
Learning Network Embedding with Community Structural Information
Yu Li1,5 , Ying Wang1,5∗ , Tingting Zhang2 , Jiawei Zhang3 and Yi Chang4

1College of Computer Science and Technology, Jilin University, Changchun, China
2School of Statistics, Jilin University of Finance and Economics, Changchun, China

3IFM Lab, Department of Computer Science, Florida State University, Tallahassee FL, USA
4School of Artificial Intelligence, Jilin University, Changchun, China

5Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
Jilin University, Changchun, China

liyu18@mails.jlu.edu.cn, wangying2010@jlu.edu.cn, 103069@jlufe.edu.cn,
jiawei@ifmlab.org, yichang@acm.org

Abstract
Network embedding is an effective approach to
learn the low-dimensional representations of ver-
tices in networks, aiming to capture and preserve
the structure and inherent properties of networks.
The vast majority of existing network embedding
methods exclusively focus on vertex proximity of
networks, while ignoring the network internal com-
munity structure. However, the homophily prin-
ciple indicates that vertices within the same com-
munity are more similar to each other than those
from different communities, thus vertices within
the same community should have similar vertex
representations. Motivated by this, we propose
a novel network embedding framework NECS to
learn the Network Embedding with Community
Structural information, which preserves the high-
order proximity and incorporates the community
structure in vertex representation learning. We for-
mulate the problem into a principled optimization
framework and provide an effective alternating al-
gorithm to solve it. Extensive experimental results
on several benchmark network datasets demon-
strate the effectiveness of the proposed framework
in various network analysis tasks including network
reconstruction, link prediction and vertex classifi-
cation.

1 Introduction
Networks are ubiquitous in the real world, such as social net-
works, bibliographic networks and communication networks.
Networks often involve extensively interconnected structures,
which make it difficult to directly apply machine learning al-
gorithms on them for various network analysis tasks, such as
network reconstruction, link prediction and vertex classifica-
tion. Therefore, how to represent network data is a crucial
problem for network analysis tasks. In recent years, network
embedding has been widely recognized as an effective ap-
proach to learn the low-dimensional vector representations
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of vertices in networks. With proper network embedding,
vector-based machine learning algorithms can be easily ap-
plied to those aforementioned network analysis tasks.

One effective strategy to obtain the low-dimensional vector
representations is to preserve the proximity between vertices
in networks. The adjacency matrix (i.e., first-order proxim-
ity) is the most intuitive way to reveal the network struc-
ture. However, the adjacency matrix is also very sparse
and insufficient to fully characterize the relationships be-
tween vertices. In order to capture the network structure
and characterize the relationships better, researchers turn
their attentions to high-order proximity [Cao et al., 2015;
Yang et al., 2017; Gao and Huang, 2018; Lian et al., 2018;
Zhang et al., 2018]. Particularly, NEU [Yang et al., 2017]
improves the performance of some network embedding meth-
ods [Perozzi et al., 2014; Tang et al., 2015; Cao et al., 2015;
Grover and Leskovec, 2016] in some ways by approximating
high-order proximity matrix.

However, the aforementioned methods predominantly fo-
cus on the vertex proximity of networks, while ignoring the
community structure which is ubiquitous in networks. A
community is intuitively identified as a group of vertices
with more connections between its internal vertices compared
with the external ones [Girvan and Newman, 2002]. The
homophily principle indicates that vertices within the same
community are more similar to each other than those from
different communities. Network embedding aims to learn
the low-dimensional vector representations of vertices while
preserving both the structure and inherent properties of net-
works. Therefore, It is nontrivial to integrate the commu-
nity structure into network embedding as community struc-
ture is an important property of network [Wang et al., 2017;
Cavallari et al., 2017].

Inspired by the effectiveness of high-order proximity and
the homophily principle, we propose a novel network em-
bedding framework NECS to learn the Network Embedding
with Community Structural information, which utilizes the
high-order proximity to learn the vertex representations while
incorporating the network community structure. NECS first
learns the vertex representations using nonnegative matrix
factorization that approximates the high-order proximity. Af-
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terwards, NECS models the community structure according
to the homophily principle, and incorporates the community
structure to guide the vertex representation learning. NECS
optimizes the vertex representations based on both the ver-
tex proximity together with the community structure. Thus,
the vertex representations learned by NECS can preserve both
the vertex proximity and the community structure of the net-
works, and whose effectiveness will be tested with extensive
experiments on real-world benchmark network datasets. The
main contributions of our paper are as follows:
• we propose a novel network embedding framework

NECS, which effectively preserves the high-order ver-
tex proximity and incorporates the community structure
of networks in vertex representation learning;
• we provide an effective alternating optimization algo-

rithm for the proposed NECS framework; and
• we evaluate the effectiveness of the proposed NECS

framework on several real-world benchmark network
datasets with various concrete network analysis tasks.

2 Related Work
2.1 Network Embedding
Here we give a brief introduction to existing network em-
bedding methods. DeepWalk [Perozzi et al., 2014] intro-
duces truncated random walks to obtain the vertex sequences
and adopts Skip-gram [Mikolov et al., 2013] model to learn
the vertex representations. LINE [Tang et al., 2015] opti-
mizes an objective function that preserves the first-order and
second-order proximities during vertex representation learn-
ing. Not only the first-order and second-order proximities,
but the high-order proximities are also adopted to preserve
the proximity between vertices. NEU [Yang et al., 2017] en-
hances the performance of the network embedding methods
by approximating high-order proximity. INH-MF [Lian et al.,
2018] obtains binary code representations of information net-
works by preserving high-order proximity. AROPE [Zhang et
al., 2018] derives the vertex representations based on singular
value decomposition framework while preserving arbitrary-
order proximity. In addition, many other works [Cao et
al., 2015; Grover and Leskovec, 2016; Wang et al., 2016;
Gao and Huang, 2018] preserve the vertex proximity explic-
itly or implicitly.

2.2 Community Structure
Effectively identifying communities in a network can help us
to know the network structure better and facilitate the network
analysis tasks. Many types of community detection methods
have been proposed to identify the communities contained
in a network, such as clustering-based methods [Newman,
2004], modularity-based methods [Newman, 2006], spec-
tral algorithms [Tang and Liu, 2011; Li et al., 2018] and
so on. However, most of these methods assign a vertex to
only one community and lack the interpretability. In recent
years, community affiliation based algorithms have attracted
considerable attention [Yang and Leskovec, 2012; Yang and
Leskovec, 2013; Gligorijevic et al., 2016]. Community affil-
iation based algorithms learn the vertex-community member-
ship low-dimensional representations of vertices and assign

vertices to the corresponding communities according to these
representations. For example, NF-CCE [Gligorijevic et al.,
2016] decomposes adjacency matrix into a low-dimensional,
nonnegative community affiliation representation matrix, and
extracts communities from the matrix. By incorporating ver-
tex representation learning with community affiliation repre-
sentation learning and jointly optimizing them, we can utilize
community structural information to learn more discrimina-
tive representations of vertices.

3 The Proposed Framework
In this section, we present the proposed network embedding
framework - NECS in detail. We first summarize the nota-
tions used in this paper. We use bold uppercase characters
for matrices(e.g., A), and represent the (i, j)-th entry of ma-
trix A as Aij , the i-th row of matrix A as Ai∗, the j-th col-
umn of matrix A as A∗j , the transpose of A as AT , the
trace of A as tr(A) if A is a square matrix. For an arbi-
trary matrix A ∈ Rn×d, its Frobenius norm is defined as

‖A‖F =
√∑n

i=1

∑d
j=1 A2

ij . In addition, �, I, ‖ · ‖ and
1 denote the hadamard product, identify matrix, L2-norm of
a vector and a vector with each element equals to 1, respec-
tively.

Let G = (V, E) be an undirected and unweighted graph,
where V = {v1, v2, ..., vn} is the set of vertices and E is the
set of edges connecting vertices in V . Nonnegative symmetric
matrix A ∈ Rn×n denotes the adjacency matrix of G, where
Aij = 1 if there is an edge between vi and vj , or Aij = 0
otherwise.

With these notations, we will discuss how to incorpo-
rate the high-order proximity and the community structure to
learn the low-dimensional representations of vertices in G in
the following subsections.

3.1 High-Order Vertex Proximity
The homophily principle indicates the correlations between
vertices, which imply that the connected vertices are more
likely to be similar to each other than the unconnected ones.
Thus, the adjacency matrix A can be treated as the first-
order proximity, which captures the pairwise proximity be-
tween vertices. However, the first-order proximity is also
very sparse and insufficient to fully model the relationships
between vertices in most cases. In order to characterize the
connections between vertices better, high-order proximity is
widely studied, and the order of the proximity varies consid-
erably on different networks and target applications [Yang et
al., 2017; Zhang et al., 2018].
Definition 1 (High-order Proximity). Given the adjacency
matrix A, a high-order proximity can be defined as a polyno-
mial function of A :

P = w1A + w2A
2 + ...+ wlA

l, (1)

where l is the order, and w1, ..., wl are the weights for each
term. Matrix Al denotes the l-order proximity matrix, which
is defined as follows:

Al = A...A︸ ︷︷ ︸
l

.
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To integrate the high-order proximity in network embed-
ding, the widely adopted method is nonnegative matrix fac-
torization, which can be formulated as follows:

min ‖P−VUT ‖2F s.t. U ≥ 0, V ≥ 0, (2)

where the positive semi-definite matrix U,V ∈ Rn×d are the
low-dimensional representations of vertices.

3.2 Community Structure
In the stochastic block model [Karrer and Newman, 2011],
the value of Aij can be viewed as the probability that there
is an edge between vi and vj , and also determined by the
probability that vi and vj generate edges belonging to the
same community. Denote C = {c1, c2, ..., ck} as the set of
community labels, and H = [Hir] ∈ Rn×k, where Hir

represents the probability that vi generates an edge belong-
ing to community cr. Hir is also viewed as the probability
of vi belonging to community cr, thus the probability of vi
and vj belonging to the same community can be represented
as: S̃ij =

∑k
r=1 HirHjr. In real-world networks, the ho-

mophily principle indicates that if vertices are more similar
to each other, they are more likely to belong to the same com-
munity. Thus, we can measure the similarity between two
arbitrary vertices vi and vj as Sij = Ai∗A∗j/‖Ai∗‖‖A∗j‖.
By minimizing the difference between S̃ij and Sij , we can
learn the community structure with the following nonnega-
tive matrix factorization problem:

min ‖S−HHT ‖2F s.t. H ≥ 0, H1 = 1. (3)

In order to utilize the community structure to learn the low-
dimensional vertex representation matrix U, we introduce a
nonnegative community representation matrix W ∈ Rk×d,
where r-th row of W (e.g., Wr∗) is the representation of
community cr [Wang et al., 2017]. Thus, with the representa-
tion Ui∗ of vi, we can mathematically model the probability
of vi belonging to community cr as Ui∗W

T
r∗. Without loss

of generality, for all the vertices, the problem is formulated as
follows:

min ‖H−UWT ‖2F s.t. W ≥ 0, (4)

where we learn the low-dimensional representations of ver-
tices by minimizing the difference between H and UWT . In
other words, we expect to jointly optimize U and H to boost
each other to obtain more discriminative representations.

With modeling the relationship between U and H, the fi-
nal objective function of the proposed NECS framework is
formulated as follows:

min
V,U,W,H

‖P−VUT ‖2F + α‖S−HHT ‖2F

+ β‖H−UWT ‖2F
s.t. V ≥ 0, U ≥ 0, W ≥ 0, H ≥ 0, H1 = 1.

(5)

The problem in Eq.(5) is difficult to solve due to the con-
straint on H. To tackle the issue, we relax the constraint
on H to an orthogonal constraint instead, i.e., HTH = I
[Von Luxburg, 2007]. After the relaxation, we can further

rewrite the above objective function as:

min
V,U,W,H

‖P−VUT ‖2F + α‖S−HHT ‖2F

+ β‖H−UWT ‖2F + λ‖HTH− I‖2F
s.t. V ≥ 0, U ≥ 0, W ≥ 0, H ≥ 0,

(6)

where we introduce a parameter λ to ensure that the orthog-
onal condition is satisfied. Normally, we set it as a enough
large number (e.g., 108) to make the orthogonal condition sat-
isfied.

4 Alternating Optimization Algorithm
The objective function of the proposed NECS framework is
not jointly convex, so we cannot optimize all the variables
U, V, W and H simultaneously. To optimize the objective
function, we provide an alternating optimization algorithm to
learn one variable while fixing others.

4.1 Update Rule for U
First, we fix V, W and H to update U. Specifically, when
V, W and H are fixed, the objective function is convex w.r.t
the low-dimensional vertex representation matrix U. Then
by removing the terms that are irrelevant to U, the objective
function can be rewritten as follows:

min
U≥0
‖P−VUT ‖2F + β‖H−UWT ‖2F . (7)

The Lagrangian function of Eq.(7) is:

L(U) = ‖P−VUT ‖2F + β‖H−UWT ‖2F − tr(ΛUUT ),
(8)

where ΛU is the Lagrange multiplier for the constraint U ≥
0. By taking the derivative of L(U) w.r.t. U and setting it to
zero, we can get:

ΛU = −2PTV + 2UVTV− 2βHW + 2βUWTW. (9)
With the KKT complementary condition for the nonnegativ-
ity of U, i.e., [ΛU]ijUij = 0, we have:

[−PTV+UVTV−βHW+βUWTW]ijUij = 0, (10)
which leads to the following update rule for U:

Uij ← Uij

√
[PTV + βHW]ij

[UVTV + βUWTW]ij
. (11)

4.2 Update Rules for V, W and H
Similar to the process of getting the update rule for U, we can
update V, W and H by the following update rules:

Vij ← Vij

√
[PU]ij

[VUTU]ij
, (12)

Wij ←Wij

√
[HTU]ij

[WUTU]ij
, (13)

Hij ← Hij

√ √
Φij

2(α+ λ)[HHTH]ij
, (14)

where Φ = (α+ λ)HHTH� (4αSH + 2βUWT + (4λ−
2β)H). Such an updating procedure will continue until con-
vergence.
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4.3 Framework Learning Analysis
We use J (U,V,W,H) to denote the objective function in
Eq.(6). In each iteration, we update U, V, W and H itera-
tively. Following the definitions and lemmas in [Lee and Se-
ung, 2001; Wang et al., 2011], we can define auxiliary func-
tions F(θ, θ̃) for θ, where θ ∈ {U,V,W,H}. By minimiz-
ing these auxiliary functions, we can get the corresponding
update rules, which hold the following inequality condition:

J ((U)t+1, (V)t+1, (W)t+1, (H)t+1)

≤J ((U)t+1, (V)t+1, (W)t+1, (H)t)

≤J ((U)t+1, (V)t+1, (W)t, (H)t)

≤J ((U)t+1, (V)t, (W)t, (H)t)

≤J ((U)t, (V)t, (W)t, (H)t),

(15)

which proves the convergence of the proposed framework.
Based on the descriptions aforementioned, the main com-

putation of NECS is in computing the update values for U,
V, W and H in each iteration. The computation cost of up-
dating U, V, W and H are O(nd2 + n2d + d2k), O(n2k),
O(ndk) and O(n2d + n2k), respectively. Thus, the overall
computation cost of NECS is O(n2d+ n2k), which is in the
same order of magnitude as nonnegative matrix factorization.

5 Experiments
5.1 Datasets and Baseline Methods
To verify the effectiveness of the proposed framework,
we conduct experiments on the following eleven network
datasets, including WebKB(Cornell, Texas, Washington,
Wisconsin)1 [Wang et al., 2017], Citeseer1 [McCallum et al.,
2000], Cora1 [McCallum et al., 2000], Polbooks2, Football2,
Polblogs2 [Adamic and Glance, 2005], Wiki3 and Email4. All
statistics of the datasets are summarized in Table 1.

We compare the proposed framework with the following
state-of-the-art methods:
• Deepwalk [Perozzi et al., 2014]: It adopts random walk

and skip-gram model to learn the vertex representations.
• LINE [Tang et al., 2015]: It optimizes an objective func-

tion that preserves the first-order and second-order prox-
imities to learn the vertex representations. LINE also
achieves a better performance when preserving both the
first-order and second-order proximities by concatenat-
ing the corresponding vertex representations.
• Node2Vec [Grover and Leskovec, 2016]: It obtains the

vertex representations by maximizing the likelihood of
preserving network neighborhoods of vertices.
• GraRep [Cao et al., 2015]: It integrates global structural

information to generate the vertex representations.
• SDNE [Wang et al., 2016]: It exploits both the first-

order and second-order proximities jointly in a semi-
supervised deep model to generate the vertex represen-
tations.

1http://www.cs.umd.edu/%7Esen/lbc-proj/LBC.html
2http://www-personal.umich.edu/%7Emejn/netdata/
3https://github.com/thunlp/MMDW/tree/master/data
4http://snap.stanford.edu/data/email-Eu-core.html

• M-NMF [Wang et al., 2017]: It incorporates vertex
proximity and modularity-based community detection
problem to learn the vertex representations.

For a fair comparison, we set the representation dimension
d as 128 for all methods. For DeepWalk, we set the window-
size as 5, the number of walks as 10 and the walk-length as
40. For LINE, we set the number of negative samples as 5, the
total number of training samples as 10 million and the starting
learning rate as 0.025. For Node2Vec, we set the number of
walks as 10, the walk-length as 80, p as 1, q as 1 and the
window size as 5. For GraRep, we set the maximum matrix
transition as 4. For SDNE, we set α as 100, β as 10 and batch
size as 16. For M-NMF, we tune α and β from {0.1, 0.5, 1, 5,
10} to get the best performance. In NECS, we vary the order
l from {1, 2, 3} and α, β from {0.1, 0.2, 0.5, 1, 2, 5, 10}. To
shrink the searching space for hyper-parameters of high-order
proximity, we simply fix the weights as wi = µi−1 and vary
µ from {0.1, 0.2, 0.3}.

5.2 Network Reconstruction
The capability of reconstructing the original network is a ba-
sic evaluation metric for network embedding, and the ver-
tex representations learned by a good network embedding
method should preserve the original network structure. Gen-
erally, a larger similarity between two vertices implies that
they are more likely to be linked. Thus, we rank pairs of
vertices according to their similarities, i.e. the inner product
of vertex representations. In this section, we use Citeseer,
Cora, Wiki and Polblogs as representatives to assess the per-
formance of network reconstruction in term of precision@K,
which is defined as follows:

Vi = {j|vi, vj ∈ V , index(j) ≤ K,4i(j) = 1}

precision@K(i) =
|Vi|
K

where index(j) is the rank index of j-th vertex, and4i(j) =
1 indicates vi and vj have an edge.

The precision@K results are shown in Figure 1, and the
maximum K equals to the number of the edges |E|. On Wiki,
NECS outperforms all the baselines significantly. On the re-
maining datasets, LINE performs better than NECS when K
is relatively small, and NECS begins to generally outperform
the baselines when K becomes relatively large. A point to
note is that when K varies in the range of 2500 to 3000 on
Cora, the precision scores of GraRep are higher than NECS.
A possible reason is that GraRep integrates the network struc-
tural information to learn the vertex representations, which
demonstrates the necessity of the integrating network struc-
tural information into network embedding. And the same
goes for the network community structural information.

5.3 Link Prediction
For link prediction task, we randomly remove 10% edges as
test set for evaluation and utilize the remaining edges to learn
the vertex representations. Similar to the network reconstruc-
tion task, we rank pairs of vertices in a similar way as network
reconstruction and conduct experiments on Citeseer, Cora,
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Datasets Cornell Texas Washington Wisconsin Polbooks Football Citeseer Cora Wiki Email Polblogs

|V| 183 183 215 251 105 115 2110 2485 2357 986 1222
|E| 277 279 365 450 441 613 3668 5069 11592 16064 16714

Avg. degree 1.51 1.52 1.70 1.79 4.20 5.33 1.74 2.04 4.92 16.29 13.68
No. of labels 5 5 5 5 3 12 6 7 17 42 2

Table 1: The statistics of datasets.

Figure 1: Network reconstruction results in terms of precision@K.

Wiki and Polblogs to assess the performance of link predic-
tion in terms of precision@K and map@K. The formula of
map@K is:

AP@K(i) =

∑K
j=1 precision@j(i) · 4i(j)

|{4i(j) = 1}|

map@K =

∑
vi∈Vt AP@K(i)

|Vt|
where Vt is the set of vertices whose edges are removed.

The precision@K results are shown in Figure 2, and the
maximum K equals to the number of the removed edges. The
results show that NECS outperforms all the baselines signif-
icantly, especially when K equals to the number of the re-
moved edges, NECS achieves at least 40% improvement over
all the baselines. The precision scores for all the methods
are lower on Citeseer than other datasets, this is mainly be-
cause Citeseer is relatively sparser, which makes it difficult
to predict links. But NECS still achieves significantly bet-
ter results in that case. Furthermore, the map@K results are
listed in Table 2. The results show that NECS outperforms
the baselines on all the datasets except Cora. NECS achieves
the second best results on map@20, map@50 and map@100
on Cora. The performance of NECS in link prediction task
demonstrates its ability to capture the network structure.

5.4 Vertex Classification
For vertex classification task, we randomly sample 80% ver-
tices as training set and the remaining vertices as test set,

Figure 2: Link prediction results in terms of precision@K.

and then adopt the L2-regularized logistic regression imple-
mented by LIBLINEAR[Fan et al., 2008] to build the classi-
fiers. We conduct experiments on all the eleven datasets de-
scribed in Table 1 and repeat the process 5 times. The average
accuracies are reported in Table 3.

We use NECS0 to denote the formulation defined in Eq.(2),
and note that NECS0 achieves a comparable performance,
which verifies the effectiveness of the vertex proximity P.
The results show that NECS outperforms the baselines on
the majority of datasets. Especially on WebKB, Polbooks
and Football, NECS achieves a significant improvement. Al-
though NECS achieves the second and third best results on
Wiki and Cora respectively, the results are evidently bet-
ter than the remaining baselines. Comparing NECS with
NECS0, NECS achieves a significant improvement over
NECS0 on all the datasets, which demonstrates the neces-
sity and effectiveness of incorporating network embedding
and the community structure.

5.5 Parameter Study
NECS has five parameters α, β, µ, l and k. Among them, α
and β control how well the network embedding preserves the
community structure, µ and l control to what extent the high-
order proximity contributes to vertex proximity, and k con-
trols the number of communities we desire to extract. For the
number of communities k, we just simply set k as the known
number of communities. Generally speaking, we can use the
method in [Riolo et al., 2017] to estimate k. We further in-
vestigate the impacts of parameters of α, β, µ and l on the
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Methods Citeseer Cora Wiki Polblogs

map@K 20 50 100 20 50 100 20 50 100 20 50 100

DeepWalk 0.036 0.030 0.022 0.036 0.028 0.020 0.048 0.037 0.027 0.004 0.006 0.008
LINE 0.056 0.041 0.028 0.046 0.032 0.022 0.056 0.042 0.030 0.009 0.010 0.010

Node2Vec 0.060 0.043 0.030 0.051 0.035 0.024 0.050 0.038 0.027 0.024 0.023 0.020
GraRep 0.037 0.033 0.024 0.033 0.026 0.019 0.050 0.040 0.029 0.027 0.026 0.024
SDNE 0.013 0.009 0.007 0.011 0.008 0.006 0.012 0.010 0.008 0.043 0.033 0.026

M-NMF 0.042 0.037 0.027 0.027 0.023 0.018 0.050 0.038 0.028 0.027 0.027 0.026
NECS 0.061 0.044 0.031 0.046 0.032 0.023 0.059 0.044 0.032 0.048 0.041 0.035

Table 2: Link prediction results in terms of map@K.

Methods Cornell Texas Washington Wisconsin Polbooks Football Citeseer Cora Wiki Email Polblogs

DeepWalk 37.19 49.84 49.21 46.98 84.95 87.83 73.57 84.68 68.74 76.34 95.15
LINE 27.03 43.24 35.81 38.43 72.00 90.78 62.05 77.28 60.66 71.78 94.92

Node2Vec 37.51 55.16 54.80 48.31 87.81 41.57 74.74 85.03 65.04 63.72 95.84
GraRep 54.59 69.30 58.70 58.43 81.33 90.43 71.27 81.19 65.29 73.66 95.05
SDNE 45.08 61.95 54.79 50.59 83.24 74.43 41.61 49.58 47.19 56.10 91.80

M-NMF 46.27 66.92 64.47 58.35 88.86 89.91 73.06 81.15 65.08 74.59 95.90
NECS0 51.78 69.19 63.35 58.20 85.71 85.57 74.14 82.22 61.87 72.57 95.71
NECS 60.54 73.51 70.69 66.27 91.43 96.52 76.16 84.59 68.18 79.90 96.49

Table 3: Vertex classification accuracies(%).

performance of NECS using vertex classification task as an
example. Due to the space limit, we only show the parameter
study results on the Email dataset as we have similar obser-
vations on other datasets. To study how its variation affects
the performance, we fix one parameter each time and vary
the others. The performance variation of these parameters are
shown in Figure 3(a)-(c). Particularly, we set l = 2 so as to
plot in a 3-D figure. We can see that the performance is rel-
atively stable, however, without clear trends. This is mainly
because α and β collectively control the degree of network
embedding preserving the community structure.

To show the convergence of NECS intuitively, the value
of the loss function in Eq.(6) at the end of each iteration is
recorded and normalized by |V| for different datasets so as to
illustrate them in one figure. For simplicity, we set α, β, µ
and l as 1, 1, 0.1 and 2 for all the datasets, respectively. As
illustrated in Figure 3(d), NECS converges very quickly.

6 Conclusion
In this paper, we propose a novel network embedding frame-
work NECS, which preserves the high-order proximity and
incorporates the community structure. First, we use nonneg-
ative matrix factorization to learn the vertex representations
by preserving the high-order proximity. Then, we obtain
the community structure by approximating the similarity be-
tween vertices according to the homophily principle. Finally,
we establish the consensus relationship between the vertex
representations and the community structure, and jointly op-
timize them to boost each other to obtain more discriminative
representations. Methodologically, we provide an alternat-
ing optimizing algorithm for the proposed framework. Exten-
sive experimental results demonstrate the effectiveness of the
framework in several network analysis tasks. In the future,

(a) Effect of α and β(µ=0.2) (b) Effect of α and µ(β=10)

(c) Effect of β and µ(α=5.0) (d) Convergence of NECS

Figure 3: Parameter sensitivity and convergence.

we strive to generalize this framework to signed networks.
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