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Abstract
Deep supervised hashing has become an active
topic in information retrieval. It generates hash-
ing bits by the output neurons of a deep hashing
network. During binary discretization, there of-
ten exists much redundancy between hashing bits
that degenerates retrieval performance in terms of
both storage and accuracy. This paper proposes a
simple yet effective Neurons Merging Layer (NM-
Layer) for deep supervised hashing. A graph is
constructed to represent the redundancy relation-
ship between hashing bits that is used to guide
the learning of a hashing network. Specifically, it
is dynamically learned by a novel mechanism de-
fined in our active and frozen phases. According
to the learned relationship, the NMLayer merges
the redundant neurons together to balance the im-
portance of each output neuron. Moreover, multi-
ple NMLayers are progressively trained for a deep
hashing network to learn a more compact hashing
code from a long redundant code. Extensive exper-
iments on four datasets demonstrate that our pro-
posed method outperforms state-of-the-art hashing
methods.

1 Introduction
With the explosive growth of data, hashing has been one of
the most efficient indexing techniques and drawn substan-
tial attention [Lai et al., 2015]. Hashing aims to map high-
dimensional data into a binary low-dimensional Hamming
space. Equipped with the binary representation, hashing can
be performed with constant or sub-linear computation com-
plexity, as well as the markedly reduced space complexity
[Gong and Lazebnik, 2011]. Traditionally, the binary hash-
ing codes can be generated by random projection [Gionis et
al., 1999] or learned from data distribution [Gong and Lazeb-
nik, 2011].

Over the last few years, inspired by the remarkable suc-
cess of deep learning, researchers have paid much attention
to combining hashing with deep learning [Cao et al., 2016;
∗Equal contribution.
†Ran He is the corresponding author.

Figure 1: Illustration of the redundancy in hashing bits generated by
a common CNN-F network. The horizontal red dotted line repre-
sents the Mean Average Precision (MAP) calculated using all bits.
The vertical axis represents the MAP calculated after removing cor-
responding bit. For example, removing the 1-st bit does not affect
the MAP, while removing the 3-rd bit leads to a remarkable drop of
MAP. Even more, the MAP increases after removing the 18-th bit.

Zhu and Gao, 2017; Lin et al., 2017; Guo et al., 2018;
Yang et al., 2018; Wu et al., 2018]. Particularly, by utiliz-
ing the similarity information for supervised learning, deep
supervised hashing has greatly improved the performance of
hashing retrieval [Li et al., 2016; Jiang and Li, 2018]. In
general, the last layer of a neural network is modified as the
output layer of hashing bits. Then, both features and hash-
ing bits are learned from the neural network during optimiz-
ing the hashing loss function, which is elaborately designed
to keep the similarities between the input data. Convolu-
tional neural network hashing (CNNH) [Xia et al., 2014] is
one of the early deep supervised hashing methods, which
learns features and hashing codes in two separate stages. On
the contrary, deep pairwise-supervised hashing (DPSH) [Li
et al., 2016] integrates the feature learning stage and hash-
ing optimization stage in an end-to-end framework. Re-
cently, adversarial networks [Du et al., 2018; Ma et al., 2018;
Ghasedi Dizaji et al., 2018] and reinforcement learning [Yuan
et al., 2018] are also applied to hashing learning.
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Figure 2: Illustration of our progressive optimization strategy. For a standard backbone network, i.e., deep hashing network, we first attach
and initialize a NMLayer after the hashing layer. Then, we train the NMLayer as well as the backbone network for a certain number of epochs.
Next, based on the learned adjacency relationship among neurons, the NMLayer is truncated to determine which neurons to merge. After
that, according to the truncation results, we continue to train the backbone network. At this point, the training process of the first NMLayer
is completed. By iterating the above process, which is attaching NMLayer and optimizing the whole network, we finally get the required
hashing bits. Note that although many NMLayers are attached, total weights of the network change little. Because each time completing the
training of a NMLayer, we just determine which neurons in the hashing layer to merge, without adding extra weights.

Despite the effectiveness of the existing deep supervised
hashing methods, the redundancy of hashing bits remains a
problem that has not been well studied [Lai et al., 2015;
Du et al., 2018]. As shown in Figure 1, we can see that the
redundancy has a significant impact on the retrieval perfor-
mance. Because of the redundancy, the importance of differ-
ent hashing bits varies greatly. However, a straightforward in-
tuition is that all hashing bits should be equally important. In
order to address the redundancy problem, we propose a sim-
ple yet effective method to balance the importance of each
bit in the hashing codes. In details, we propose a new layer
named Neurons Merging Layer (NMLayer) for deep hashing
networks. It constructs a graph to represent the adjacency re-
lationship between different neurons. During the training pro-
cess, the NMLayer learns the relationship by a novel scheme
defined in our active and frozen phases, as shown in Figure 3.
Through the learned relationship, the NMLayer dynamically
merges the redundant neurons together to balance the im-
portance of each neuron. In addition, by training multiple
NMLayers, we propose a progressive optimization strategy to
gradually reduce the redundancy. The full process of our pro-
gressive optimization strategy is illustrated in Figure 2. Ex-
tensive experimental results on the CIFAR-10, NUS-WIDE,
MS-COCO and Clothing1M datasets verify the effectiveness
of our method. In short, our main contributions are summed
up as follows:

1. We construct a graph to represent the redundancy rela-
tionship between hashing bits, and propose a mechanism
that consists of the active and frozen phases to effec-
tively update the relationship. This graph results in a
new layer named NMLayer, which reduces the redun-
dancy of hashing bits by balancing the importance of
each bit. The NMLayer can be easily integrated into a
standard deep neural network.

2. We design a progressive optimization strategy for train-
ing deep hashing networks. A deep hashing network is
initialized with more hashing bits than the required bits,
then the redundancy is progressively reduced by multi-
ple NMLayers that form neurons merging. Compared
with other hashing methods of fixed code length, NM-
Layers obtain a more compact code from a redundant
long code.

3. Extensive experimental results on four challenging

datasets show that our proposed method achieves sig-
nificant improvements especially on large-scale datasets,
when compared with state-of-the-art hashing methods.

2 Preliminaries and Notations
2.1 Notation
We use uppercase letters like A to denote matrices and use
aij to denote the (i, j)-th element in matrix A. The transpose
of A is denoted by A>. sgn(·) is used to denote the element
wise sign function, which returns 1 if the element is positive
and returns −1 otherwise.

2.2 Problem Definition
Suppose we have n images denoted as X = {xi}ni=1, where
xi denotes the i-th image. Furthermore, the pairwise super-
visory similarity is denoted as S = {sij}. sij ∈ {−1,+1},
where sij = −1 means xi and xj are dissimilar images and
sij = +1 means xi and xj are similar images.

Deep supervised hashing aims at learning a binary code
bi ∈ {−1,+1}K for each image xi, where K is the length
of binary codes. B = {bi}ni=1 denotes the set of all hashing
codes. The Hamming distance of the learned binary codes of
image xi and xj should keep consistent with the similarity at-
tribute sij . That is, similar images should have shorter Ham-
ming distances, while dissimilar images should have longer
Hamming distances.

3 Neurons Merging Layer
In this section, we describe the details of NMLayer, which
aims at balancing the importance of each hashing output neu-
ron. A NMLayer has two phases during the training process,
namely the active phase and the frozen phase, as shown in
Figure 3. Basically, when a NMLayer is initially attached af-
ter a hashing output layer, it is set in the active phase to learn
the redundancy relationship, i.e., the adjacency matrix, be-
tween different hashing bits. After enough updating on the
weights through backpropagation, we truncate the adjacency
matrix to determine which neurons to merge. Then, the NM-
Layer is set to frozen phase to learn hashing bits. The above
process can be iterated for several times until the final output
of the network reaches the required hashing bits. Actually,
the learning process of a NMLayer is constructing a graph G.
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Figure 3: Illustration of the two phases of our NMLayer. In the ac-
tive phase, we calculate the score of each neuron and then utilize
the active loss (Eq. (3)) to update the redundancy relationship, i.e.,
the adjacency matrix. In the frozen phase, after truncating the adja-
cency matrix, the hashing loss (Eq. (7)) and the frozen loss (Eq. (5))
are used to update corresponding neurons.

The neurons of a NMLayer are nodes, while the adjacency
matrix A denotes the set of all edges. In the remainder of this
section, we begin with presenting the basic structure of the
NMLayer and then introduce the different policies of forward
and backward in the active and frozen phases. Next, we de-
fine the behavior of the NMLayer when the neural network is
in the evaluation mode. Finally, we introduce our progressive
optimization strategy in detail.

3.1 Structure of the NMLayer
As mentioned above, a NMLayer is basically a graph G with
learnable adjacency matrix A. Note that G is an undirected
graph, i.e., aij = aji. The nodes of G are denoted by V ,
which is a set of hashing bits. Specifically, the value type
of A differs in two phases. During the active phase, A is
learned through backpropagation and A ∈ R|V|×|V|, where
|V| means the number of nodes. Each element aij in A de-
notes the necessity whether the two nodes vi and vj should
be merged as one single node. After entering frozen phase,
the graph structure is fixed, that is A becomes fixed and now
A ∈ {0, 1}|V|×|V|, where aij = 1 means that the i-th and j-th
neurons are merged, while aij = 0 means the opposite.

3.2 Active Phase
When a NMLayer is first attached and initialized, all the ele-
ments in A are set to 0, which indicates that no nodes are cur-
rently merged or inclined to be merged. In the active phase,
our target is to find out which nodes should be merged to-
gether, based on a simple intuition that all nodes, i.e., all

hashing bits, should carry equal information about the input
data. In our NMLayer, the principle is restated in a practi-
cal way that eliminating any single hashing bit should lead
to an equal decline of performance, thus no redundancy in
the final hashing bits. Next, we elaborate on how to evaluate
the importance of neurons in a typical forward pass of neural
networks.

Forward. Suppose the size of a mini-batch in a forward
pass is N , the number of neurons is K, and the neurons
are {v1, . . . , vK}. In each forward pass, scores that evaluat-
ing the importance of each neuron are computed for the next
backward pass. More precisely, for each neuron we compute
the retrieval precision, i.e., Mean Average Precision (MAP),
after eliminating it. We denote the input of the mini-batch as
{Xn}Nn=1 and the validation set as Y , then the score pk of the
k-th neuron is computed as

pk = Preck(Xn,Y), (1)

where the function Prec(Xn,Y) means computing the preci-
sion with query Y and gallery Xn, and the subscript k means
computing precision without the k-th hashing bit. Recall that
in the active phase, elements in A imply the necessity of
whether two nodes in the graph should be merged. In the
forward pass, we take A into consideration to calculate new
scores {p′k}Kk=1, that is

p′i = pi +
1

2

∑
i 6=j

aij(pj − pi). (2)

Next, we update A according to the {p′k}Kk=1 in the following
backward pass.

Backward. In order to update A through backpropagation,
a loss function Lactive is defined on {p′k}Kk=1. The principle of
the loss function is to determine the inequality between neu-
rons. Therefore, a feasible and straightforward loss function
is

Lactive =
∑
i 6=j

|p′i − p′j |. (3)

In fact, by Eq. (3), the derivative of Lactive with respect to aij
is

∂Lactive

∂aij
= sgn(p′i − p′j) · (pj − pi). (4)

Observing that the value of derivative depends on pj − pi. It
can be interpreted that the more different the two nodes are,
the higher necessity the two nodes should be merged.

3.3 Truncation of the Adjacency Matrix
With A being updated for several epochs, we then perform
a truncation on A to merge neurons. After truncating A, all
the elements in A are either 0 or 1. Nodes with an adjacency
value of 1 will be merged to reduce redundancy. Note that, the
strategy of truncation is various and we just use a straightfor-
ward one. We turn the maximum m values in A to 1, and the
others to 0.
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3.4 Frozen Phase
If all the values in matrixA are 0, that is the NMLayer neither
trained nor truncated, both of the forward pass and backward
pass are same as a normal deep supervised hashing network.
When some elements in A are 1, it means the correspond-
ing nodes are merged together. The new merged node that
consists of several child nodes has new forward and back-
ward strategies. Here, we illustrate our strategy with a simple
case. Suppose that two nodes {v1, v2} have been merged to-
gether after truncation, i.e., a12 = 1. Therefore, the length
of the output hashing bits is now K − 1, and we denote
the new node as v12, then the new output hashing bits are
{v12, v3, . . . , vK}.
Forward. We randomly choose one child node from the
new merged node as the output in the forward pass. In our
simple example, suppose v1 is randomly chosen, so the out-
put of v12 is equal to v1.

Backward. For the child node chosen as output in the for-
ward pass, the gradient in the backward pass is simply cal-
culated by the loss of hashing networks, such as a pairwise
hashing loss like Eq. (7). As for those child nodes not cho-
sen in the new merged node, we set a target according to the
sign of the output of the chosen child node. In our simple ex-
ample, the gradient of v1 is calculated according to the pair-
wise hashing loss, while the gradient of v2 is computed by
||v2 − sgn(v1)||2. The intuition that not directly using the
same gradient as v1 is to reduce the correlation between the
neurons. More generally, for all of the child nodes in the new
merged node expect vj chosen in the forward pass, the loss
function is defined as

Lfrozen =
∑
i6=j

||vi − sgn(vj)||2. (5)

3.5 Evaluation Mode
When the whole network is set in evaluation mode, we no
longer choose the output of a merged node in a random man-
ner. Instead, we compute the output of the merged node by
majority-voting. Again, using the simple example above, the
output of v12 depends on sgn(v1) and sgn(v2). That is, if
sgn(v1) = sgn(v2) = +1, then v12 = +1. Note that when
sgn(v1) = +1 and sgn(v2) = −1, then v12 = 0, which im-
plies that the output of v12 is uncertain. In this paper, we
directly calculate the Hamming distance without considering
this particular case and leave this study for our future pursuit.

3.6 Progressive Optimization Strategy
By progressively training multiple NMLayers, we merge the
output neurons of a deep hashing network as shown in Fig-
ure 2. It should be emphasized that in the training process,
we only update the graph in a limited number of iterations.
In addition, during evaluation, the graph is fixed and no more
calculations are required. Therefore, the calculation of graph
has little influence on the running time of the whole algo-
rithm. Note that we use multiple NMLayers instead of one
because merging too many neurons at once will degrade al-
gorithm performance, which is reported in Figure 6. By per-
forming the algorithm, we aim to get a network with Bout

hashing bits from a backbone network F with Bin hashing
bits. Hyper-parameters in the algorithm are shown as follow:
m means turning the maximum m values of the adjacency
matrix to 1 and the others to 0, which is defined in the trunca-
tion operation; the active phase and frozen phase are trained
by N0 and N1 epochs respectively.

4 Experiments
4.1 Experimental Details
Pairwise Hashing Loss. Following the optimization
method in [Liu et al., 2012], we keep the similarity sij
between images xi and xj by optimizing the inner product of
bi and bj :

min
B

Lhash =
m∑
i=1

n∑
j=1

(b>i bj −Ksij)2

s.t. bi, bj ∈ {−1,+1}K
(6)

where K denotes the length of hashing bits. m and n are the
numbers of query images and retrieval images, respectively.
Obviously, the problem in Eq. (6) is a discrete optimization
problem, which is difficult to solve. Note that for the input
image xi, the output of our neural network is denoted by ui =
F (xi, θ) (θ is the parameter of our neural network), and the
binary hashing code bi is equal to sgn(ui). In order to solve
the discrete optimization problem, we replace the binary bi
with continuous ui, and add a L2 regularization term as [Li
et al., 2016]. Then, the reformulated loss function can be
written as

min
U,Θ

Lhash =

m∑
i=1

n∑
j=1

(u>i uj −Ksij)2 + η

n∑
i=1

‖bi − ui‖22

s.t. ui, uj ∈ RK×1, bi = sgn(ui)
(7)

where η is a hyper-parameter and Eq. (7) is used as our basic
pairwise hashing loss.

Parameter Settings. In order to make a fair comparison
with previous deep supervised hashing methods [Li et al.,
2016; Li et al., 2017; Jiang et al., 2018], we adopt CNN-
F network [Chatfield et al., 2014] pre-trained on ImageNet
dataset [Russakovsky et al., 2015] as the backbone of our
method. The last fully connected layer of the CNN-F net-
work is modified to hashing layer to output binary hashing
bits. The parameters in our algorithm are experimentally set
as follows. The number of neurons Bin in hashing layer is
set to 60. In addition, the number of truncating edges in per
step, i.e. m, is set to 4. During training, we set the batch size
to 128 and use Stochastic Gradient Descent (SGD) with 10−4

learning rate and 10−5 weight decay to optimize the back-
bone network. Then, the learning rate of NMLayer and the
hyper-parameter η in Eq. (7) are set to 10−2 and 1200 respec-
tively. Moreover, the parameters N0 and N1 are set to 5 and
40 respectively.

Datasets. We evaluate our method on four datasets, includ-
ing CIFAR-10 [Krizhevsky and Hinton, 2009], NUS-WIDE
[Chua et al., 2009], MS-COCO [Lin et al., 2014b] and
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Figure 4: Analyses of redundancy in hashing bits. (a) Redundancy
comparison between our method and baseline; (b) Bit reduction pro-
cess. The red line denotes the MAP results during progressively re-
ducing hashing bits from 60 to 24 (see from right to left). The black
line denotes the MAP results of baseline when training the same
fixed length hashing bits.

Clothing1M [Xiao et al., 2015]. The division of CIFAR-10
and NUS-WIDE is the same with [Li et al., 2016]. The divi-
sion of MS-COCO and Clothing1M is the same with [Jiang
and Li, 2018] and [Jiang et al., 2018], respectively. In ad-
dition, since a validation set is needed to calculate neuron
scores in the active phase, we split the original training set
into two parts: a new training set and a validation set. The
number of validation set of CIFAR-10, NUS-WIDE, MS-
COCO and Clothing1M is 200, 420, 400 and 280, respec-
tively.
Evaluation Methodology. We use Mean Average Precision
(MAP) to evaluate retrieval performance. For the single-label
CIFAR-10 and Clothing1M datasets, images with the same
label are considered to be similar (sij = 1). For the multi-
label NUS-WIDE and MS-COCO datasets, two images are
considered to be similar (sij = 1) if they share at least
one common label. Specially, the MAP of the NUS-WIDE
dataset is calculated based on the top 5,000 returned samples
[Li et al., 2016; Li et al., 2017].

4.2 Experimental Results
We compare our method with several state-of-the-art hashing
methods, including one unsupervised method ITQ [Gong and
Lazebnik, 2011]; four non-deep supervised methods, COS-
DISH [Kang et al., 2016], SDH [Shen et al., 2015], FastH
[Lin et al., 2014a] and LFH [Zhang et al., 2014]; five deep
supervised methods, DDSH [Jiang et al., 2018], DSDH [Li
et al., 2017], DPSH [Li et al., 2016], DSH [Liu et al., 2016],
and DHN [Zhu et al., 2016].

In Table 1, the MAP results of all methods on CIFAR-
10, NUS-WIDE, MS-COCO and Clothing1M datasets are re-
ported. For fair comparison, the results of DDSH, DSDH
and DPSH come from rerunning the released codes under
the same experimental setting, while other results are di-
rectly reported from previous works [Jiang and Li, 2018;
Jiang et al., 2018]. As we can see from Table 1, our method
outperforms all other methods on all datasets, which vali-
dates the effectiveness of our method. It is obvious that our
improvement is significant especially on large-scale Cloth-
ing1M dataset.

Besides, in Table 1, we also report the results of the setting
that Bin is equal to compared hashing methods, which are
denoted as ours*. Specifically, we set the number of initial
neurons of hashing layer to 12, 24, 32 and 48 respectively,
then the redundancy of these hashing bits is reduced by our
method. From Table 1, we can observe that our method is
superior to all other hashing methods with the setting of 24,
32 and 48 bits, except 12 bits. The reason behind this phe-
nomenon is that the redundancy of short code is essentially
low.

4.3 Experimental Analyses
Analyses of Redundancy in Hashing Bits
On CIFAR-10 dataset, we train a 32-bits hashing network
without NMLayer as a Baseline based on Eq. (7). Then, in
order to show the redundancy of hashing bits, we remove a
bit per time and report the final MAP with our method and
the baseline method in Figure 4a. It is clearly observed that
compared to baseline, the variance of MAP of our algorithm
is much lower, thus we can come to the conclusion that the
redundancy in hashing bits has been reduced. In addition, as
the redundancy is reduced, each bit of hashing codes can be
fully utilized. Therefore, the retrieval precision of our method
is greatly improved.

As shown in Figure 4b, compared with the baseline results
trained on the fixed length hashing bits, we record the changes
of MAP during progressively reducing hashing bits from 60
to 24. As we can see from Figure 4b, the MAP value of our
method increases from 60 to 48 bits. At the same time, the
curve of our method is more stable, while the baseline curve
drops rapidly. Both of these phenomenons are due to the ef-
fective redundancy reduction of our approach. Finally, the
MAP curve of our method reaches its maximum value at 48
bits. Therefore, we consider 48 as the most appropriate code
length on CIFAR-10 dataset. Inspired by this insight, our ap-
proach can also be conducive to finding the most appropriate
code length while reducing the redundancy.

Comparisons with Other Variants
In order to further verify the effectiveness of our method, we
elaborately design several variants of our method. Firstly,
Random is a variant of our method without active phase. It
replaces the dynamic learning adjacency matrix in the active
phase with a random matrix. Secondly, Select is a variant of
our method without frozen phase. It directly selects the most
important bits as the final output instead of merging them.
Thirdly, considering that the dropout technique [Srivastava et
al., 2014] is widely adopted in neural networks to reduce the
correlation between neurons, we add a dropout layer before
the hashing layer to reduce the correlation of hashing bits and
denote it as Dropout. Finally, since the process of our neurons
merging can be viewed as a process of dimension reduction,
we design a variant FCLayer to compare the differences be-
tween our NMLayer and the fully connected layer. It replaces
the NMLayer with a fully connected layer, which is optimized
by loss function Eq. (7).

The above variants are compared using three widely used
evaluation metrics as [Xia et al., 2014]: Precision curves
within Hamming distance 2, Precision-recall curves and Pre-
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Method CIFAR-10 NUS-WIDE MS-COCO Clothing1M
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bit

Ours 0.786 0.813 0.821 0.828 0.801 0.824 0.832 0.840 0.754 0.772 0.777 0.782 0.311 0.372 0.389 0.401
Ours* 0.750 0.797 0.813 0.825 0.774 0.812 0.827 0.832 0.744 0.769 0.775 0.780 0.268 0.343 0.377 0.396
DDSH 0.753 0.776 0.803 0.811 0.776 0.803 0.810 0.817 0.745 0.765 0.771 0.774 0.271 0.332 0.343 0.346
DSDH 0.740 0.774 0.792 0.813 0.774 0.801 0.813 0.819 0.743 0.762 0.765 0.769 0.278 0.302 0.311 0.319
DPSH 0.712 0.725 0.742 0.752 0.768 0.793 0.807 0.812 0.741 0.759 0.763 0.771 0.193 0.204 0.213 0.215
DSH 0.644 0.742 0.770 0.799 0.712 0.731 0.740 0.748 0.696 0.717 0.715 0.722 0.173 0.187 0.191 0.202
DHN 0.680 0.721 0.723 0.733 0.771 0.801 0.805 0.814 0.744 0.765 0.769 0.774 0.190 0.224 0.212 0.248
COSDISH 0.583 0.661 0.680 0.701 0.642 0.740 0.784 0.796 0.689 0.692 0.731 0.758 0.187 0.235 0.256 0.275
SDH 0.453 0.633 0.651 0.660 0.764 0.799 0.801 0.812 0.695 0.707 0.711 0.716 0.151 0.186 0.194 0.197
FastH 0.597 0.663 0.684 0.702 0.726 0.769 0.781 0.803 0.719 0.747 0.754 0.760 0.173 0.206 0.216 0.244
LFH 0.417 0.573 0.641 0.692 0.711 0.768 0.794 0.813 0.708 0.738 0.758 0.772 0.154 0.159 0.212 0.257
ITQ 0.261 0.275 0.286 0.294 0.714 0.736 0.745 0.755 0.633 0.632 0.630 0.633 0.115 0.121 0.122 0.125

Table 1: MAP of different methods on CIFAR-10, NUS-WIDE, MS-COCO and Clothing1M datasets. Ours denotes the results when Bin is
equal to 60, while Ours* denotes the results when Bin is equal to compared methods (12, 24, 32 and 48 respectively). Note that the MAP of
NUS-WIDE dataset is calculated based on the top 5,000 returned samples.

(a) (b) (c)

Figure 5: The comparison results on CIFAR-10 dataset. (a) Precision-recall curves of Hamming ranking with 32 bits; (b) Precision curves
within Hamming distance 2; (c) Precision curves with 32 bits w.r.t. different numbers of top returned samples.

cision curves with different numbers of top returned samples.
The results of above variants are reported in Figure 5. From
Figure 5 we can see that compared to our method, the perfor-
mance of both Random and Select has declined. It demon-
strates the validity of our active and frozen phases. In addi-
tion, the improvements of Dropout and FCLayer over Base-
line are small, which proves the effects of the dropout tech-
nique and the fully connected layer are limited to the hashing
retrieval.

Sensitivity to Parameters
Figure 6 presents the effects of hyper-parameters Bin and m.
We can see that that increasing the number of Bin dose not
obviously improve the retrieval accuracy. It is due to that
60 bits already have enough expression capacity and extra
neurons are saturated. Moreover, the retrieval results decrease
when m is too large, which demonstrates that merging too
many neurons at once will degrade the performance of our
algorithm. It also explains the necessity of our progressive
optimization strategy.

5 Conclusion
In this paper, we analyze the redundancy of hashing bits in
deep supervised hashing. To address this, we construct a
graph to represent the redundancy relationship and propose
a novel layer named NMLayer. The NMLayer merges the re-
dundant neurons together to balance the importance of each

(a) (b)

Figure 6: Sensitivity study on CIFAR-10 dataset. (a) Sensitivity to
parameter Bin; (b) Sensitivity to parameter m.

hashing bit. Moreover, based on the NMLayer, we propose a
progressive optimization strategy. A deep hashing network is
initialized with more hashing bits than the required bits, and
then multiple NMLayers are progressively trained to learn a
more compact hashing code from a redundant long code. Our
improvement is significant especially on large-scale datasets,
which is verified by comprehensive experimental results.
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