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Abstract
This paper is concerned with the task of collabora-
tive density estimation in the distributed multi-task
setting. Major application scenarios include col-
laborative anomaly detection among industrial as-
sets owned by different companies competing with
each other. Of critical importance here is to meet
two conflicting goals at once: data privacy and col-
laboration. To this end, we propose a new frame-
work for collaborative dictionary learning. By us-
ing a mixture of the exponential family, we show
that collaborative learning can be nicely separated
into three steps: local updates, global consensus,
and optimization. For the critical step of con-
sensus building, we propose a new algorithm that
does not rely on expensive encryption-based multi-
party computation. Our theoretical and experimen-
tal analysis shows that our method is several orders
of magnitude faster than the alternative.

1 Introduction
Since the advent of Bitcoin [Nakamoto, 2008], cryptocur-
rencies with decentralized architectures have been creating
a lot of excitement in the information technology industry.
Their design principle of decentralized, secure, and transpar-
ent transaction management is casting a new light on machine
learning algorithms, especially in the field of federated learn-
ing [Yang et al., 2019]. In Bitcoin, the traditional notion of
security is partly replaced with a stochastic approach in vali-
dating data consistency. Our original research motivation was
if we could do something similar in the field of secure feder-
ated or collaborative learning.

Collaborative learning with IoT (Internet-of-Things) de-
vices is one of the recent interesting applications in dis-
tributed learning. The statistical nature of IoT data is entirely
different from e.g. transaction data among financial institu-
tions. Noisy multivariate real-valued data are the primary
data type. They may be too low-level to be protected with
existing cryptographic technologies. Security requirements
should be entirely different from money transfer, too. In many
IoT domains, some high-level statistics such as a production
yield are of more interest, rather than the exact values of in-
dividual data samples.

client node

consensus 
node

S 1

2

...

Figure 1: Distributed collaborative learning among S competing
nodes. Each client wishes to exploit the other clients’ data but does
not want to share its own data.

Figure 1 illustrates the collaborative learning environment
we are interested in. In a typical setting, the S clients belong
to different companies. They wish to improve their own pre-
diction model by exploiting data owned by the other clients,
but they do not want to share their own data with the rivals.
One such example is collaborative anomaly detection of in-
dustrial assets owned by different companies. The goal is to
learn S anomaly detection models customized to each asset
based on secure collaborative efforts.

In such a scenario, secure multi-party computation via ho-
momorphic encryption [Lindell, 2005] is typically considered
as a solution candidate. However, as we will show later,
for transactions involving a large amount of low-level sen-
sor data, strictly secure homomorphic encryption methods
will be too expensive and probably unnecessary [Wu, 2005].
This paper addresses such a situation. Our major technical
challenges are two-fold. First, to formalize the task of dis-
tributed collaborative learning in a specific language of ma-
chine learning. Second, to develop a practical method for col-
laboration or consensus building that does not rely on conven-
tional methods for Byzantine agreement [Sankar et al., 2017]
and cryptographic secure multi-party computation.

The contribution of the paper is to provide a clear solution
to those challenges. For the first challenge, we formalize the
problem as multi-task density estimation of a mixture of the
exponential family. Thanks to a specific form of the expo-
nential family, collaborative learning is nicely separated into
three steps of local updates, consensus, and optimization. For
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the second challenge, we will show that an efficient dynamic
consensus algorithm, whose original idea was first proposed
in the field of multi-agent research [Olfati-Saber et al., 2007],
works well. Leveraging useful properties of a particular type
of graphs, which are often used to build a robust network of
communication [Feldman et al., 1988], we also provide a the-
oretical guarantee on the efficiency of the proposed consen-
sus algorithm for the first time in the context of collaborative
learning.

2 Related Work
From a machine learning perspective, related work relevant
to the present paper can be categorized into three groups:
Multi-task density estimation in general, privacy-preserving
distributed learning, and consensus building in decentralized
environments.

First, regarding multi-task density estimation on multi-
variate real-valued data, Chiquet et al. [2011] and Hono-
rio et al. [2010] proposed a multi-task density estimation of
sparse Gaussian, which is in the exponential family. Another
work [Idé et al., 2017] extends those models to mixtures.
However, they lack the context of privacy preservation. In
the context of applications of Blockchain, the concept of sep-
aration of local and global variables has been proposed for
a micropower grid optimization [Münsing et al., 2017], but
it is not applicable to density estimation. Xie et al. [2017]
discuss differential privacy in multi-task learning under the
distributed setting, but they did not discuss secure consensus
building.

Second, regarding privacy-preserving distributed learning,
major research topics include the use of homomorphic en-
cryption (HE) and secret sharing [Danezis et al., 2013;
Mahimkar and Rappaport, 2004]. One recent popular ap-
proach to multi-task and transfer learning is to reuse network
weights over deep neural networks (DNNs) and incorporate
a privacy-preservation mechanism in stochastic gradient via
HE [Bonawitz et al., 2017] and secret sharing [Mohassel and
Zhang, 2017]. However, most of them assume the availability
of the central coordinator.

Third, regarding consensus building in decentralized en-
vironments, much work has been done in the context of the
Byzantine generals problem [Sankar et al., 2017; Cachin and
Vukolić, 2017]. However, most of them focus on relatively
simple decision-making on categorical data such as “attack
or retreat,” and how they can be generalized to noisy real-
valued data is not necessarily clear. On the other hand, in the
field of multi-agent research, dynamic distributed consensus
has been one of the popular research topics [Ren et al., 2005;
Olfati-Saber et al., 2007]. Although most of them do not pay
attention to privacy preservation, recently, Ruan et al. [2017;
2019] proposed an interesting framework that incorporates
the idea of dynamic multi-agent coordination into pairwise
HE. To the best of our knowledge, their work is the only
method applicable to the task of fully decentralized se-
cure collaborative dictionary learning. Unfortunately, how-
ever, their protocols suffer from the high computational
cost of HE. The use of other multi-party computation al-
gorithms such as the Shamir scheme is another option, but

Goryczka et al. [2013] pointed out that it can be even slower
than HE-based methods as the network size grows.

To summarize, although much work has been done for
privacy-preserving federated/distributed learning, most of
them either assume the existence of the central coordinator
or suffer from high computational costs. In contrast to the ex-
isting work, the advantages of the proposed method are sum-
marized as:

• Principled. Algorithms are derived as a natural conse-
quence of the maximum likelihood.

• Guaranteed. Convergence in consensus and data pri-
vacy are guaranteed.

• Fast. Several orders of magnitude faster than the HE-
based alternative.

3 Problem Setting
This section summarizes the problem setting of collaborative
dictionary learning.

3.1 Collaborative Dictionary Learning
The goal of collaborative dictionary learning is to learn the
probability density function (p.d.f.) of real-valued noisy mul-
tivariate data under a multi-task learning setting. As shown in
Fig. 1, there are S client nodes or the clients in the network.
The clients s = 1, . . . , S privately have their own data

Ds = {xs(n) | n = 1, . . . , N s; xs(n) ∈ RM}, (1)

where Ns is the number of samples of the s-th client, and M
is the dimensionality of data, which is assumed to be common
across all the clients. Each of the client has a unique partner
called the consensus node. The consensus nodes receive in-
termediate statistics from their partner client, and somehow
communicate with the other consensus nodes to update the
model at hand.

In the network, we assume that there is no central coordi-
nator who can see the raw data Ds, but we assume that the
network router does basic bookkeeping jobs such as the man-
agement of communication paths and clock synchronization,
as is the case in Bitcoin.

The S client-consensus node pairs collaboratively learn the
p.d.f. in the form of mixture model:

ps(xs | Θ,πs) =
K∑
k=1

πskf(xs | θk), (2)

where Θ ≡ {θ1, . . . , θK} is the set of model parameters,
K is the number of mixture components, f(xs | θk) is the
density function specified later, and πs is the mixture weight
of the s-th client with

∑K
k=1 π

s
k = 1. The model parameters

Θ are shared by the S clients while the mixture weights are
specific to each client. Since our goal is to learn S density
functions p1, . . . , pS , this is a multi-task density estimation
problem. Since k distinguishes distinctive patterns, we may
call Θ the dictionary and each θk can be called a word.
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3.2 Privacy Requirements
In the typical setting, the client-consensus node pairs belong
to different companies or organizations competing with each
other. They are in a “permissioned” network [Ahram et al.,
2017], where the identity of the clients and consensus nodes
has been verified and is known to all the network participants.

In permissioned networks, the clients are naturally as-
sumed to be honest but curious. They are honest because
sending falsified information will cause degradation of the
model learned. Unless their goal is to destroy everything, they
will not be able to benefit from such malicious acts. Also, the
clients are curious; they want to exploit information from the
other clients, because, in general, the more data are available
for training, the better accuracy the model will get. This is es-
pecially true in anomaly detection, which is a major applica-
tion of density estimation because the number of anomalous
samples is generally very limited.

Under these assumptions, there are two major privacy con-
cerns in collaborative dictionary learning. One is what we call
the internal privacy, which is privacy preservation among the
S client nodes, addressing the question of how those selfish
clients can collaboratively build the model while keeping data
privacy. The other is what we call the external privacy, which
addresses privacy concerns when sharing a learned dictionary
with a third-party.

The priorities of those privacies depend on applications. In
this particular work, we focus on the internal privacy. We
assume that Ds has many samples Ns � 1 whose values
have been affected by some observation noise. Parameters
learned Θ will be a function of the original samples. There
might be a nonzero possibility of getting reverse-engineered
the raw samples from Θ, but the risk should be relatively low
because the observation noise works as a privacy-preservation
mechanism.

To summarize, our goal is to learn the dictionary words
Θ = {θ1, . . . , θK} and the client-specific mixture weights
Π ≡ {π1, . . . ,πS} through collaboration in the decentral-
ized environment (i.e. no trusted central coordinator) while
preserving data privacy among the S clients.

4 General Framework of Collaborative
Dictionary Learning

This section presents the framework for collaborative dictio-
nary learning for the exponential family.

4.1 Expectation-Maximization Framework
As usual, we introduce a latent indicator variable zs ∈
{0, 1}K , where

∑K
k=1 z

s
k = 1, to represent the mixture

model:

p(xs | Θ, zs) =
K∏
k=1

f(xs | θk)z
s
k (3)

p(zs | πs) = Cat(zs | πs) ≡
K∏
k=1

(πsk)z
s
k , (4)

where Cat stands for the categorical distribution. In gen-
eral, when point-estimating {θk}, {πs}, we use the prior

distribution on Θ as p(Θ) =
∏K
k=1 p(θk) and on Π as

p(Π) =
∏S
s=1 p(π

s) and follow the MAP (maximum a pos-
teriori) framework.

The model parameters are determined by maximizing the
log likelihood function:

L0(Π,Θ) = ln
∑
Z

p(Π)p(Θ)×∏
n,s

p(xs(n)|Θ, zs(n))p(zs(n)|πs), (5)

where Z is the collective notation of {zs(n)}. Since directly
optimizing L0 is intractable because of the marginalization
over Z, we instead maximize the lower bound L via Jensen’s
inequality:

L(Π,Θ) = c.+ ln[p(Π)p(Θ)]

+
∑
Z

Q(Z)
∑
s,n

ln[p(xs(n)|Θ, zs(n))p(zs(n)|πs)], (6)

where c. is an unimportant constant and Q(Z) is given by

Q(Z) =
∏
n,s

Cat(zs(n) | rs(n)), (7)

where

r
s(n)
k =

πskf(xs(n) | θk)∑K
m=1 π

s
mf(xs(n) | θm)

. (8)

Obviously, Q(Z) includes unknown parameters. Thus the
learning process has to be iterative. First, {rs(n)} are ini-
tialized. Given Q(Z), the model parameters Π,Θ are deter-
mined by maximizing L. Then, Q(Z) is re-evaluated to move
on to the next maximization. This is nothing but the standard
expectation-maximization (EM) procedure.

If we use the Dirichlet distribution p(πs) ∝ (πs1 · · ·πsK)γ

for p(Π), where γ is a given constant (∼ 1), by differentiating
L with respect to πsk, we can easily see

πsk =
Ns
k + γ

Ns +Kγ
, (9)

where Ns
k ≡

∑Ns

n=1 r
s(n)
k .

4.2 Learning with Exponential Family
To point-estimate {θk}, we need to give a specific form to the
density. Now, let us see what happens if we use the exponen-
tial family for the density:

f(xs | θk) = G(θk)H(xs) exp
{
η(θk)>T (xs)

}
, (10)

where > is the vector (or matrix) transpose, H(·), G(·) are a
scalar function, and η(·),T (·) are a (column) vector function
satisfying required mathematical properties as a p.d.f.

With this expression, the lower bound L (Eq. (6)) becomes

K∑
k=1

[
ln p(θk) +

S∑
s=1

{
Ns
k lnG(θk) + T sk

>η(θk)
}]

, (11)
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Algorithm 1 Collaborative dictionary learning

1: Initialize dictionary {θk}Kk=1

2: Initialize {rs(n)
k } in each client

3: repeat
4: LocalUpdates: Compute {rs(1), . . . , rs(N

s)},
{T s1 , . . . ,T sK}, and {Ns

1 , . . . , N
s
K} in each client s,

using the current dictionary.
5: Consensus: Securely compute Eq. (12).
6: Optimization: Solve Eq. (13) to update the dictionary.
7: until convergence

where T sk ≡
∑Ns

n=1 r
s(n)
k T (xs(n)). Here we have dropped

all the terms independent of Θ. Thanks to the log-linear form
of the exponential family, once we compute

Nk =
S∑
s=1

Ns
k , Tk =

S∑
s=1

T sk , (12)

the dictionary words {θk} can be found by maximizing
Eq. (11) without any communication among the clients:

θk = arg max
θk

{
ln p(θk) +Nk lnG(θk) + T>k η(θk)

}
(13)

This means that the whole EM learning algorithm can be
completely separated into three steps: LocalUpdates, Con-
sensus, and Optimization, as sketched in Algorithm 1. As
shown, only the consensus step involves communication
among the consensus nodes.1. Note that the consensus has
to be built every EM iteration. The use of expensive homo-
morphic encryption is obviously not an ideal solution (see
Sec. 6.3). The next section looks at how to efficiently but
securely build consensus.

5 Consensus Building with Privacy
Now we consider how to compute the summations of
Eq. (12). Since the summations can be performed element-
wise, without loss of generality, we consider the problem of
computing the sum of scalars {ξs} in this section:

ξ̄ =
S∑
s=1

ξs = 1>S ξ(0), (14)

where ξs’s are constants to be summed, 1S ∈ RS is the vector
whose elements are all one, and we defined ξs(0) = ξs. At a
high level, our strategy is twofold. One is to limit the number
of nodes each consensus node is allowed to communicate.
The other is to introduce randomness to obfuscate local data.

5.1 Dynamic Consensus
Assume that the consensus nodes have been indexed with
consecutive integers 1, . . . , S by the network router. Let
A ∈ {0, 1}S×S be the incidence matrix of a graph whose
nodes are the consensus nodes and edges represent a bilateral

1It can be performed also after the step of Optimization to guar-
antee the uniqueness of Θ.

communication channel between the nodes. See Fig. 1 for an
example, where a cycle graph of S = 6 is illustrated.

Given the incidence matrix, each consensus node s can
communicate only with the connected nodes. At each s, con-
sider the following updates:

ξs(t+ 1) = ξs(t) + ε
S∑
j=1

As,j [ξ
j(t)− ξs(t)], (15)

where t is the number of update rounds, and ε is a given pa-
rameter controlling convergence. All the S nodes perform
this update locally. In the matrix form, Eq. (15) is written as

ξ(t+ 1) = Wεξ(t) with Wε ≡ IS − ε(D− A), (16)

where IS is the S-dimensional identity matrix, D is the degree
matrix of A, and ξ(t) ≡ (ξ1(t), . . . , ξS(t))>.

The nature of a stationary solution is governed by the
eigenvalues of Wε and thus the spectrum of A. As can be
easily verified, u1 = 1√

S
1S is an `2-normalized eigenvector

of Wε whose eigenvalue is λ1 = 1. If this is non-degenerated
and the absolute value of the other eigenvalues is less than
one, Eq. (16) will converges to the stationary solution ξ∗

ξ∗ = Wε
∞ξ(0) ≈ λ1

∞u1u
>
1 ξ(0) =

1

S
ξ̄1S (17)

because only the largest eigenvalue survives in the spec-
tral expansion after an infinite number of transitions [Strang,
1976]. This means that all of the consensus nodes have the
same value of ξ̄

S upon convergence, achieving consensus.

5.2 Random Chunking Algorithm
One obvious issue of the update equation (15) is that the con-
sensus nodes have to share the local value ξs with the con-
nected neighbors. However, we can easily fix this issue by
using a simple secret sharing scheme by splitting the local
statistic ξs into a few chunks {ξs[h]} such that

∑
h ξ

s[h] = ξs.
Since the summation is a linear operation, ξ̄ = ξ̄[1] + · · · +
ξ̄[Nc] obviously holds, where ξ̄[h] ≡

∑S
s=1 ξ

s[h].
In this algorithm, if all the Nc chunks from one node hap-

pen to go to the same node, the recipient node can reproduce
the raw data. This can be prevented by having the network
router randomly choose an A from a pool of incidence matri-
cesA that is non-overlapping (i.e. any pair of the matrices do
not share the same edge). Hence we conclude:
Proposition 1. In Algorithm 2, Nc = 2 suffices to secure
privacy if the set A is non-overlapping and the router always
chooses an A ∈ A that is different from the previous chunking
round.

What if we cannot generate multiple A’s that are non-
overlapping, which happens when A is dense, or, the router
cannot keep the memory of a previously used A? Fortunately,
even in that case, one can show that the probability of privacy
breach pb is upper bounded as

pb ≤ S(S − 1)

(
dmax

S − 1

)Nc

, (18)

where dmax is the maximum degree. As long as A is sparse
and thus dmax � S, we can make pb arbitrarily small by
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Algorithm 2 Dynamic consensus with random chunking

1: Input: ε, Nc. Graph pool A.
2: Initialize ξ̄ = 0.
3: Each consensus node splits ξs into Nc chunks.
4: for ic ← 1, . . . , Nc do
5: Randomly draw an A from A.
6: repeat
7: Perform update (15) in each s.
8: until convergence
9: ξ̄ ← ξ̄ + ξ̄[ic]

10: end for

choosing a sufficiently large Nc. A proof of Eq. (18) and
detailed mathematical discussions are left to another paper
due to page limitation.

5.3 Cycle Graphs
As a concrete example of sparse graphs, consider the S-node
cycle graph of order b, which is a regular graph with the de-
gree of d = 2b and will be symbolically denoted by CbS here-
after. See Fig. 2 for some examples. The cycle graphs are
preferable in our context because of its sparseness (for better
privacy) and symmetry (for better democracy).

To study convergence behaviors in Eq. (17), we introduce
the set of orthonormal bases e1, . . . , eS in the S-dimensional
Euclidean space such that A =

∑
i,j Ai,jeie

>
j . In this repre-

sentation, the incidence matrix of CbS is given by

A(CbS) =

S∑
s=1

b∑
j=1

(es+je
>
s + es−je

>
s ) (19)

for S ≥ 2b + 1 under the periodic boundary condition
(e.g. j = 0 and S + 1 correspond to S and 1, respectively,
etc.). Now it is straightforward to verify that

ul ∝
S∑
s=1

es exp

(
2π(l − 1)(s− 1)

S
i

)
(20)

is the eigenvector of A, where i is the imaginary unit. From
this, we see that the largest eigenvalue of Wε is ν1 = 1 with
u1 = 1√

S
1S . The second largest eigenvalue is given by

ν2(CbS) = 1− 2ε
b∑
j=1

(
1− cos

2πj

S

)
. (21)

For 0 < ε < 1/(2d), this is the second absolute largest, too.
This analytic representation allows a convergence analysis

in the limit of S → ∞. The convergence is governed by
ν2/ν1. Since 1− cos 2πj

S ≈
1
2

(
2πj
S

)2
in this limit, we have(

ν2

ν1

)t
≈ 1− 2π2

3S2
εtb(b+ 1)(2b+ 1). (22)

Therefore, in order for (ν2/ν1)t to be a small positive value,
say, δ/

√
S, the number of iteration t should satisfy 2

t ≈ 3S2 ln(
√
S/δ)

2π2εb(b+ 1)(2b+ 1)
= O

(
S2 ln(

√
S/δ)

εb3

)
. (23)

2The factor of 1/
√
S comes from the prefactor of Eq. (17).

Figure 2: Second-order cycle graphs with S = 5, 7, 8, 12.

To summarize, we have proved the following proposition:

Proposition 2. For the cycle graph of order b, the up-
date equation (15) achieves an aggregation consensus at the
unique stationary point. The number of iterations t to achieve
a value of error δ/

√
S is given by t ∼ O

(
S2 ln(

√
S/δ)

εb3

)
.

In words, the number of iterations required for convergence
is of the order of S2. This result is specific to the cycle graph.
Then, can we improve the convergence rate by choosing an-
other graph? The next section provides the answer.

5.4 Modified Cycle Graph
The other sparse graph we consider is a modified version of
cycle graph called the cycle with inverse chords [Vadhan and
others, 2012], which is C1

S with an extra edge from each node
s to a node j by the rule (s− 1)(j − 1) = 1 mod S. Let λi
be the i-th largest eigenvalue of A. For the cycle with chords,
it is known that λ1 − λ2 > 0 is lower-bounded by a constant,
say λ. In our context, this means that the ratio ν2/ν1 is also
lower-bounded by 1− λ/ε. Following the same reasoning of
the previous subsection, we have:

Proposition 3. For the cycle with inverse chords, the number
of iterations t to achieve a value of error δ/

√
S is given by

t ∼ O
(

ln(
√
S/δ)

| ln(1−λ/ε)|

)
.

Notice the difference from Proposition 2. Here t depends
on S only through lnS. In other words, no matter how large
the number of clients is, the number of iterations to converge
is almost constant. The next section confirms this remarkable
property through numerical experiments.

6 Experiments
This section presents experimental results on the proposed
dictionary learning protocol. The goal of this section is (1) to
illustrate how the multi-task dictionary learning framework
works, (2) to provide a qualitative picture of convergence
properties, especially faster convergence of the modified cy-
cle graph, and (3) to show computational efficiency of the
proposed consensus algorithm.

6.1 Learning Multi-Modal Patterns
To illustrate how the proposed multi-task learning framework
can capture multi-modal patterns, we ran the proposed algo-
rithm on a synthetic data set. For the density model, we used
Gaussian with M = 4. The samples were generated from
distinctive three Gaussians as illustrated in Fig. 3. In practice,
determiningK can be a major issue. We initialized the model
with K = 6, which is larger than the ground truth, and ob-
served if the algorithm can correctly capture the three modes.
The results are shown in the figure, where the ground truth is
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three (named A, B, and C) with the probabilities specified. Right:
Converged {πsk}Kk=1 from random initialization with K = 6.

0 200 600 1000

0
10

00
00

20
00

00

S

# 
ite

ra
tio

ns

b=2
b=4
b=8

cycle

0 200 600 1000

0
10

0
30

0

S

# 
ite

ra
tio

ns

modified cycle

Figure 4: The number of iterations t to achieve
(
ν2
ν1

)t
= 1√

S
10−3.

successfully recovered. As is well-known [Corduneanu and
Bishop, 2001], by setting γ = 0, the mixture model can auto-
matically identify the major components, unless initialization
used is too pathological. However, it is recommended to use
a finite γ for better generalizability if a reasonable estimate
for initialization is not available.

6.2 Convergence in Consensus Building
To confirm Propositions 2 and 3, we computed the number of
iterations t to achieve (ν2/ν1)t = 1√

S
10−3 in Fig. 4. We used

ε = 1/dmax, where dmax is the maximum node degree. For
the cycle graphs on the left, we see that the dependency on S
follows a parabolic trend, which is consistent with Eq. (23).
On the other hand, for the cycle with chords, t is much smaller
than that of the cycle graphs and grows very slowly with S,
which is also consistent with Proposition 3.

Another observation that looks interesting is that the curve
fluctuates a lot in the latter. In the original construction, the
cycle with chords is defined only for primes. We extended
the construction for non-primes by mechanically applying the
mathematical definitions. The fluctuation is partly due to this
extension. However, we observed much fluctuation even for
primes. This implies that the cycle with chords intrinsically
bears some randomness. Further analyzing this point would
be an interesting future research topic.

6.3 Computational Efficiency
Finally, we compared the proposed consensus algorithm with
the state-of-the-art multi-party algorithm proposed by Ruan
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Figure 5: Computation time comparison between the proposed dy-
namic random chunking and the encryption-based method.

et al. [Ruan et al., 2017], which shares the same graph-based
dynamic consensus scheme but uses pairwise secure compu-
tation through additive homomorphic encryption. The cycle
graph with b = 2 was used for both and ξs’s were initialized
by the uniform distribution in [−10, 10]. In each of the dif-
ferent choices of S, convergence was declared when the root-
mean-squared error (RMSE) per node is below 0.01. Since
we set Nc = 5, the number of total iterations is about five
times larger in the proposed model. For homomorphic en-
cryption, we used homomorpheR [Narasimhan, 2019] that
implements the Paillier cryptosystem, which enables the ad-
dition of numbers without decryption.

Figure 5 compares the two approaches. In spite of about
five times more iterations, our method is several orders of
magnitude faster than the encryption-based method. The ma-
jor bottleneck is at the step of the key pair generation, which
was made at every iteration. We could improve computation
time by e.g. recycling the keys, but the computational over-
head is so large that our proposed solution seems to be virtu-
ally only the practical solution for our problem.

7 Concluding Remarks

We have proposed a new framework of secure collaborative
learning in a decentralized environment. First, by formaliz-
ing the task as multi-task density estimation of a mixture of
the exponential family, we showed that collaborative learning
among competing clients can be nicely separated three steps:
LocalUpdates, Consensus, and Optimization. Second, for the
Consensus step, which is most critical for privacy preserva-
tion, we proposed an efficient consensus algorithm which is
several orders of magnitude faster than encryption-based al-
ternatives while keeping a certain level of security. Our anal-
ysis showed that the number of iterations required for con-
sensus is just the logarithm of the network size.
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