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Abstract
Sequential recommendation is a task that learns a
temporal dynamic of a user behaviour in sequen-
tial data and predicts items that a user would like
afterward. However, diversity has been rarely em-
phasized in the context of sequential recommenda-
tion. Sequential and diverse recommendation must
learn temporal preference on diverse items as well
as on general items. Thus, we propose a sequential
and diverse recommendation model that predicts a
ranked list containing general items and also di-
verse items without compromising significant accu-
racy. To learn temporal preference on diverse items
as well as on general items, we cluster and relocate
consumed long tail items to make a pseudo ground
truth for diverse items and learn the preference on
long tail using recurrent neural network, which en-
ables us to directly learn a ranking function. Ex-
tensive online and offline experiments deployed on
a commercial platform demonstrate that our mod-
els significantly increase diversity while preserving
accuracy compared to the state-of-the-art sequen-
tial recommendation model, and consequently our
models improve user satisfaction.

1 Introduction
Users’ feedback (e.g. click, view) in e-commerce naturally
arrives one by one in sequential manner. Sequential recom-
mendation is a task that learns a temporal dynamic of a user
behaviour in the sequential data and predicts items that a user
would like afterward. Given a user’s historical data as a se-
quence, an objective of the sequential recommender systems
is to recommend the next items that the user would be inter-
ested in.

Surprisingly, diversity 1 has been rarely emphasized in the
context of sequential recommendation though it has been
treated importantly in ordinary collaborative filtering-based

∗This work is done during an internship at Kakao Corp.
1There are two types of diversity: aggregate or individual diver-

sity. The aggregate diversity is for all recommended items across all
users, which represents overall product variety and sales concentra-
tion [Adomavicius and Kwon, 2012; Adomavicius and Kwon, 2011;
Anderson, 2004]. Whereas, the individual diversity is for recom-
mended items to each individual user regardless of other users. Here,
we focus on the aggregate diversity.
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Figure 1: Example on movie sequences. After Bob watched Incep-
tion, we’d like to recommend both general movies (Dark Knight)
and relevant diverse movies such as Following and Quay rather than
Red Road and The Pledge

recommender systems [Vargas and Castells, 2011; Oh et
al., 2011; Adomavicius and Kwon, 2012; Adomavicius and
Kwon, 2011; Ziegler et al., 2005; Christoffel et al., 2015;
Yin et al., 2012; Antikacioglu and Ravi, 2017; Cheng et al.,
2017]. To recommend diverse items in the context of se-
quential recommendation, we must learn temporal prefer-
ence on diverse items as well as on general items. Here,
we define general item as a popular item that is frequently
exposed to customers and diverse item as an unpopular and
niche item that is rarely exposed to customers. Depending
on what a user consumed previously, the preferred next di-
verse items can change. For example, Alice recently enjoyed
popular twisted psychological thrillers (Black Swan →
Memento→ Inception) (Fig. 1). After watching Memento
and Inception, Alice found the director Christopher Nolan
attracts her attention, and thus Alice watched Nolan’s other
movie, Dark Knight. She also often watched diverse movies
along with the general ones. After watching Inception Alice
watched Following and Quay, which are Nolan’s less pop-
ular movies. Given another user, Bob, who also watched
Black Swan → Memento → Inception, our goal is to
recommend Bob a list of next movies that contains not only
general ones but also diverse ones. In this case, the recom-
mendation list should include Dark Knight and also some rel-
evant diverse movies that have similar flavour with Follow-
ing or Quay (rather than Red Road or The Pledge). To do
so, sequential recommendation model should learn temporal
preference on general items and also diverse items.

Thus, we propose a sequential and diverse recommenda-
tion model (S-DIV), that predicts a ranked list containing gen-
eral items and also diverse items. One challenge here is that
the diverse tail items are “cold” (i.e., too few occurrences)
and consequently they give too much weights on implausi-
ble events and hurt the recommendation accuracy. Previous
work removed these tail items during pre-processing step.
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Figure 2: Comparing sequential and diverse recommendation model
(S-DIV) with other recommendation models. Left: static models
without considering temporal information. Right: sequential mod-
els that predict next items. Up: general models without diverse tail
items. Down: diverse models that predict general items and tail
items.

We tackle this problem by clustering the tail items and map-
ping them into content-based vector space. Besides, consid-
ering diversity in recommendation is technically challenging
because accuracy and diversity are conflicting measures and
thus simply increasing one will end up decreasing the other.
Increasing diversity significantly while preserving (or negli-
gibly losing) the state-of-the-art accuracy requires a careful
design of optimization. To address this problem, we set a
pseudo ground-truth ranking order as next general item (for
accuracy) followed by relevant unpopular items (for diver-
sity), and then we optimize a ranking function to preserve the
pseudo ground-truth ranking order using recurrent neural net-
work (RNN) and listwise learning-to-rank. Extensive online
and offline experiments deployed on a commercial blog plat-
form demonstrate that S-DIV significantly increases diversity
while preserving the accuracy compared to the state-of-the-
art sequential recommendation model, which consequently
improves user satisfaction. Our implementation is accessi-
ble at https://github.com/yejinjkim/seq-div-rec for repro-
ducibility. Our main contributions are:
• To the best of our knowledge, our work is the first to ad-
dress the recommendation of diverse items in the context of
sequential recommendation.
• We substantially increase diversity while preserving the
state-of-the-art accuracy.
• Our method is an end-to-end approach that derives a rank-
ing function to directly recommend general items and diverse
items at the same time.

2 Related work
2.1 Diverse Recommendation
Typical approach for increasing recommendation diversity
is a post-processing heuristic that re-ranks recommended
items based on certain diversity metrics [Ziegler et al., 2005;
Christoffel et al., 2015; Adomavicius and Kwon, 2012]. That
is, the re-ranking methods generate a candidate set of items
based on an accuracy measure, then select and re-arrange
these items to maximize a diversity measure (Fig. 2). Some
studies utilize long-tail items to further improve diversity.
Clustering approaches [Park and Tuzhilin, 2008; Park, 2013;
Bradley et al., 2000; Yin et al., 2012; Oh et al., 2011] are
proposed that attempt to leverage long-tail items directly

into a recommendation list. They cluster tail items in pre-
processing phase, treat the clusters as general items, and ap-
ply ordinary recommendation models so that the recommen-
dation list contain the tail items as well.

However, these heuristic methods generate recommenda-
tion lists using limited candidate items and a single diver-
sity metric regardless of correlation with user preference on
general items. Moreover, such a re-ranking heuristic always
requires extensive tuning engineering effort. To tackle this
problem, the diverse recommendation requires a robust end-
to-end model that is based on i) a supervised approach with
ground truth of diverse items and ii) a learning-to-rank ap-
proach that directly learns a ranking function that imposes
high values on diverse items as well as on general items.
The first attempt on this method is a subset retrieval tech-
nique [Cheng et al., 2017]. It learns a ranking function for
selecting a set of diverse items using structural support vec-
tor machines. Likewise, our proposed model is also based on
learning-to-rank framework with ground-truth tail items.

2.2 Sequential Recommendation
Recently RNN has been recognized as useful due to its abil-
ity to model variable-length sequences. The most representa-
tive work is the RNN-based recommendation [Hidasi et al.,
2015], which predict next item based on the sequence of pre-
vious items using RNN. A feature-rich version of the this
model incorporates content feature vector as separate input
[Hidasi et al., 2016]. Likewise, we build our sequential model
using the RNN framework like the previous studies. We do
not limit the historical data as a short sequence without user
ID as [Hidasi et al., 2015] but let it be a user’s implicit feed-
back sequence of any length (say a few days to a few hundreds
days). Another line of study is next-basket recommendation,
which is a task to formulate a customer who purchases a se-
ries of baskets of items [Rendle et al., 2010; Yu et al., 2016;
Wang et al., 2015]. These studies are similar with our models
in that both aim to predict multiple relevant items in sequen-
tial manner. However, the next-basket recommendation does
not consider a relative order among multiple relevant items,
which is required for our models to preserve accuracy on pre-
dicting general items.

3 Sequential and Diverse Recommendation
We propose S-DIV, a sequential and diverse recommendation
model that predicts next general items together with relevant
diverse items. To make an end-to-end model without the re-
ranking heuristic, we formulate our problem as supervised
learning to rank.

3.1 Problem Formulation
In sequential recommendation, there is a mass of users, and
each user consumes a series of items. Let U be a set of users,
and G be a set of general items. For a user U ∈ U, let
(x1,x2, . . . ,xJ) be an (general) item history from time 1 to
J after omitting superscript U for simplicity. xj is a vector
that represents an item G ∈ G consumed at time j. Given
an input of the item history, a ranking function f imposes
scores on items, which indicates how likely each item can be
the next recommended items, i.e., sj = f(x1,x2, . . . ,xj) or
sj = f(xj) in short. Here, sj is a vector that represents rank-
ing scores of all items including general items and diverse
items at time j. We can rank the items using the scores in
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sj and generate a recommendation list R with top-N items at
time j. Obviously, sj should have high values on i) an item
consumed at j + 1 (i.e., xj+1) for accuracy and ii) relevant
diverse items for diversity, so that both of them are ranked at
top positions at the same time. To solve this supervised learn-
ing to rank problem, a good ground-truth ranking (or label)
sequence is necessary, in which each ranking at specific time
is ordered as next general item followed by relevant diverse
items. A challenge is that there is no explicit ground-truth
ranking sequence that includes diverse items. So, we discuss
how to derive a reasonable pseudo ground-truth ranking se-
quence.

3.2 Pseudo Ground-truth Ranking Sequence
Because there is no explicit ground truth on a user’s prefer-
ence on diverse items, we instead infer a pseudo ground truth
that implicitly reflects an actual ground truth.
Consumed long-tail items. A good ground truth for di-
verse items should be not only diverse but also relevant to
a target user. A recommendation list containing items that
are diverse but not accordant with the target user’s taste does
not help increase user satisfaction. We find long-tail items
[Anderson, 2004] that users have consumed in the past are
a good source of pseudo ground truth to predict future di-
verse items because the tail items are both diverse and highly
relevant to the target user. In details, a user’s consuming be-
havior follows a probabilistic relationship: p(consumed) ∼
p(seen) · p(relevant) [Vargas and Castells, 2011]. The con-
sumed tail items are obviously consumed and rarely seen
since they are less exposed than popular items. We can infer
that the tail items are so relevant (i.e., p(relevant) is high)
that users consume them as actively searching them. How-
ever we cannot directly use the individual tail items as a tar-
get to predict during training due to too few number of occur-
rences.A traditional treatment to the tail items is deleting or
ignoring them in pre-processing phase. Instead, we make use
of the tail items by clustering and relocating (Fig. 3).
Clustering. Apart from G, there is a separate set T of tail
items whose number of occurrences for each is less than neg-
ligibly small number τ (say 3). We first assign the tail items
T ∈ T into a cluster T ∈ T = {T 1, T 2, . . . , TK}. Specif-
ically, we perform K-means clustering (|T | ≥ K = |T |)
using tail item’s content vector so that contextually or se-
mantically similar items are grouped together. We replace
tail item T in the item history with the corresponding clus-
ter T (i.e., if T belongs to cluster T , then we use T in-
stead of T ). For example, let us assume an item sequence
G1 → T2 → G3 → T4 → T5 → G6 is given, where
T2, T4, T5 are tail items clustered into T 2, T 2, T 3, respec-
tively (Fig. 3). Traditional sequential recommendation ap-
proach treats it as (i) G1 → G3 → G6 after deleting T2, T4,
and T5 in pre-processing phase. Instead, we treat it as (ii)
G1 → T 2 → G3 → T 2 → T 3 → G6. Clusters of tail
items can effectively represent characteristics of similar indi-
vidual tail items. The number of occurrences of each clus-
ter is a sum of the number of occurrences of individual tail
items that belong to the cluster. Thus, the cluster can mit-
igate the cold-start problem by providing more occurrences
than individual tail items do [Park and Tuzhilin, 2008]. When
we test our model, we replace the predicted tail cluster to an
actual tail item that is closest to the centroid of the cluster.
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Figure 3: Clustering and relocating. Each tail item T is replaced
with assigned cluster T . Tail cluster T is then relocated to the next
following general item G.

Since during training the tail clusters are surrogates of tail
items, it is not desirable that each tail cluster occurs more
frequently than general items. Some sophisticated cluster-
ing methods can balance the number of items in a cluster
not to exceed the threshold τ [Park, 2013]. However, these
methods rely on discrete optimization or computationally ex-
pensive operations, and do not work well with our web-scale
data. Instead, we use mini-batch K-means clustering [Scul-
ley, 2010], and set the number K of clusters large enough
(i.e., b#tail items/τc ) so that the number of items in each
cluster roughly does not exceed τ .

Relocating. However, we cannot use the new sequence (ii)
G1 → T 2 → G3 → T 2 → T 3 → G6 as it stands. A
majority of existing (sequential) recommendation models are
trained using the sequence (i) G1 → G3 → G6 without tail
items and predict next general items. On the other hand, if
our model is trained with the new sequence (ii) containing
tail clusters, it predicts either next general items or next tail
items. It can cause two problems: First, our models’ accu-
racy for predicting either next general item or tail items is
not comparable to the existing recommendation models’ ac-
curacy for predicting next general item only, and thus our
model may lose accuracy for predicting next general item,
which is the most important task in recommendation. Sec-
ondly, our goal is to predict both next general items and tail
items at the same time in one recommendation list, not to
predict either next general items or next tail items. To ad-
dress these problems, the sequence (ii) should maintain the
general items’ original sequence for preserving accuracy (i.e.
G1 → G3 → G6), and also it should consist of an ordered
set of general items and tail items (not a single item) so that
our models can predict both items at the same time. To do
so, we relocate the tail cluster T to next to upcoming gen-
eral item G ∈ G so that the general item G and tail cluster
T occur concurrently (Fig. 3). This concurrency of general
item and tail cluster is beneficial to capture user’s preference
on general items and also tail items while maintaining accu-
racy for predicting next general items. For example, we treat
the sequence (ii) as G1 →< G3, T 2 >→< G6, T 2, T 3 >
where T 2 is positioned right after G3, and T 2, T 3 are posi-
tioned right after G6. That means, after consuming G1 the
user is likely to consume G3 along with T 2. Similarly, af-
ter consuming G3, the user is likely to consume G6 along
with T 2 and T 3. So, the input sequence is general item his-
tory G1 → G3 (note that input sequence does not need to
contain tail items), and the label sequence is a sequence of
rankings < G3, T 2 >→< G6, T 2, T 3 >, where each rank-
ing is ordered as the next general item followed by relevant
tail clusters.
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Figure 4: Input and label sequences from example in Fig. 3 (up) and
model architecture at specific time j (down). Input sequence is each
user’s item history, and label sequence is a sequence of rankings
on next upcoming general item and relevant tail clusters. Model
architecture at specific time j consists of two subnetworks – item
ID one-hot GRU and content vector GRU – concatenating layer and
final fully connected layer.

3.3 GRU-based Recommendation
We define our recommendation model’s ranking function f
using a gated recurrent unit (GRU).

GRU. The GRU is one of RNNs that employs a gating re-
current unit to maintain memory due to vanishing gradient
problem [Cho et al., 2014]. The GRU learns how much
to update and forget the previous hidden state. We set the
GRU as a basic sequential recommendation model since GRU
shows promising accuracy in sequential recommendation due
to its ability to model variable-length sequences [Hidasi et al.,
2015; Hidasi et al., 2016]. Moreover, the GRU is particularly
suitable for diverse recommendation because we can design
GRU architecture to learn tail item preference together with
general item preference seamlessly. Also the GRU is flexi-
ble to incorporate other types of input, so we can easily add
auxiliary information such as content feature, which can help
increase diversity.

Item content feature. We also feed an item content vector
into our model as a separate input. The item content is ben-
eficial for diversity because by mapping items into a content
(latent) space, the items are not limited to specific item IDs
but generalized to certain broad contexts with high variabil-
ity. We focus on extracting content vectors from blog articles’
texts. After extracting nouns from title and text, we use the
word2vec model to derive each word’s vector representation
[Mikolov et al., 2013]. We set the size of the content vector
as 120 after several trials. We then aggregate all the word

vectors in one text as a weighted sum of TF-IDF scores. For
the tail clusters, we use a centroid of each cluster.
Architecture. Our model’s architecture consists of two par-
allel subnetworks (in which each takes input from either item
ID one-hot vector or content vector), concatenating layer, and
final fully connected layer (Fig. 4). This architecture is with
respect to input-label pair at specific time in the sequence.
Specifically, for the item ID side, we first apply a fully con-
nected layer and a GRU layer to the item ID input. Likewise,
for the item content side, we apply a GRU layer to the item
content vector. We take the best merging structure from [Hi-
dasi et al., 2016]: the outputs from the two separate GRU
models are concatenated. Finally, we apply another fully
connected layer to transform the concatenated output into the
item ranking scores sj . At time j, the GRU layers in the item
side and content side take inputs from previous GRU layers at
j−1 together with current item information at j. They output
predicted ranking scores and deliver accumulated information
to the next GRU layers at j + 1. As the GRU layer memo-
rizes the previous behaviour of the target user, our model can
be aware of when the user explores long tail and which area
(or topic) the user is interested in.

3.4 Loss Function by Permutation Probability
To optimize our GRU-based ranking model, we need a loss
function that can rank high both next general item and rele-
vant tail clusters in the pseudo ground-truth ranking. How-
ever, a challenge is to impose high ranking scores on multi-
ple items while preserving their relative order. For implicit
feedback data, most ranking loss functions, such as pair-
wise Bayesian personalized ranking (BPR) loss [Rendle et
al., 2009], cannot model the relative order among multiple
relevant items. Thus, we use a listwise learning-to-rank ap-
proach specifically motivated by ListMLE [Xia et al., 2008].
It trains the model to derive ranking scores that agree with a
given ground-truth ranking order of items. Here the ranking
order has one-to-one correspondence with permutation, so,
we can represent a likelihood of the ranking order as a permu-
tation probability, which is defined with Plackett-Luce model
[Xia et al., 2008]. In our model, the pseudo ground-truth
ranking π is a partial order of items that consists of an ac-
curate general item followed by relevant tail items; the other
irrelevant items are not ordered. So, we define a top-n ver-
sion of the permutation probability. For a user U and at time
j (subscript for U and j are omitted for simplicity), the top-n
permutation probability is

P (π|s) =
n∏
i=1

exp sπi∑n
l=i exp sπl

+
∑
π′ /∈π exp sπ′

(1)

where sπ be a ranking score of item π ∈ G ∪ T from rank-
ing scores vector s = f(x), and π =< π1, . . . , πn >
be a top-n ranking order (or partial permutation) out of all
|G|+ |T| items. We aim to maximize the log-likelihood
logP (πj |sj) of the ranking model sj = f(xj) with input
xj and label πj for time 1 to J . So, we define our loss func-
tion L as a negative of the log-likelihood for time 1 to J :
L = − 1

J

∑J
j=1 logP (πj |f(xj)). Minimizing this loss func-

tion L makes the recommendation model f(xj) to give the
highest value on the next general item and the second high-
est value on the following relevant tail item, and so on for
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all items in πj . This listwise approach additionally allows a
ranked list a room to contain diverse items. We minimize L
using gradient descent with respect to parameters in f(xj) so
that the ranking scores vector sj is accordant with the pseudo
ground-truth ranking πj .

4 Experiments
4.1 Data
We perform offline experiments and online A/B tests on
users’ historical logs on clicking blog articles from a com-
mercial blog platform, Kakao (https://brunch.co.kr), which
is one of largest blog platforms in South Korea with 4 mil-
lion daily views. For training, we collect 2.2 million active
users’ click logs during 8 days. The total number of articles
is 263,016 after discarding sequences of length one (i.e., only
one item) and items without text (e.g. articles with only im-
ages). The maximum length of sequence is 796 and average
length is 3.6. The content-based features are extracted from
the blog article’s main text and its title.

4.2 Hyperparameters
We perform experiments with different setting of tail thresh-
olds. After sorting items in decreasing order of the number of
occurrences, we consider top 10%, 20%, and 50% of items as
general items and the remaining as tail items. τ is the number
of occurrences at 10%, 20%, and 50% percentile. We choose
the number K of clusters as b#tail items/τc. To compare
the effect of separating tail set from general set, we perform
experiment when τ = 0, at which we regard all the items as
general items. The size N of a recommendation list is set to
20. To discover best performing length lemb of item ID input
embedding (at fully connected layer) and length lhid of hid-
den unit in GRU layer, we first run experiments as randomly
assigning them in 500 ≤ lemb ≤ 2500 and 50 ≤ lhid ≤ 750
(lhid ≤ lemb), and then perform grid search within promising
ranges. After 100 trials, we found lemb = 900, lhid = 550
performs best. We set dropout rate as 0.1, mini-batch size as
1024, and the number of epochs as 20. We use adaptive sub-
gradient optimizer. In the offline experiments, we split the
data into 70% for training, 10% for validation, and 20% for
test by user IDs.

4.3 Baselines
Item nearest neighbor (item-NN) is a simple but powerful
baseline for sequential recommendation [Hidasi et al., 2015].
Item-NN recommends a set of items with highest similarity.
The similarity is measured as the number of sequences in
which the two items occur together divided by the product
of each item’s support.

GRU4rec is the most widely used GRU model for sequen-
tial recommendation [Hidasi et al., 2015] (without consider-
ing diversity). It focuses on improving accuracy to predict
next accurate general item. It uses pairwise learning to rank
(i.e., BPR loss) for optimization.

GRU4rec+CB is an extension of GRU4rec with content-
based features. It incorporates content as a parallel structure
to increase accuracy of recommendation [Hidasi et al., 2016].

Re-ranking is a post-processing model based on given
ranked list [Adomavicius and Kwon, 2012]. We apply this
re-ranking model on top of GRU4rec. For specific configu-
ration, we select top 3N items, sort them in increasing order

Top % Model Accuracy Diversity FdivMAP NDCG

10%

Item-NN 0.121 0.171 9.7% 0.107
GRU4rec 0.205 0.280 7.4% 0.109
GRU4rec+CB 0.204 0.279 9.6% 0.130
Reranking 0.180 0.257 7.4% 0.105
S-DIV 0.205 0.280 59.2% 0.305
S-DIV+CB 0.205 0.280 78.8% 0.325

20%

Item-NN 0.119 0.169 19.5% 0.148
GRU4rec 0.198 0.271 9.5% 0.129
GRU4rec+CB 0.199 0.272 18.1% 0.190
Reranking 0.174 0.248 9.6% 0.124
S-DIV 0.199 0.271 22.4% 0.211
S-DIV+CB 0.199 0.271 64.0% 0.303

50%

Item-NN 0.117 0.165 45.8% 0.187
GRU4rec 0.191 0.260 9.8% 0.129
GRU4rec+CB 0.193 0.263 30.2% 0.236
Reranking 0.167 0.238 9.8% 0.124
S-DIV 0.191 0.260 10.0% 0.131
S-DIV+CB 0.193 0.263 38.7% 0.258

100%
GRU4rec 0.186 0.254 9.6% 0.127
GRU4rec+CB 0.187 0.255 26.5% 0.219
Reranking 0.163 0.232 9.7% 0.121

Table 1: Offline experiments results. Accuracy, diversity, and their
trade-off of baselines and proposed methods.

of probability of being seen, and select top N items whose
ranking value is larger than a median of the top 3N items.

S-DIV is our proposed model with item ID input.
S-DIV+CB is our proposed model with item ID and con-

tent feature input.

4.4 Evaluation Measures
Accuracy. We measure accuracy to examine whether our
models maintain or lose accuracy compared to other baselines
that are solely designed for improving accuracy. We use mean
average precision (MAP) and normalized discounted cumula-
tive gain (NDCG). MAP is a macro-averaging precision mea-
sure when a user is interested in finding many relevant items.
NDCG uses graded relevance as a measure of gain, and the
gain is discounted according to its ranking position. We em-
pirically set the relevance level of general items and tail items
as 1 and 0.8, respectively, because users usually care accurate
general items more than diverse tail items.
Diversity and trade-off. We follow evaluation measures in
[Cheng et al., 2017]. Diversity is defined as a proportion of
exposed items across all recommendation lists among total
items. Specifically, it is measured as the total number of
distinct items that have been recommended to at least one
user divided by the total number of items [Adomavicius and
Kwon, 2011; Yin et al., 2012; Ziegler et al., 2005]; it is be-
tween 0 and 1. We use F-score to evaluate trade-off between
accuracy and diversity [Cheng et al., 2017]. We define Fdiv
as a harmonic mean of conflicting accuracy and diversity. We
use the MAP as the accuracy in Fdiv because the MAP is be-
tween 0 and 1 (so comparable to diversity between 0 and 1).

4.5 Offline Experiments Results
Preserving accuracy. We observed that our models do not
lose significant accuracy compared to the baselines that are
solely designed for increasing recommendation accuracy. For
all the tail threshold cases, MAP and NDCG of S-DIV and S-
DIV + CB are comparable to that of GRU4rec and GRU4rec
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Rank Recommended items from GRU4rec
1 Top 10 Men’s Watches
2 Top 5 Affordable Mechanical Watches
3 Top 4 Men’s Luxury Watches
17 Controversial World History - Imphal Battle
18 The Camping Trip

Rank Recommended items from S-DIV + CB
1 Top 5 Affordable Mechanical Watches
2 Top 10 Men’s Watches
3 Top 4 Men’s Luxury Watches
17 Old Memories, Everlasting Fragrance
18 World Best 11 Drinks

Table 2: Case study on recommendation lists derived from GRU4rec
and S-DIV+CB. Bold item is the correct general item. Italic item is
from long tail.

+ CB (Table 1). On the other hand, the other two baselines
for increasing diversity, item-NN and GRU4rec + re-ranking
lose significant accuracy.
Improving diversity. In terms of diversity, our proposed
models utilize the tail items far more than the baselines do,
and consequently increase recommendation diversity greatly
for all the tail threshold cases. At 50% tail threshold, S-
DIV+CB shows diversity of 0.3868 (i.e., 101,746 items out of
total 263,016 items appear), whereas GRU4rec + CB shows
diversity of 0.3022 (i.e., 79,472 items) (Table 1).
Effect of content-based feature. We found that incorpo-
rating content-based features increases diversity consistently
since the content features map a specific item ID into a gen-
eralized concept with high variability. We also observed that
the content features increase accuracy for high tail threshold
(50%) when the number of general items used in the train-
ing phase is relatively larger than that of other tail thresholds.
This is because the content features provide supplementary
information for cold items that have too few occurrences.
Case study. To examine the recommended items in detail,
we retrieve two top-20 recommendation lists from GRU4rec
and S-DIV + CB at the 50% tail threshold given the same in-
put in the test set (Table 2). We observed that the recommen-
dation list derived from S-DIV + CB contains a tail item, Old
Memories as well as the correct general item, Top 10 Men’s
Watches. The recommendation list derived from GRU4rec
also contains the correct general item but does not contain
any tail items. Note that the two recommendation lists have
several items in common (e.g. Top 5 Affordable Mechani-
cal Watches), which indicates that S-DIV + CB can catch the
preference on general items accurately as much as GRU4rec
does while learning the preference on tail items.

4.6 Online A/B Tests Results
To further demonstrate the diversity improvement of our
models, we conduct online A/B tests on our commercial blog
platform. We launch GRU4rec, S-DIV, GRU4rec + CB,
and S-DIV+ CB. We also run a baseline model that recom-
mends manually curated items by human editors, which are
mainly most popular items for the last 1 hour written by cer-
tified bloggers. This baseline shows empirically stable click-
through rate (CTR) for all times and thus becomes a good
anchor for comparing with other models.

Similar to the offline experiments, we train our models us-
ing a training set from around 2.2 million active users’ his-

CTR Ratio Diversity
Baseline 1 0.090%
GRU4rec 1.212 0.932%
S-DIV 1.118 2.393%
Baseline 1 0.082%
GRU4rec + CB 1.022 3.452%
S-DIV + CB 1.007 6.811%

Table 3: Online experiments results. Accuracy (CTR) and diversity
of baselines and proposed methods.

torical click logs for the last 8 days before the start date of
the A/B tests. We regard top 20% of frequent items as gen-
eral items. We test our models and baselines with randomly
selected 5% of total active users, which would be negligible
size for service stability. To ensure the substantial size of
the tested users for each model, we run two separated sets
of experiments: i) comparing GRU4rec vs. S-DIV and ii)
comparing GRU4rec + CB vs. S-DIV + CB, together with the
curated-popular-items baseline. Each A/B test lasts for 2 days
on both mobile and desktop sites. We recommend 10 articles
out of 20 articles after filtering out items that the user has al-
ready read. We use the same evaluation measure for diversity
but use CTR for accuracy.

As a result, similar to the offline experiments, we demon-
strate that our models increase diversity while preserving ac-
curacy for predicting accurate general items. We observed
that CTR values of S-DIV and S-DIV + CB is comparable
to that of GRU4rec and GRU4rec + CB, respectively (Table
3). Instead of directly reporting CTR values, we compute a
CTR ratio as CTR value of a certain model divided by a CTR
value of the baseline that corresponds to the same time pe-
riod. Meanwhile, we also observed that diversity of S-DIV
and S-DIV + CB is larger than that of GRU4rec and GRU4rec
+ CB, respectively (Table 3). Particularly, S-DIV + CB gen-
erates the most diverse recommendation and thus mitigates
the severe long tail problem. Note that the diversity values of
the online experiments is much smaller than that of the offline
experiments because new articles are being created very fast,
and the size of test set for each model is less than 5% of total
active users during 2 days.

5 Conclusion
We propose a sequential and diverse recommendation model
that predicts a ranked list containing general items and also
tail items as learning temporal preference on them. To mit-
igate the cold-start problem of long tails, we cluster the
tail items and incorporate content-based vector. To increase
diversity while preserving accuracy, we make the pseudo
ground truth to contain both an accurate general item and rel-
evant tail items at the same time. We use RNN to directly
learn a ranking function with this ground truth, and optimize
the network using listwise learning-to-rank loss to preserve
the relative order among the general item and tail items. Ex-
tensive online and offline experiments on a commercial blog
platform demonstrate that our models significantly increase
diversity while preserving accuracy compared to the state-of-
the-art sequential recommendation model.
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