least two directions in which the logic could be extended.
For one, we so far completely ignored nested beliefs, which
are necessary when an agent needs to introspect on what
is and is not believed. Previous approaches to limited be-
lief that considered introspection include [Lakemeyer, 1996;
Lakemeyer and Levesque, 2013]. For another, there are addi-
tional easy forms of reasoning one may want to include even
at belief level 0. A simple example would be unit propagation
which, as noted in the related-work section, was included in
the proposals presented in [Crawford and Etherington, 1998]
and later in [D’Agostino, 2015] as well as [Liu et al., 2004]
and its descendants. In the case of a very expressive language
like ours, one must be careful, however, as an unrestricted use
of unit propagation is already undecidable. Possible restric-
tions could be to restrict unit propagation to when the argu-
ments of the predicates are standard names, or to when the
nesting of function symbols does not exceed a certain depth.
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