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Abstract
This paper presents a framework for norm-
based capacity control with respect to a Weight-
Normalized Residual Neural Networks (ResNets).
We first formulate the representation of each resid-
ual block. For the regression problem, we ana-
lyze the Rademacher Complexity of the ResNet-
s family and establish a tighter generalization up-
per bound for Weight-Normalized ResNets. Us-
ing the ℓp,q-norm weight normalization in which
1/p+1/q > 1, we discuss the properties of a width-
independent capacity control, which only relies on
the depth according to a square root term. Several
comparisons suggest that our result is tighter than
previous work. Parallel results for Deep Neural
Networks (DNN) and Convolutional Neural Net-
works (CNN) are included by introducing the ℓp,q-
norm weight normalization for DNN and the ℓp,q-
norm kernel normalization for CNN. Numerical ex-
periments also verify that ResNet structures con-
tribute to better generalization properties.

1 Introduction
Deep neural networks have been applied to many fields, in-
cluding computer vision, speech recognition, natural lan-
guage processing, audio recognition, social network filter-
ing, machine translation, and more. Since ResNets have been
introduced to improve imagin recognition [He et al., 2016],
[Goodfellow et al., 2016], ResNets have taken the deep learn-
ing world by storm. Though the robustness and efficiency of
ResNets has proven to be enormously successful in various
artificial intelligence tasks [Huang et al., 2017], [Srivastava
et al., 2015], [Fan et al., 2018], we aim to examine the capac-
ity of ResNets theoretically. Previous studies have investi-
gated the capacity of several simple network structures, such
as unregularized DNN, DNN without bias or DNN with Re-
LU active functions [Bartlett et al., 2017], [Golowich et al.,
2018a], [Neyshabur et al., 2017], [Neyshabur et al., 2015],
[Sun et al., 2016], [Shalev-Shwartz and Ben-David, 2014] .

∗These authors have contributed equally to this work. The order
of name is alphabetical.

†Corresponding Author.

ResNets and other powerful structures, however, require fur-
ther explorations in literature.
Intuitively, great robustness should be compatible with rel-

atively small generalization bounds. Inspired by the amazing
performance of ResNets in regression problems, we hope to
answer a central question : can we find a tighter generaliza-
tion bound for ResNets and other developed structures ?
In this paper, we focus on providing a tighter generalization

bound with respect to ℓp,q-norm for ResNets. Since most pri-
or studies are restricted to simple DNN structures [Golowich
et al., 2018b], [Bartlett et al., 2017], [Neyshabur et al., 2017],
[Sun et al., 2016], we take the layer-wise weight normaliza-
tion and hidden layers with bias into consideration to pursue
a more general sight. After showing comparisions with some
related works , further discussions extend the parallel conclu-
sions to DNN cases.
We first formulate the function class, which is derived

from the combination of Residual-Blocks, and define the ℓp,q-
weight normalization. After providing an upper bound for
the Rademacher Complexity for the ResNets function class,
we induce the generalization bound with respect to regres-
sion problems. In particular, we obtain a width-free general-
ization bound with 1/p + 1/q > 1; therefore, several prior
conclusions under ℓ2,2-norm, ℓ1,∞-norm are covered. By uti-
lizing the same method, we extend the width-free generaliza-
tion bound to DNN and Convolutional-ResNets nontrivialy.
The contributions of this paper are summarized as follows

: 1. We obtain a tighter generalization bound for ResNets
with layer-wise ℓp,q-normalization and bias; 2. We justify the
tightness by comparing the results with related works; 3. We
extend the parallel conclusions to structures, including DNN
and Convolutional-ResNets.
In Section 2, we introduce some notations as well as

the formulation of the ResNets function class. To prepare
for the main result, we provide the upper bound of the
Rademacher Complexity for the ResNets function class.
Section 4 discusses the generalization bound for ResNets and
several comparisions. We explore the parallel conclusions
of DNN and Convolutonal-ResNets in Section 5 and Section
6, respectively. In Section 7, numerical experiments are
explained to verify the previous theoretical results. The proof
details are concluded in the supplementary materials.[Mo
and Chen, 2019]
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Figure 1: A Residual-Block

2 Preliminary
Traditionally, ResNets refer to networks with forms similar to
Figure 1: By adding bias to each hidden layers, we obtain a
representation of the mapping of a single residual-block as :

Fi(xi−1)

=σ [Wi,2 · σ [(Wi,1 · xi−1 + bi,1)] + bi,2 + Ii · xi−1] ,

Fi : Rdi−1,2 → Rdi,2 . The bias is forced to be commensurate
with the weight matrix in terms of dimension. In order to
simplify Fi, we rewrite the function as:

F̃i(

(
xi−1

1

)
)

=σ

[(
Wi,2 bi,2

0 1

)
· σ
[(

Wi,1 bi,1

0 1

)
·
(
xi−1

1

)]
+ Ii · xi−1

]
=σ

[(
Wi,2 bi,2

0 1

)
· σ
[(

Wi,1 bi,1

0 1

)
·
(
xi−1

1

)]
+

(
Ii×i 0
0 0

)
·
(
xi−1

1

)]
.

By denoting every x̃i ,
(
xi

1

)
, Mi,j , (Wi,j ,bi,j),

M̃T
i,j , (MT

i,j , e
T
di
)T , ∀i = 1, ..., k and j = 1, 2, eTdi

the
dith natural basis, we rewrite F̃i : Rdi−1,2+1 → Rdi,2+1 as:

F̃i(x̃i−1)

=σ

[(
Wi,2 bi,2

0 1

)
· σ
[(

Wi,1 bi,1

0 1

)
·
(
xi−1

1

)]
+

(
Ii×i 0
0 0

)
·
(
xi−1

1

)]
,σ
[
M̃i,2 · σ

[
M̃i,1 · x̃i−1

]
+ Ii · x̃i−1

]
.

The introduced notations are unambiguous:
(1) Mi,2,Mi,1: Mi,2 ∈ Rdi,2×di,1 ,Mi,1 ∈ Rdi,1×di−1,2 .
(2) Ii: Ii ∈ Rdi,2×di−1,2 , instead of the Identity matrix, Ii
is introduced to ensure that Ii · x̃i−1 is commensurate with
Mi,2 · σ [Mi,1 · x̃i−1] in terms of dimension.
(3) σ [·]: A ρ-lipschitz continuous active function.
(4) ℓp,q-norm: The ℓp,q-norm of a n×mmatrixA is defined

as ∥A∥p,q = (
n∑

i=1

(
m∑
j=1

|aij |p)
q
p )

1
q

We denote the last weight layer as F̃k+1 : Rdk,2+1 →
Rdk+1+1 and the corresponding matrix is defined asMk+1 ∈

Rdk+1×(dk,2+1), where Mk+1 , (Wk+1,bk+1). With ℓp,q-
norm, the weight matrixes {Mi,1,Mi,2}ki=1, Mk+1 are con-
strained by ∥Mi,2∥ 6 ci,2, ∥Mi,1∥p,q 6 ci,1, ∀i =
1, . . . , k; ∥Mk+1∥p,q 6 ck+1. The discussion above
induces a function class called the Weight-Normalized-
Residual-Network class, which contains elements that can be
represented by combining residual-blocks.

Definition 2.1. RN k,d
p,q,c This definition depicts a class of

functions that can be represented by the previously mentioned
WN-RN structure.
p, q: The norm is set as ℓp,q-norm
d: d , (dk+1, dk,2, dk,1 . . . , d1,2, d1,1, d0) is a vector with
width information. We denote di,1, di,2 as the width of the 1st
and 2nd layer of the ith residual block, respectively.
c: c , (ck+1, ck,2, ck,1, ..., c1,2, c1,1), where ∥Mk+1∥p,q 6
ck+1, ∥Mi,2∥p,q 6 ci,2, ∥Mi,1∥p,q 6 ci,1, ∀i = 1, . . . , k;

f ∈ RN k,d
p,q,c ⇔ ∃ {{Mi,1,Mi,2}ki=1,Mk+1}, s.t. f =

F̃k+1 ◦ F̃k ◦ · · · ◦ F̃1.

By definition, the following theorem is obvious:

Theorem 2.2. The property ofRN k,d
p,q,c.

Given p, q, c(1), c(2), k1, k2, and vectors d(1),d(2) with k1 6
k2,d

(1) 6 d(2), c(1) 6 c(2) w.r.t, the components precede
the k1th component:
(1): RN k1,d

(1)

p,q,c(1) ⊂ RN k1,d
(1)

p,q,c(2)

(2): RN k1,d
(1)

p,q,c(1) ⊂ RN k2,d
(2)

p,q,c(1)

Intuitively, a shallow and thin ResNet can be represented
by a relative deeper and wider one.

3 The Estimation of the Rademacher
Complexity forRN n,d

p,q,c

In this section, we provide an upper bound for the Rademach-
er Complexity of RN k,d

p,q,c.

Definition 3.1. Rademacher Compexity of a function class.
Assume that f is a real value function, ϵi is the Rademacher
Random Variable:
(1) Empirical Rademacher Compexity:

R̂S(N ) , Eϵ

[
sup
f∈N

1

n

n∑
i=1

ϵif(zi)

]

(2) Rademacher Compexity:

Rn(N ) , ES∼Dn

[
R̂S(N )

]

Without a loss of generality, we consider the input space as
X , {x ∈ Rd0 | ∥x∥p∗ 6 1}. Moreover, we assume dk+1 =
1, so that the Rademacher Complexity is well defined.

Theorem 3.2. The Rademacher Complexity ofRN k,d
p,q,c.

If p > 1, q > 1, k > 0 and c > 0, ρ is the lipschitz constant
of the active function; di,j ∈ N+, ∀i = 1, . . . , k, j = 1, 2.
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Then, for every set of S = {x1, . . . ,xn} ⊂ X , we obtain:

R̂S(RN k,d
p,q,c)

6ck+1ρd
[ 1
p∗ − 1

q
]+

k+1

(√
(6k + 4) log 2

n
sk

+

k∏
i=1

(
ci,2ci,1ρ

2(di,1di,2)
[ 1
p∗ − 1

q
]+ + 1

)
d

1
p∗
0

√
C(p)

n

)
,

where s0 = d
1
p∗

0 ,

si =(ci,2ci,1ρ
2(di,1di,2)

[ 1
p∗ − 1

q
]+ + 1)si−1

+ ci,2ci,1ρ
2(di,1di,2)

[ 1
p∗ − 1

q
]+ + ci,2ρd

[ 1
p∗ − 1

q
]+

i,2

for i = 1, 2, · · · , k,

C(p) ,
{
2 log(2d0) p = 1 ,

min(p∗ − 1, 2 log(2d0)) p > 1 .

We prepare this theorem for the main result. According to
[Mohri et al., 2012], the generalization bound can be deduced
from the upper bound of the Rademacher Complexity.

4 The Generalization Bound for
Weight-Normalized-ResNets

In this section, we provide an estimation for the generaliza-
tion bound in the data regression problem. With ℓp,q-norm
satisfying 1

p +
1
q > 1, the estimation has a more laconic form.

The Regression Problem
S , {(x1, y1), ...(xn, yn)} ∼ D are i.i.d samples inX×Y ⊂
Rd0+1. We are interested in finding h : X → Y in order to
satisfy yi = h(xi) + εi, ∀i = 1, ..., n, where εi represents
independent noise. To evaluate the choice of h, we introduce
the loss function class :
Definition 4.1. Loss Function Class RGk,d

p,q,c:

RGn,d
p,q,c , {g(f(x), y) ∈ R|x ∈ X , y ∈ Y , f ∈ RN k,d

p,q,c}

If we assume that ∀g ∈ RGk,d
p,q,c : Y × Y → [0, 1] is a

γ-Lipschitz function, the Loss Function Class is denoted as
RGγ , {g is γ-Lipschitz| g ∈ RGk,d

p,q,c}.
By definition 4.1, since the first variable of a loss function

g(f(x), y), that is, f(x), belongs to ResNets, connection ma-
trixes of g are the same as the ones of f ∈ RN k,d

p,q,c. Hence,
we omit the repetitious discussions. In fact, for generaliza-
tion bound, the only contribution from loss function class is
its Lipschitz-constant: γ. We discuss the choice of γ after the
main results.
Definition 4.2. Generalization Error:
If ∀g ∈ RGγ , the true risk and the empirical risk is defined
as:

The true risk: ED[g] , E(x,y)∼D [g(x, y)] ,

The empirical risk: ÊS [g] ,
1

n

n∑
i=1

g(f(xi), yi).

The generalization error is the deviation between the expect-
ed and the empirical error:∣∣∣ED[g]− ÊS [g]

∣∣∣ ∀g ∈ RGγ .

Generalization bound is an upper bound for generalization
error. Intuitively, high generalization error indicates that the
model is overfitting. Hence, generalization bound guarantees
generalization error to be lower than a controllable level. In
other words, generalization bound provides us with an explic-
it guidance to avoid overfitting. A tight generalization bound
promises that a network can fit the unseen data well.

4.1 Main Results
Theorem 4.3. Estimation of Generalization Bound:
We assume that z , (x, y) ∼ D, S , {z1, ..., zn} is a
dataset with n i.i.d samples selected from the distribution
D. Then, we fix δ ∈ (0, 1), ∀k ∈ N+, ∀di,j ∈ N+ i =
1, ..., k, j = 1, 2. With probability of at least 1 − δ over the
generation of S , it holds that:

sup
g∈RGγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6

√
log( 1

δ
)

2n
+ 2γck+1ρd

[ 1
p∗ − 1

q
]+

k+1

(√
(6k + 4) log 2

n
sk

+

k∏
i=1

(
ci,2ci,1ρ

2(di,1di,2)
[ 1
p∗ − 1

q
]+ + 1

)
d

1
p∗
0

√
C(p)

n

)
.

According to the given conditions in theorem 4.3, we as-
sume that the range of our loss function is an interval [a, a+1]
(we set a > 0). For MSE, namely L(v1, v2) = |v1 − v2|2, γ
can be chosen as

√
a+ 1. Similarly, we set γ as 1 when we

adopt MAE, that is |v1−v2|. In fact, we can bound the deriva-
tive of loss function and hence obtain γ. Generally, since the
training data (xi, yi) and f(xi) are finite (by definition 4.1),
we can rescale the range of L(f(x), y) to be [a, a+1]. In this
way, the case is reduced to the previous one.
The rescaling process implies that, once the loss value is

small, the γ can be small, so do generalization bound. γ is a
relative value to generalization bound and it contributes little
effect to generalization bound. Hence, our work focuses on
the dominate terms in generalization bound.
When weight matrixes are normalized with respect to the

Frobenius norm, we set p = q = 2. Moreover, when we set
1/p+ 1/q > 1, the bound is reduced to a laconic form.

Corollary 4.4. The Generalization Bound with 1
p + 1

q > 1.

We assume that z , (x, y) ∼ D, S , {z1, ..., zn} is a
dataset with n i.i.d samples selected from the distribution
D. Then, we fix δ ∈ (0, 1), ∀k ∈ N+, ∀di,j ∈ N+ i =
1, ..., k, j = 1, 2. With probability of at least 1 − δ over the
generation of S , it holds that:

sup
g∈RGγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6

√
log( 1

δ
)

2n
+ 2γck+1ρ

(√
(6k + 4) log 2

n
sk

+

k∏
i=1

(
ci,2ci,1ρ

2 + 1
)
d

1
p∗
0

√
C(p)

n

)
.

More generally, if the ith residual-block contains hi layers,
with the ℓp,q-norm bound of each block set as ∥Mi,j∥p,q 6
ci,j , ∀j = 1, 2, · · · , hi, then there is a similar result.
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Corollary 4.5. Generalization Bound in General Cases.
We assume that z , (x, y) ∼ D, S , {z1, ..., zn} is a
dataset with m i.i.d samples selected from the distribution
D. Then, we fix δ ∈ (0, 1), ∀k ∈ N+, ∀di,j ∈ N+, j =
1, ..., hi, i = 1, ..., k. With probability of at least 1 − δ over
the generation of S , it holds that:

sup
g∈RGγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6ck+1ρd
[ 1
p∗ − 1

q
]+

k+1

(√
(6k + 4) log 2

n
sk

+

k∏
i=1

( hi∏
j=1

ci,j + 1
)
d

1
p∗
0

√
C(p)

n

)
,

where s0 = d
1
p∗

0 , for i = 1, 2, · · · , k,

si =
( hi∏
j=1

ci,j + 1
)
si−1 +

hi∑
j=1

hi∏
l=j

ci,l.

When we set ReLU or another homogeneity function-
s as activation functions, the corresponding upper bound-
s {ci,j}hi

j=1 and {c′i,j}
hi
j=1 hold

∏hi

j=1 ci,j =
∏hi

j=1 c
′
i,j

. We can obtain a tighter bound with s0 = d
1
p∗

0 , si =(∏hi

j=1 ci,j+1
)
si−1+

∏hi

l=1 ci,l, ∀i = 1, 2, · · · , k, by taking
ci,hi , · · · , ci,2 → 0+.

4.2 Comparisons
We focus on the term Rn(RGγ) with p = q = 2, ρ = 1:

Rn(RGγ)

=O

{
γck ·

k−1∏
l=1

(cl + 1) ·

(
2

√
6k log 2

n
+

√
C(p)

n

)}

≈O

{
γck ·

k−1∏
l=1

(cl + 1) ·
√

k

n

}
.

A recent conclusion [Li et al., 2018] argues that:

Rn(RGγ)

=O
{(

d1d2 · log
γ
√
kn ·maxj{Bj,1, Bj,2}

minj{Bj,1 +Bj,2} ·minj{Bj,1Bj,2 + 1}

) 1
2

· γ ·
k∏

j=1

(Bj,1Bj,2 + 1) ·
√

k

n

}
,

where Bj,i is the upper bound of ∥Mj,i∥2,2 with bias bj,i =
0, j = 1, ..., k; i = 1, 2. The widths of the 1st and 2nd layer
in the jth residual-block are denoted as d1, d2, respectively.
Since cj 6 Bj,1Bj,2, ∀j = 1, ..., k , we obtain a tighter gen-
eralization bound for the ResNets structures with bias, which
can be extended from the Frobenius Norm to a general ℓp,q-
norm. In particular, ∀p, q s.t. 1/p + 1/q > 1 can reduce the
generalization bound to a more laconic form .
The comparison shows that our generalization bound is

tighter than [Li et al., 2018]’s , which is the tightest pre-
vious generalization bound for ResNets and DNN. Compar-
isons between [Li et al., 2018]’s work and previous work are

included in that paper. While [Li et al., 2018]’s work is re-
stricted to Frobenius-norm, we generally obtain generaliza-
tion bound with respect to ℓp,q-norm.

5 Parallel Extensions for Weight-Normalized
DNN

Using the same methods, our conclusions can be extend-
ed to Deep Neural Networks. We introduce the defini-
tion of the DNN function class as, T̃i : Rdi−1+1 →
Rdi+1, T̃i(

(
x
1

)
) , σ[

(
Wi bi

0 1

)
·
(
x
1

)
], ∀x ∈ Rdi−1 .

We also introduce the notation as, Ui ,
(
Wi bi

0 1

)
. By

sharing several notations F̃k+1,Mk+1, c,d, k, n, we obtain
the parallel definitions:

Definition 5.1. N k,d
p,q,c This definition describes the class of

functions f that can be represented by DNN.
p, q: The norm is set as ℓp,q-norm.
d: d = (dk+1, . . . , d1, d0) is a vector with width information.
c: c , (ck+1, ck, ck−1, ..., c1), where ∥Ui∥p,q 6 ci, ∀i =
1, . . . , k + 1;
f ∈ N k,d

p,q,c ⇔ ∃ {Ui}k+1
i=1 , s.t. f = T̃k+1 ◦ T̃k ◦ · · · ◦ T̃1.

Theorem 5.2. The properties of N k,d
p,q,c

Since we have p, q, c(1), c(2), k1, k2 and vectors d(1),d(2)

with k1 6 k2,d
(1) 6 d(2), c(1) 6 c(2) w.r.t the components

precede the k1th component:
(1): N k1,d

(1)

p,q,c(1) ⊂ N k1,d
(1)

p,q,c(2)

(2): N k1,d
(1)

p,q,c(1) ⊂ N k2,d
(2)

p,q,c(1) .

Definition 5.3. The Loss Function Class Gk,d
p,q,c.

Gk,d
p,q,c , {g(f(x), y) ∈ R| x ∈ X , y ∈ Y, f ∈ N k,d

p,q,c}.
If we assume that ∀g ∈ Gk,d

p,q,c : Y × Y → [0, 1] is a
γ-Lipschitz function, the Loss Function Class is denoted as
Gγ , {g is γ-Lipschitz| g ∈ Gk,d

p,q,c}.
Theorem 5.4. An Estimation of Generalization Bound.
We assume that z , (x, y) ∼ D, S , {z1, ..., zn} is a

dataset with m i.i.d samples selected from the distribution D.
Then, we fix δ ∈ (0, 1), ∀k ∈ N+, ∀di ∈ N+ i = 1, ..., k.
With probability of at least 1 − δ over the generation of

S , sk+1 ,
k+1∑
i=1

(
k+1∏
l=i

clρd
[ 1
p∗ − 1

q ]+

l ) + d
1
p∗

0

k+1∏
l=1

clρd
[ 1
p∗ − 1

q ]+

l , it

holds that:

sup
g∈Gγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6

√
log( 1

δ
)

2n
+ 2γ ·

(
sk+1

√
(2k + 4) log 2

n

+

k+1∏
i=1

ciρd
[ 1
p∗ − 1

q
]+

i d
1
p∗
0

√
C(p)

n

)
.

Corollary 5.5. The Generalization Bound with 1
p + 1

q > 1.

We assume that z , (x, y) ∼ D, S , {z1, ..., zn} is a
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dataset with n i.i.d samples selected from the distribution D.
Then, we fix δ ∈ (0, 1), ∀k ∈ N+, ∀di ∈ N+ i = 1, ..., k.
With probability of at least 1 − δ over the generation of S , it
holds that::

sup
g∈Gγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6

√
log( 1

δ
)

2n
+ 2γ

(( k+1∑
i=1

(

k+1∏
l=i

clρ) + d
1
p∗
0

k+1∏
l=1

clρ

)

·
√

(2k + 4) log 2

n
+

k+1∏
j=1

cjρd
1
p∗
0

√
C(p)

n

)
.

With ReLU as activation function, we obtain:

sup
g∈Gγ

∣∣∣ED[g]− ÊS [g]
∣∣∣

6

√
log( 1

δ
)

2n
+ 2γ

(
(d0 + 1)

1
p∗

k+1∏
l=1

clρ

√
(2k + 4) log 2

n

+

k+1∏
j=1

cjρd
1
p∗
0

√
C(p)

n

)
.

Comparisions:
We focus on the term Rn(Gγ) with p = q = 2, ρ = 1 :

Rn(Gγ)

=O
{
γ

(
2

( k∑
i=1

(
k∏

l=i

cl) +
k∏

l=1

cl

)√
k log 2

n

+

k∏
j=1

cj

√
C(p)

n

)}

≈O

{
γ

(
k∑

i=1

(

k∏
l=i

cl) +

k∏
l=1

cl

)√
k

n

}
.

A recent conclusion [Li et al., 2018] argues that:

Rn(Gγ)

=O

γck+1 ·
k∏

j=1

Bj ·

√√√√d2 · log

(
γ
√
kn ·maxj Bj

minj Bj

)
·
√

k

n

 ,

where Bj is the upper bound of the corresponding ∥Uj∥p,q ,
with bias bj = 0, j = 1, ..., k; i = 1, 2. The widths of the
jth layer is denoted as d. We obtain a tighter generalization
bound for DNN structures with bias, which can be extended
from the Frobenius Norm (p = q = 2) to a general ℓp,q-norm.
For DNN, our result is tighter than [Xu and Wang, 2018]’s,

since our 2(k + 2)log2 is smaller than their (k + 1)log16.
Moreover, the normalization bounds {ci}ki=1 need not to be
the same value and the weight normalization constrains are
inequalities rather than equalities. Hence, our generalization
bound is tighter and more general than Xu Y’s.

6 Parallel Extensions for Kernel-Normalized
CNN

Our conclusions can be extended to CNN cases, since a con-
volutional connection is tantamount to a full connection with

sparse matrix. In this section, we represent the CNN structure
by reducing the convolution blocks to a combination of linear
functions and active functions.
In image recognition tasks, we feed a CNN with image da-

ta (pixel matrixes and RGB channels). To obtain a similar
form as Section 4 and 5, we reshape the input matrixes for
each layers as vectors. In practice, we rarely adopt networks
that consist only of convolutional connection blocks. Without
a loss of generality, we focus on a single convolution connec-
tion block. Hence, we introduce the following notations.
Definition 6.1. The size of input image: w1 × w2,
The number of input and output channels: vin, vout,
The size of kernels: u.
For convenience, we reshape the image data as: x[l] =

imagem3 [m2][m1], for l = (m3 − 1)w1w2 + (m2 − 1)w1 +
m1, 1 6 m1 6 vin, 1 6 m2 6 w2, 1 6 m3 6 w1. This
suggests that x[l] corresponds to the element at them1th row
and m2th column of the kernel in the m3th channel. Thus,
we define the row of the weight matrix as:

V
(k)
i,j (l) ,

{
K(m1,k)[m3][m2] l ∈ A(m1,m2,m3),

0 else .

where K(m1,k) is the m1th kernel in kth channel,

A(m1,m2,m3)

,
{
a

∣∣∣∣ a = (m1 − 1)w1w2 + (m2 − 1)w1 +m3,

1 6 m1 6 vin, j 6 m2 6 j + u− 1, i 6 m3 6 i+ u− 1

}
.

By definition, the ℓp-norm of V
(k)
i,j is ∥(K(1,k),K(2,k),

. . . ,K(vin,k))∥p. With a fixed value for k, there are w1w2
rows; therefore, we can represent the ℓp,q-norm of matrix M
as:

∥M∥p,q =

vout∑
i=1

(w1w2∥(K(1,i),K(2,i), · · · ,K(vin,i), 1)∥qp)
1
q

If we constraint each kernel as ∥K∥p 6 ĉ , then

∥M∥p,q 6 (vinĉ
p + 1)

1
p (w1w2)

1
q .

In these cases, we prefer kernel normalization to weight
normalization. By substituting the normalization-bound c in
Chapter 3 with (vinĉp+1)

1
p (w1w2)

1
q , we extend our conclu-

sion to apply to CNN cases. Moreover, c can be rewritten as
ĉ(vin)

1
p (w1w2)

1
q when we set the bias as 0.

7 Numerical Experiments
In this section, we discuss numerical experiments that im-
plies the generalization properties of ResNets is better than
DNN’s. In particular, we train two simple networks to solve
a regression problem and calculate the generalization bound
for the networks. While both of the networks share the same
initialization and parameters, a residual shortcut is added to
the second network.
Intuitively, we hypothesize that ResNets has the capacity

to generalize better than DNN.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2085



Figure 2: The parameter setting of Net-A and Net-B.

7.1 Experiment Settings
Dataset
We convey our experiment on a non-linear regression prob-
lem: y = 1

1+exp(−t) , t = 1Tx + cos(1Tx). We sample 500
random samples {(xi, yi)}500i=1 ⊂ R300 × R for training set,
and 1500 samples for testing set from the following proce-
dure.
1. Independently sample an auxiliary variable zi ∈ R300

from N(0, I).
2. Generate xi by xi[1] = zi[1], xi[j] = zi[j]+0.2(zi[j−

1] + zi[j + 1]), for j = 2, ..., 300.
3. Compute yi = 1

1+exp(−ti)
, ti = 1Txi + cos(1Txi) for

i = 1, ..., 500 (for i = 1, ..., 1500 for test dataset).

Network Model
We first set Net-A and Net-B as two fully connected DNNs
with four hidden layers. Then, we add a residual shortcut
to Net-B between the second layer and the third one. The
parameters are shown in Figure 2. Through the course of sev-
eral experiments, we found that the choice of widths did not
affect the general conclusion; hence, we selected the width
parameters arbitrarily.
We first initialize the weights of Net-A by the Xavier Ini-

tialization and set all the bias components as 0.1, as the choice
in bias does not greatly affect the conclusion. As a control
group, Net-B shares all the initialized parameters with Net-
A. We vary the scale of the initialization before training by
dividing the weights from the Xavier Initialization by the ’s-
cale’. Then, we adopt Mean Square Loss as loss function and
ReLU as active functions.
After training Net-A and Net-B with the same strategy, we

calculate the ℓ2,2-norm of their weights, respectively. By
Thereom 4.3, 5.4, we compare the generalization bound of
the two models (AGB and BGB for short). AGB > BGB

suggests that the ResNets structure has a relatively lower gen-
eralization bound while the testing error of Net-A and Net-B
are close. We obtain evidence that supports our hypothesis by
setting the scale as 10, 15, 20, 25, and other larger numbers.
For each scale, we repeat the experiment for fifty times.

7.2 Results
In Figure 3, we display a representative result where the scale
is set as 10. The rest of experiment data is concluded in the
supplementary material [Mo and Chen, 2019].

Figure 3: Generalization bound v.s. loss, test error v.s. experiment
order for Net-A and Net-B.

The results suggest that ResNet structure has a lower gen-
eralization bound than DNN, while the test error of two mod-
els are close (more than 95% of the data holdsAGB > BGB).
The experiment implies that the ResNets structure contributes
to better generalization properties.

8 Conclusion
8.1 Guidance on parameters to avoid overfitting
According to theorem 4.3, the following settings can improve
the network structures’ generalization capacity: (1).1/p +
1/q >= 1; (2).As the p,q-norm of each matrix Mi is con-
strained to be less than ci, we can set ci as constants that s-
mall enough to force generalization bound to be a small value;
(3).The residual connection structures (short cut) render the
generalization bound smaller, which explains why ResNets
generalizes better than DNN does.

8.2 Future work
With the guidance, we can develop efficient algorithms to
train Weight-Normalized networks with small generalization
bound. In the future, we will focus on the generalization
bound when it is restricted on a smaller function space (i.e.
a vicinity of a local maximal solution) for further exploration
of the generalization properties.
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