
Inter-node Hellinger Distance based Decision Tree

Pritom Saha Akash1 , Md. Eusha Kadir1 , Amin Ahsan Ali2 and Mohammad Shoyaib1

1Institute of Information Technology, University of Dhaka, Bangladesh
2Department of Computer Science & Engineering, Independent University, Bangladesh
{bsse0604 & bsse0708}@iit.du.ac.bd, aminali@iub.edu.bd, shoyaib@du.ac.bd

Abstract
This paper introduces a new splitting criterion
called Inter-node Hellinger Distance (iHD) and a
weighted version of it (iHDw) for constructing de-
cision trees. iHD measures the distance between
the parent and each of the child nodes in a split us-
ing Hellinger distance. We prove that this ensures
the mutual exclusiveness between the child nodes.
The weight term in iHDw is concerned with the pu-
rity of individual child node considering the class
imbalance problem. The combination of the dis-
tance and weight term in iHDw thus favors a parti-
tion where child nodes are purer and mutually ex-
clusive, and skew insensitive. We perform an ex-
periment over twenty balanced and twenty imbal-
anced datasets. The results show that decision trees
based on iHD win against six other state-of-the-art
methods on at least 14 balanced and 10 imbalanced
datasets. We also observe that adding the weight
to iHD improves the performance of decision trees
on imbalanced datasets. Moreover, according to the
result of the Friedman test, this improvement is sta-
tistically significant compared to other methods.

1 Introduction
Three of the major tasks in machine learning are Feature Ex-
traction, Feature Selection, and Classification [Iqbal et al.,
2017; Sharmin et al., 2019; Kotsiantis et al., 2007]. In
this study, we only focus on the classification task. One
of the simplest and easily interpretable classification meth-
ods (also known as classifiers) is decision tree (DT) [Quin-
lan, 1986]. It is a tree-like representation of possible out-
comes to a problem. Learning of a DT is a greedy ap-
proach. Nodes in a DT can be categorized into two types:
decision nodes and leaf nodes. At each decision node, a
locally best feature is selected to split the data into child
nodes. This process is repeated until a leaf node is reached
where the further splitting is not possible. The best fea-
ture is selected based on a splitting criterion which mea-
sures the goodness of a split. One of the most popular
splitting criteria is Information Gain (IG) [Quinlan, 1986;
Breiman et al., 1984] which is an impurity based splitting cri-
terion (i.e., entropy and gini). DTs based on IG perform quite

well for balanced datasets where the class distribution is uni-
form. However, as class prior probability is used to calculate
the impurity of a node, in an imbalanced dataset, IG becomes
biased towards the majority class which is also called skew
sensitivity [Drummond and Holte, 2000].

To improve the performance of standard DTs, several
splitting criteria are proposed to construct DTs in Distinct
Class based Splitting Measure (DCSM) [Chandra et al.,
2010], Hellinger Distance Decision Tree (HDDT) [Cieslak
and Chawla, 2008] and Class Confidence Proportion Deci-
sion Tree (CCPDT) [Liu et al., 2010]. Besides these, to deal
with class imbalance problem in Lazy DT construction, two
skew insensitive split criteria based on Hellinger distance and
K-L divergence are proposed in [Su and Cao, 2019]. Since
Lazy DTs use the test instance to make splitting decisions, in
this paper, we omit it from our discussion.

In DCSM, the number of distinct classes in a partition
is incorporated. Trees generated with DCSM is smaller in
size, however, DCSM is still skew sensitive because of its
use of class prior probability. HDDT and CCPDT propose
new splitting criteria to address the class imbalance problem.
However, the Hellinger distance based criterion proposed in
HDDT can perform poorly when training samples are more
balanced [Cieslak and Chawla, 2008]. At the same time,
HDDT fails more often to differentiate between two differ-
ent splits (specifically for multiclass problems) which is il-
lustrated in the following example:

Assume, there are 80 samples, 40 of class A, 20 of class B,
10 of class C and rest of class D. Two splits (split X and Y)
are compared where each split has 50 observations on the left
child and the rest on the right child. Split X channels all the
samples of class A and class D into the left child, and the rest
to the right child while Split Y places all the samples of class
A, 5 each of classes C and D into the left child, and the rest
to the right child. It is easily observable that, Split X is more
exclusive than Split Y. However, HDDT cannot differentiate
between these two splits and provides the same measure.

On the other hand, instead of using class probability,
CCPDT calculates the splitting criteria like entropy and gini
using a new measure called Class Confidence Proportion
(CCP) which is skew insensitive. However, it uses HDDT to
break ties while splits based on two different features provide
the same split measure. Hence, CCPDT exhibits the same
limitation as HDDT.
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To address the limitations of the above methods, we pro-
pose a new splitting criterion called Inter-node Hellinger Dis-
tance (iHD) which is skew insensitive. We then propose
iHDw which adds a weight to iHD to make sure child nodes
are purer without forgoing skew insensitivity. Both iHD and
iHDw exhibit exclusivity preference property defined in [Tay-
lor and Silverman, 1993]. Rigorous experiments over a large
number of datasets and statistical tests are performed to show
the superiority of iHD and iHDw for the construction of DTs.

The rest of the paper is organized in the following manner.
In Section 2, several related node splitting criteria for DTs are
discussed. The new node splitting criteria are presented in
Section 3. In Section 4, datasets, performance measures, and
experimental results are described. Finally, Section 5 con-
cludes the paper.

2 Related Work
In this section, we discuss several split criteria for DT related
to our proposed measure.

2.1 Information Gain
Information Gain (IG) calculates how much “information” a
feature gives about the class, and measures the decrease of
impurity in a collection of examples after splitting into child
nodes. IG for splitting a data, (X, y) with attribute A and
threshold, T is calculated using (1).

Gain(A, T : X, y) = Imp(y|X)−
V∑
i=1

|Xi|
|X| Imp(y|Xi) (1)

where V is the number of partitions and Imp is the impurity
measure. Widely used impurity metrics are Entropy [Quinlan,
1986] and Gini Index [Breiman et al., 1984] and calculated
using (2) and (3) respectively.

Entropy(y|X) = −
k∑
j=1

p(yj |X) log p(yj |X) (2)

Gini(y|X) = 1−
k∑
j=1

p(yj |X)2 (3)

where k is the number of classes. When data are balanced, IG
gives a reasonably good splitting boundary. However, when
there is an imbalanced distribution of classes in a dataset, IG
becomes biased towards the majority classes [Drummond and
Holte, 2000]. Another drawback of IG is that it favors at-
tributes with a large number of distinct values. To reduce this
bias, a new criterion called Gain Ratio (GR) [Quinlan, 1993]
was proposed by taking account of the size of a split while
choosing an attribute. GR defines the size of a split, g as (4).

g = −
V∑
i=1

|Xi|
|X| log

|Xi|
|X| (4)

GR is just the ratio between IG and g, defined in (5).

GainRatio(A, T : X, y) =
Gain(A, T : X, y)

g
(5)

2.2 DCSM
Chandra et. al. proposed a new splitting criterion called
Distinct Class based Split Measure (DCSM) that emphasizes
the number of distinct classes in a partition [Chandra et al.,
2010]. For a given attribute xj and V number of partitions,
the measure M(xj) is defined as (6).

M(xj) =
V∑
v=1

[
N (v)

N (u)
∗D(v) exp(D(v))∗

C∑
k=1

[a(v)ωk
∗ exp(δ(v)(1− (a(v)ωk

)2))]

]
(6)

where C is the number of distinct classes in the dataset, u is
the splitting node (parent) representing xj and v represents a
partition (child node). D(v) denotes the number of distinct
classes in a partition v, δ(v) is the ratio of the number of dis-
tinct classes in the partition v to that of u, i.e., D(v)

D(u) and a(v)ωk

is the probability of class ωk in the partition v.
The first term D(v) ∗ exp(D(v)) deals with the number of

distinct classes in a partition. It increases when the number
of distinct classes in a partition increases causing purer parti-
tions to be preferred. The second term is a(v)ωk ∗ exp(δ(v)(1−
(a

(v)
ωk )

2)). Here, impurity decreases when δ(v) decreases. On
the other hand, (1− (a

(v)
ωk )

2)) decreases when there are more
examples of a class compared to the total number of exam-
ples in a partition. Hence, the DCSM is intended to reduce
the impurity of each partition when it is minimized.

The main difference between DCSM and other splitting
criteria is that DCSM introduces the concept of distinct
classes. The limitation of DCSM is same as IG. It cannot deal
with imbalanced class distribution and thus, is biased towards
the majority classes.

2.3 HDDT
Hellinger Distance Decision Trees (HDDT) uses Hellinger
distance as the splitting criterion to solve the problem of class
imbalance [Cieslak and Chawla, 2008; Cieslak et al., 2012].
The details of Hellinger distance is presented in Section 3.
In HDDT, Hellinger distance (dH ) is used as a split criterion
to construct a DT. Assume a two-class problem (class + and
class −) and, X+ and X− are the set of classes + and − re-
spectively. Then, dH between the distributions, X+ and X−
is calculated as (7).

DH(X+||X−) =

√√√√√ p∑
j=1

(√
|X+j |
|X+|

−

√
|X−j |
|X−|

)2

(7)

Here, instead of using class probability, normalized fre-
quencies aggregated over all the p partitions across classes
are used. HDDT is strongly considered to be skew insen-
sitive because of not using prior probability in the distance
calculation. However, the split criterion defined in (7) only
works on the binary classification problem. For the multi-
class classification problem, a technique named Multi-Class
HDDT [Hoens et al., 2012] is proposed. They decompose
the multi-class problem into multiple binary class problems
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by using the similar of One-Versus-All (OVA) decomposi-
tion technique. For each binary class problem, they calcu-
late DH and the maximum is taken as the split measure for
an attribute. However, as HDDT tries to make pure leaves
by capturing deviation between class conditionals which re-
sults in smaller coverage, thus can perform poorly for more
balanced class distribution [Cieslak and Chawla, 2008].

2.4 CCPDT
Another decision tree algorithm named Class Confidence
Proportion Decision Tree (CCPDT) is proposed in [Liu et al.,
2010] where they introduce a new measure named Class Con-
fidence Proportion (CCP) calculated as (8).

CCP (X → y) =
CC(X → y)

CC(X → y) + CC(X → ¬y) (8)

where Class Confidence (CC) is defined in (9).

CC(X → y) =
Support(X ∪ y)
Support(y)

(9)

CCP is insensitive to the skewness of class distribution be-
cause of not focusing on class priors. In CCPDT, CCP is used
to replace p(y|X) in Entropy/Gini to calculate IG. Whenever
there is a tie between two attributes in IG value, the Hellinger
distance (same as in HDDT) is used to break the tie. For
which, CCPDT has the same limitation as HDDT of perform-
ing poorly for more balanced datasets.

Different from the above approaches, we propose new
splitting criteria for DTs which provide better results for both
balanced and imbalanced datasets.

3 Proposed Method
In this section, we propose two new splitting criteria
named Inter-node Hellinger Distance (iHD) and wighted iHD
(iHDw) for constructing DT classifiers.

3.1 Inter-node Hellinger Distance
We use squared Hellinger distance (D2

H ) to measure the dis-
similarity between the class probability distributions of the
parent and each of the child nodes in a split. The distance
is intended to be maximized so that the instances in the par-
ent node are divided into mutually exclusive regions. Note
that, the Hellinger distance is a divergence measure which
is a member of α divergence family [Cichocki and Amari,
2010]. For two discrete probability mass functions, P =
(p1, p2, ..., pk) and Q = (q1, q2, ..., qk), the α divergence is
defined in (10).

Dα(P||Q) =
1

α(1− α)

k∑
j=1

(
αpj + (1−α)qj − pαj q1−αj

)
(10)

where α /∈ {0, 1}. For α = 1
2 , we obtain DH from (11).

D 1
2
(P||Q) = 4D2

H(P||Q) = 2
k∑
j=1

(√
pj −

√
qj

)2
= 4
(
1−

k∑
j=1

√
pjqj

)
(11)

Hellinger distance has the following basic properties :

• DH is symmetric (DH(P||Q) = DH(Q||P)) and non-
negative.
• DH is in [0,1]. It takes its maximum value when∑k

j=1 pjqj = 0 and minimum value when pj = qj , ∀j.
• DH(P||Q) is convex with respect to both P and Q.
• DH satisfies the triangle inequality, DH(P||Z) ≤
DH(P||Q) +DH(Q||Z).

Suppose, there are N number of samples in a node dis-
tributed over k classes. For a binary split, N samples are
divided into left (L) and right (R) child nodes which are NL
and NR respectively. The class probability distribution for
the parent node is P(p1, ..., pk) and, for the left and right
child nodes are PL(pL1, ..., pLk) and PR(pR1, ..., pRk) re-
spectively. D2

H between the class probability distribution of
the parent and left childD2

H(PL||P) and, the parent and right
child D2

H(PR||P) are calculated using (12).

D2
H(Pt||P) = 1−

k∑
j=1

√
ptjpj ∀t ∈ {L,R} (12)

where k is the number of classes. From these distances,
the proposed splitting criterion Inter-node Hellinger Distance
(iHD) is defined as (13).

iHD = ρLD
2
H(PL||P) + ρRD

2
H(PR||P) (13)

where ρL = NL

N and ρR = NR

N .
Note that, the difference between the use of Hellinger dis-

tance in iHD and HDDT is that, in iHD, the distance be-
tween the class probability distributions of the parent and
child nodes are measured rather than the distance between
the class pairs over all partitions. As a consequence of the
triangle inequality of DH , maximizing the distance between
the class probability distributions of the parent and the child
nodes also maximizes the distance between the distributions
of the two child nodes.

Properties of iHD
iHD has the exclusivity preference property (proved in Theo-
rem 1) which is expected for a good splitting criterion [Taylor
and Silverman, 1993; Shih, 1999]. This property is defined by
the following two conditions:

1. Firstly, for a certain value of ρLρR, the criterion has the
maximum value when

∑k
j=1 pLjpRj = 0 which indi-

cates that the two child nodes are mutually exclusive.
2. Secondly, regardless of ρLρR, it obtains its minimum

value when the class probability distributions of child
nodes are identical which can be defined as pLj =
pRj = pj , ∀j.

Theorem 1. iHD has the exclusivity preference property.

Proof. From (13), iHD can be written as:

iHD = ρL

(
1−

k∑
j=1

√
pLjpj

)
+ ρR

(
1−

k∑
j=1

√
pRjpj

)

= 1−
k∑
j=1

√
pj(ρL

√
pLj + ρR

√
pRj) (14)
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For a certain value of ρLρR, (14) is maximum when the value
from the summation over all classes is minimum. In other
words, (14) is maximum when we get the minimum value
separately for each class in the summation. Let, for jth class,
aj = pLj and bj = pRj for a fixed ρL = 1 − ρR 6= 0. Thus,
pj = ρLaj + ρRbj which is a nonzero constant. Now, the jth
term in the summation can be expressed by a function of aj
as follows:

f(aj) =
√
pj(ρL

√
aj +

√
ρR
√
pj − ρLaj)

The second derivative of f(aj) is:

f
′′
(aj) = −

ρL
√
pj

4a
3
2
j

−
a2j
√
ρR
√
pj

4(pj − ρLaj)
3
2

Here, f
′′
(aj) < 0 in the interval of 0 ≤ aj ≤ pj

ρL
, thus is

a concave function. Hence, f(aj) has the minimum value at
one of the extreme points of the interval which is either aj =
0 or aj =

pj
ρL

(equivalent to bj = 0). Now, for regardless of
ρLρR, when pLj = pRj = pj , ∀j, (14) becomes:

iHD = 1−
k∑
j=1

pj(ρL + ρR) = 0

Therefore, iHD is minimum when pLj = pRj = pj , ∀j.

From the exclusivity preference property of iHD, we can
say that it is minimum when D2

H(PL||P) = D2
H(PR||P) =

0 which means the parent and child nodes have the same prob-
ability distribution. And iHD gets its maximum when the
samples at the parent node are distributed among the child
nodes as disjoint subsets of classes.

Moreover, iHD is skew insensitive in the sense that maxi-
mizing iHD in a split focuses on generating mutually exclu-
sive child nodes whatever class distribution there is in the par-
ent node.

3.2 Weighted Inter-node Hellinger Distance
To obtain purer child nodes in a split we also consider a
weight, w for each partitioned node which is defined as (15).

wt = 1−
k∏
j=1

Ntj
Nj

= 1−
k∏
j=1

ρtptj
pj

∀t ∈ {L,R} (15)

where Nj and Ntj are the number of samples in a class j at
the parent and the child node t respectively. Here, instead
of using class probability, the proportion of instances of each
class from the parent node placed in the child node t is used
to calculate wt. For which, wt is not dependent on the prior
probability of a class, thus, is not biased towards the majority
classes. It is easy to say from (15) that for any value of ρt, wt
will give maximum value of 1 when for any class j, ptj = 0.
And, when the difference between the proportion of samples
of classes of the parent node (Ntj

Nj
) increases in a child node t,

wt increases, thus favors a purer partition. On the other hand,
wt gives the minimum value of 0 when all the samples of a
parent node come to a single child node t.

The distance measure and the weight (defined in (12) and
(15) respectively) for each partition are combined to formu-
late the final proposed splitting criterion named weighted
Inter-node Hellinger Distance (iHDw) as (16).

iHDw = ρLD
2
H(PL||P)wL + ρRD

2
H(PR||P)wR (16)

The weighted sum by the proportion of samples (ρt, i ∈
{L,R}) is taken to evaluate the contribution from each par-
tition and to favor partitions with similar sizes. As the
Hellinger distance DH and the weight w are both non-
negative, the proposed splitting criterion is also non-negative.

Properties of iHDw
Now, we prove that the splitting criterion iHDw also pre-
serves the exclusivity preference property.

Theorem 2. iHDw has the exclusivity preference property.

Proof. As Theorem 1 states that iHD has the exclusivity pref-
erence property, it is enough to show that, after incorporating
the weights to iHD, iHDw also provides the maximum value
when the child nodes are mutually exclusive and minimum
value when the parent and child nodes have identical class
probability distributions.

Here, wt from (15) gives maximum value of 1 when for
any class j, pLj = 0. Hence, for

∑k
j=1 pLjpRj = 0, it is

straightforward to say that wL = wR = 1, thus fulfills the
first condition of the exclusivity preference property.

Regardless of the value of wL ∗ wR, iHDw gets its min-
imum value of 0 as D2

H(PL||P) = D2
H(PR||P) = 0 for

pLj = pRj = pj , ∀j (second property of DH ) which ful-
fills the second condition of the exclusivity preference prop-
erty.

Therefore, the combination of the two terms prefers a split
with child nodes purer and mutually exclusive. We also show
the behavior of optimal splits using iHDw in Theorem 3.

Theorem 3. iHDw on its optimal split channels the classes
to two disjoint subsets s and sc ⊂ {1, 2, ..., k} where s mini-
mizes | ρL − 1

2 |.

Proof. From (16) we rewrite iHDw as

iHDw = ρL(1−
∑
j∈s

pj√
ρL

) + (1− ρL)(1−
∑
j∈sc

pj√
1− ρL

)

= ρL(1−
√
ρL) + (1− ρL)(1−

√
1− ρL) (17)

where wL = wR = 1. Let denote (17) as a function of ρL:

f(ρL) = 1− ρ
3
2

L − (1− ρL)
3
2

Second derivative of f(ρL) is:

f ′′(ρL) = −
3

4
ρ
− 1

2

L − 3

4
(1− ρL)−

1
2

Hence, f(ρL) is a concave function and is symmetric w.r.t
pL = 1

2 , thus f(ρL) takes its maximum at ρL = 1
2 .

Algorithm 1 outlines the procedure of learning a binary DT
using the proposed split criterion iHDw.
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Algorithm 1 Grow binary tree
Input: Training set D

1: if stopping criteria meet then
2: Stop growing and create a leaf .
3: return leaf
4: else
5: Create a node
6: Find a feature f∗ and split point s∗ maximizing (16)
7: Split D into DL (f∗ < s∗) and DR (f∗ ≥ s∗)
8: node.left← Grow binary tree (with DL)
9: node.right← Grow binary tree (with DR)

10: return node
11: end if

f1 26 44 34 42 32 24 40 36 22 28 38 30

f2 12 20 16 22 28 24 26 32 30 18 34 14

Class B B B B A B B B A A A B

Table 1: Sample dataset for the example.

Figure 1: Tree based on iHD Figure 2: Tree based on iHDw

3.3 An Illustrative Example
Let consider a sample dataset with two classes (Class “A”
and “B”) having two features (f1 and f2) shown in Table 1.
The number of samples for class “A” and “B” are 4 and 8
respectively, thus having imbalance class ratio. In Figures 1
and 2, two DTs constructed using iHD and iHDw are shown
respectively. We observe that at the first split iHD and iHDw
choose two different split points using feature f2 and unlike
iHD, iHDw produces a pure child. In the final tree for iHDw,
we find that none of the samples from the minority class is
misclassified. On the other hand, although the final tree for
iHD produces two pure leaf nodes, the minority class can be
misclassified in the other leaf nodes. Moreover, the DT based
on iHDw has fewer impure leaf nodes than that of iHD.

4 Experiments and Results
In this section, we first describe the datasets used in the exper-
iments followed by the description of the performance mea-
sures. We then present the results obtained from the experi-
ments with proper discussion.

4.1 Description of Datasets
Table 2 shows 40 datasets chosen from various areas like
biology, medicine and finance. Datasets are grouped into
two sets: Balanced datasets and Imbalanced datasets. These
datasets are collected from two well-known public sources

Balanced Datasets Imbalanced Datasets

Datasets #Insts #Ftrs #Cls Datasets #Insts #Ftrs #Cls IR

appendicitis 106 7 2 balance 625 4 3 5.88
australian 690 14 2 dermatology 366 34 3 5.55
breast 569 32 2 ecoli-0-1 vs 2-3-5 244 7 2 9.17
cardio 2126 21 10 ecoli-0-1-4-6 vs 5 280 6 2 13
digits 5620 64 10 ecoli-0-1-4-7 vs 2-3-5-6 336 7 2 10.59
german 1000 20 2 ecoli-0-6-7 vs 5 220 6 2 10
liver 351 33 2 ecoli2 336 7 2 5.46
lung 203 3312 5 haberman 306 3 2 2.78
lymphography 148 18 4 hayes-roth 132 4 3 1.7
musk 345 7 2 new-thyroid 215 5 3 4.84
segment 476 166 2 new-thyroid1 215 5 2 5.14
semeion 2310 19 7 pageblocks 548 10 5 164
sonar 1593 256 10 paw02a-600-5-70-BI 600 2 2 5
spambase 208 60 2 penbased 1100 16 10 1.95
steel 4601 57 2 vehicle3 846 18 2 2.99
transfusion 748 4 2 winequality-red-4 1599 11 2 29.17
vowel 528 10 11 wisconsin 683 9 2 1.86
waveform 5000 21 3 yeast-0-2-5-6 vs 3-7-8-9 1004 8 2 9.14
wine 178 13 3 yeast-0-3-5-9 vs 7-8 506 8 2 9.12
yeast 1484 8 10 yeast-2 vs 4 514 8 2 9.08

Table 2: Summary of the datasets. #Insts, #Ftrs and #Cls denote the
number of instances, features and classes respectively.

called UCI Machine Learning Repository [Dua and Graff,
2017] and KEEL Imbalanced Data Sets [Alcalá-Fdez et al.,
2011]. Imbalance Ratio (IR) between the samples of major-
ity and minority classes is also shown in Table 2. The higher
value of IR indicates the dataset is highly imbalanced.

4.2 Performances Measures
For each dataset, we build eight unpruned DT classifiers
based on iHD, iHDw, information gain (using both Entropy
and Gini), Gain Ratio (GR) and, the splitting criteria pro-
posed in DCSM, HDDT and CCPDT respectively. For bal-
anced datasets accuracy (%) is used as the performance mea-
sure. Since accuracy as an evaluation measure is inappropri-
ate for class imbalance problem [Chawla et al., 2004], we use
the area under the ROC curve (AUC) [Hand and Till, 2001]
for imbalanced datasets. We conduct 10-fold cross-validation
on each dataset to get the unbiased result.

The method proposed in [Demšar, 2006] is used to com-
pare the performance of DT classifiers based on iHD and
iHDw with other six methods. For comparing different clas-
sifiers over multiple datasets, Demsar proposed the use of
Iman’s F statistic [Iman and Davenport, 1980] using Fried-
man’s χ2

F statistic [Friedman, 1937; Friedman, 1940]. χ2
F

statistic is calculated as follows:

χ2
F =

12N

k(k + 1)

[∑
i

R2
i −

k(k + 1)2

4

]
(18)

Iman’s F statistic is then calculated from χ2
F as (19).

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(19)

where k is the number of compared classifiers and Ri is the
average rank of ith classifier on N datasets. After rejecting
the null hypothesis that all the classifiers are equivalent, a
post-hoc test called Nemenyi test [Nemenyi, 1963] is used
to determine the performance of which classifier is signifi-
cantly better than the others. Based on the Nemenyi test, the
performance of a classifier can be said significantly different
than others if the difference between their corresponding av-
erage ranks is larger than a critical difference (CD) which is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1971



Datasets Entropy Gini GR DCSM HDDT CCPDT iHD iHDw

appendicitis 79.17 78.33 79.17 80.83 80.83 76.67 79.17 80.83
australian 81.86 82.57 81.00 82.14 80.29 82.57 82.86 82.71
breast 92.24 92.24 93.10 93.97 93.31 93.10 93.97 93.62
cardio 81.79 81.24 80.73 81.51 80.78 81.97 82.89 82.71
digits 87.24 85.08 85.14 84.70 86.81 88.76 87.68 87.51
german 67.50 66.90 64.20 69.00 68.30 68.90 69.90 69.80
liver 62.00 58.57 62.00 62.00 63.14 64.86 61.43 64.00
lung 90.45 86.82 91.36 88.18 85.45 82.27 87.73 87.27
lymphography 75.00 69.44 77.78 81.11 83.89 76.67 76.11 77.78
musk 80.21 79.79 79.17 78.54 82.29 78.75 85.63 84.79
segment 96.62 96.93 95.84 96.88 96.14 96.93 97.23 96.97
semeion 75.55 76.34 77.20 69.15 70.24 73.90 77.20 76.95
sonar 78.64 77.27 72.27 76.36 77.27 75.91 76.82 80.45
spambase 92.02 92.04 91.67 92.30 92.73 92.02 92.89 92.69
steel 74.85 74.34 68.08 71.06 71.72 70.91 74.60 74.55
transfusion 69.33 69.60 71.07 70.93 71.47 72.40 70.93 71.47
vowel 81.92 80.91 79.60 80.71 81.82 83.03 82.83 83.03
waveform 76.27 75.33 72.08 74.49 74.79 75.31 77.25 76.77
wine 92.11 90.00 92.63 91.58 96.32 91.05 94.21 94.21
yeast 51.57 52.61 51.05 50.52 50.46 50.13 51.44 52.16

Avg. Rank 4.70 5.55 5.88 5.15 4.55 4.93 2.80 2.45
W/T/L (iHD) 14/1/5 18/0/2 14/2/4 14/2/4 14/0/6 15/0/5 — —
W/T/L (iHDw) 18/0/2 19/0/1 17/1/2 16/1/3 15/2/3 16/1/3 7/1/12 —
Fr.T (iHD) X X X X Base
Fr.T (iHDw) X X X X X X Base

Table 3: Accuracy (%) of the unpruned DTs based on different split
criteria on balanced datasets.

calculated as:

CD = qα

√
k(k + 1)

6N
(20)

where qα is the critical value for the two-tailed Nemenyi test
for k classifiers at α significance level.

4.3 Experimental Results
Tables 3 and 4 represent the comparison of eight classifiers
on balanced and imbalanced datasets respectively. The re-
sults of Friedman test (Fr.T) with two “Base” classifiers (iHD
and iHDw) are shown in the last two lines of the Tables 3 and
4. The “ X” sign under a classifier indicates that the “Base”
classifier significantly outperforms that classifier at 95% con-
fidence level.

The average ranks based on the accuracy of the compared
classifiers indicate that the iHDw is the best performing cri-
terion compared to others on the balanced datasets. Fried-
man’s χ2

F statistic from these average ranks is 35.77 accord-
ing to (18). From which, we get Iman’s F statistic as 6.52
(using (19)). With eight classifiers and 20 balanced datasets,
the critical value, F (7, 133) is 2.31 at 95% confidence level,
thus rejects the null hypothesis (as FF > Fα=0.05) that, all
the eight classifiers are equivalent. After conducting the post-
hoc Nemenyi test, we see that iHD significantly outperforms
other compared methods except for Entropy and HDDT while
iHDw outperforms all the compared methods.

For imbalanced datasets, the average ranks based on AUC
also indicate the superiority of iHDw against other seven clas-
sifiers. Friedman’s χ2

F statistic is 32.42 followed by Iman’s
F statistic as FF = 5.72. Since at 95% confidence level FF
is larger than the critical value, F (7, 133), the performance
of the eight classifiers are not equivalent on the imbalanced
datasets. The post-hoc Nemenyi test states that the iHDw
is the best performing classifier by outperforming Entropy,
Gini, DCSM, GR, HDDT and CCPDT while iHD only out-
performs Gini.

Datasets Entropy Gini GR DCSM HDDT CCPDT iHD iHDw

balance 65.82 66.04 66.70 65.75 65.85 66.50 66.24 66.80
dermatology 96.17 94.82 96.17 95.83 95.48 95.00 96.36 96.36
ecoli-0-1 vs 2-3-5 78.03 77.35 82.80 80.61 77.95 77.50 79.70 80.61
ecoli-0-1-4-6 vs 5 70.77 75.77 81.73 74.04 71.35 76.35 76.15 76.15
ecoli-0-1-4-7 vs 2-3-5-6 84.41 82.90 85.59 87.42 87.58 82.74 86.56 89.89
ecoli-0-6-7 vs 5 84.00 82.00 84.00 83.25 84.75 74.00 82.25 84.75
ecoli2 80.43 79.41 83.85 79.40 83.93 80.57 80.04 80.61
haberman 56.79 52.22 52.51 56.18 52.73 54.47 51.86 56.88
hayes-roth 91.48 91.48 90.42 91.48 91.48 91.48 92.08 92.08
new-thyroid 88.97 90.83 93.70 90.74 90.61 91.06 92.05 92.05
new-thyroid1 95.69 94.58 93.61 96.11 95.11 96.39 96.39 96.39
pageblocks 87.97 88.30 81.13 79.99 82.04 89.83 89.04 89.52
paw02a-600-5-70-BI 68.40 68.20 64.30 70.40 70.80 67.80 69.60 71.10
penbased 94.99 93.35 94.97 93.41 93.96 93.76 93.75 93.66
vehicle3 68.06 68.86 69.45 73.32 69.15 70.30 70.91 71.19
winequality-red-4 53.87 53.65 53.23 52.84 54.61 52.91 54.74 54.64
wisconsin 92.40 92.08 92.89 94.38 92.72 93.72 92.99 92.76
yeast-0-2-5-6 vs 3-7-8-9 75.48 74.26 74.21 77.36 76.47 71.03 74.31 75.75
yeast-0-3-5-9 vs 7-8 64.85 61.76 63.87 59.74 64.41 58.74 63.85 64.85
yeast-2 vs 4 84.68 80.41 86.03 78.32 84.15 82.38 84.26 85.09

Avg. Rank 4.80 6.40 4.28 4.98 4.43 5.05 3.80 2.28
W/T/L (iHD) 13/0/7 19/0/1 10/0/10 12/0/8 12/0/8 12/1/7 — —
W/T/L (iHDw) 18/1/1 20/0/0 13/0/7 16/1/3 16/1/3 15/1/4 12/5/3 —
Fr.T (iHD) X Base
Fr.T (iHDw) X X X X X X Base

Table 4: AUC (%) of the unpruned DTs based on different split
criteria on imbalanced datasets.

Between iHD and iHDw, iHD performs better than iHDw
on balanced datasets. However, the counts of Win/Tie/Loss
(W/T/L) of iHD and iHDw against other classifiers suggests
that DTs based on iHDw is the better performing classifier in
most of the cases. Therefore, from the above results, we can
say that although iHD gives better performance than iHDw
on balanced datasets, taking account of the comparisons with
other methods, iHDw is considerably better performing clas-
sifier on both balanced and imbalanced datasets. As unpruned
DTs are constructed, we also compare the node size and tree
construction time of the eight classifiers. However, we do not
find major differences between iHD and iHDw compared to
the best performing existing criterion on node size and con-
struction time. Moreover, DT using iHDw provides superior
performance without requiring much additional time to con-
struct the tree than iHD.

5 Conclusion
In this paper, we propose two new splitting criteria for mea-
suring the goodness of a split in a decision tree learning. The
proposed splitting criteria favor mutually exclusive and purer
partitions. Results over a large number of datasets provide the
evidence that the decision trees constructed using proposed
criteria are better than other six related splitting criteria on
both balanced and imbalanced datasets. As future research
direction, we will extend the work for tree-based ensemble
classifiers and also want to investigate the effect of the pro-
posed split criteria on pruning techniques.
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