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Abstract
Recently, research on variance reduced incremen-
tal gradient descent methods (e.g., SAGA) has
made exciting progress (e.g., linear convergence for
strongly convex (SC) problems). However, exist-
ing accelerated methods (e.g., point-SAGA) suffer
from drawbacks such as inflexibility. In this pa-
per, we design a novel and simple momentum to
accelerate the classical SAGA algorithm, and pro-
pose a direct accelerated incremental gradient de-
scent algorithm. In particular, our theoretical re-
sult shows that our algorithm attains a best-known
oracle complexity for SC minimization problems
and an improved convergence rate for the case of
n≥ L/µ. We also give experimental results justi-
fying our theoretical results and showing the effec-
tiveness of our algorithm.

1 Introduction
Recently, stochastic/incremental first-order methods have re-
ceived extensive attention due to their low per-iteration cost
and the ability to handle large-scale problems including
unconstrained/constrained composite convex minimization
[Allen-Zhu, 2018; Liu et al., 2017; Shang et al., 2018a]. In
particular, the research on stochastic variance reduced gradi-
ent descent methods (e.g., SAG [Roux et al., 2012], SVRG
[Johnson and Zhang, 2013], SDCA [Shalev-Shwartz and
Zhang, 2013], SAGA [Defazio et al., 2014a]) and their prox-
imal variants (e.g., Prox-SVRG [Xiao and Zhang, 2014] and
VR-SGD [Shang et al., 2018a]) has made exciting progress,
e.g., linear convergence for strongly convex (SC) problem-
s. These methods use past gradients to progressively reduce
the variance of stochastic gradient estimators, which leads to
a revolution in the area of first-order optimization [Shang et
al., 2019]. In this paper, we consider the following composite
convex minimization problem in many problems of machine
learning, statistics, and operations research, such as regular-
ized empirical risk minimization (ERM).

min
x∈Rd

F (x)
def
=

1

n

∑n

i=1
fi(x) + h(x), (1)

∗Corresponding author

where f(x) = 1
n

∑n
i=1 fi(x) is the finite average of n convex

component functions fi(x) :Rd→R, and h(x) is a simple but
possibly non-smooth convex function.

For solving SC problems of the formulation (1), the ora-
cle complexity (total number of gradient evaluations to find
an ε-suboptimal solution) of the stochastic variance reduc-
tion methods mentioned above (including SVRG and SAGA)
is O((n+κ) log(1/ε)), where κ is the condition number of
Problem (1), and n is the number of samples, while the oracle
complexity of accelerated deterministic methods, e.g., FISTA
[Beck and Teboulle, 2009], is O(n

√
κ log(1/ε)). Obviously,

the oracle complexities show that those stochastic variance
reduction methods always converge faster than determinis-
tic methods (including their accelerated variants) as long as
κ ≤ O(n2). However, there is still a gap between the com-
plexity of those stochastic variance reduction methods and
the upper bound provided in [Woodworth and Srebro, 2016].

More recently, there is a surge of interests in accelerating
stochastic variance reduction gradient optimization. The ac-
celeration techniques in accelerated methods mainly include
the Nesterov’s acceleration technique [Nitanda, 2014; Frostig
et al., 2015; Lin et al., 2015; Murata and Suzuki, 2017],
the choice of growing epoch length [Mahdavi et al., 2013;
Allen-Zhu and Yuan, 2016; Shang et al., 2017], and the mo-
mentum acceleration tricks [Shang et al., 2018b; Allen-Zhu,
2018; Zhou et al., 2018; Hien et al., 2019]. [Lin et al.,
2015] proposed a Catalyst framework for accelerating some
stochastic variance reduction algorithms (including SVRG
and SAGA) and proved that their accelerated variants achieve
an oracle complexity of O((n+

√
nκ) log(κ) log(1/ε)) for

SC problems. In particular, as the accelerated variants of
SVRG, Katyusha [Allen-Zhu, 2018] and MiG [Zhou et al.,
2018] achieve the best-known oracle complexity of O((n+√
nκ) log(1/ε)) for SC problems, which is identical to the

upper bound in [Woodworth and Srebro, 2016].
As an accelerated variant of SAGA, point-SAGA [Defazio,

2016] requires a proximal operator oracle of each fi and can
attain the same oracle complexity as Katyusha. However, the
proximal operator oracle for point-SAGA may not be effi-
ciently calculated in practice. As we all know that a large
amount of work has been done for accelerating SVRG, while
the notable incremental gradient method, SAGA, does not
have a direct accelerated variant until recently, except for SS-
NM [Zhou et al., 2019], which can also obtain the best-known
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oracle complexity. However, the memory complexity of SS-
NM is always O(nd). Therefore, we will propose a simple
and direct accelerated variant for SAGA.

Contributions: Existing accelerated methods mentioned
above can attain the theoretical upper complexity bounds pro-
vided in [Woodworth and Srebro, 2016]. We ask the follow-
ing question in this paper: Using only gradient information,
can we further improve the convergence rates of those meth-
ods such as Katyusha [Allen-Zhu, 2018], point-SAGA [De-
fazio, 2016] and SSNM [Zhou et al., 2019]? In this paper,
we propose a novel accelerated incremental gradient descent
(AIGD) algorithm to push towards the convergence rates.

• We design a general momentum acceleration scheme for
the direct acceleration of SAGA, in which we introduce
a novel momentum to replace the Nesterov’s momentum
and Katyusha momentum used in [Allen-Zhu, 2018].

• We prove that AIGD achieves a linear convergence rate
and the oracle complexity ofO((n+

√
nκ) log(1/ε)) for

strongly convex problems, which is identical to the con-
vergence results of existing accelerated algorithms such
as Katyusha [Allen-Zhu, 2018], point-SAGA [Defazio,
2016], and SSNM [Zhou et al., 2019].

• In particular, our convergence results also show that
AIGD can slightly improve the convergence rates of
Katyusha, point-SAGA and SSNM for the case of n ≥
L/µ, as shown in Table 1. It means that this study can
partly answer the above-mentioned question.

• We also discuss some subtle differences between AIGD
and existing accelerated incremental algorithms such
as point-SAGA and SSNM, which imply that AIGD is
more suitable for solving various large-scale machine
learning problems.

• AIGD can also be extended to the non-convex setting.
Our experimental results further verify that AIGD is usu-
ally faster than the state-of-the-art accelerated stochas-
tic/incremental methods.

2 Preliminaries and Notations
Throughout this paper, the norm ‖·‖ is the standard Euclidean
norm. We denote by ∇f(x) the full gradient of f(x) if it
is differentiable, or ∂f(x) a sub-gradient of f(x) if f(x) is
only Lipschitz continuous. We mostly focus on the case of
Problem (1) when each fi(x) is L-smooth.

Assumption 1. Each fi(·) is L-smooth, i.e., there exists a
constant L>0 such that for all x, y∈Rd,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

Assumption 2. The function h(·) is µ-strongly convex, i.e.,
there exists µ>0 such that for all x, y∈Rd,

h(y) ≥ h(x) + ξT (y − x) +
µ

2
‖y − x‖2, ∀ξ ∈ ∂h(x),

where ∂h(x) is the subdifferential of h(·) at x.

Recently, there emerges a stream of studies on stochas-
tic variance reduced methods, such as [Zhang et al., 2013;
Johnson and Zhang, 2013; Xiao and Zhang, 2014; Defazio et

Algorithms Convergence rates Memory Direct

Katyusha O(ρK1 )/O(ρK2 ) O(n) Yes
point-SAGA O(ρK1 )/O(ρK2 ) O(nd) or O(n) No
SSNM O(ρK1 )/O(ρK2 ) Always O(nd) Yes
AIGD O(ρK3 )/O(ρK2 ) O(nd) or O(n) Yes

Table 1: Comparison of some accelerated stochastic methods. Note
that ρ1 =1−1/(2n) with κ := L/µ≤ 4n/3, ρ2 =1−

√
1/(3κn)

with κ>4n/3, and ρ3=1−3/4n with κ≤4n/3.

Algorithm 1 AIGD for Strongly Convex Objectives

Input: The number of iterations K.
Initialize: φ01 = φ02 = . . . = φ0n = x0, z0 = x0, θ = 1

Lαη .
α = 8n/β if k <= K− 1; otherwise, α = 5. We set
η=

√
3√

Lµn
if n< 3L

4µ ; otherwise, η= 3
4nµ .

1: for k = 1, 2, . . . ,K do
2: Pick ik uniformly at random from {1, 2, . . . , n}, and

update yk by (2);
3: ∇̃fik(yk)=∇fik(yk)−∇fik(φ

k−1
ik

)+1
n

∑n
j=1∇fj(φ

k−1
j );

4: Update zk by solving (4);
5: Update xk by (3);
6: Take φkik = xk, calculate and store ∇fik(φkik) in the

table;
7: end for

Output: x = xK .

al., 2014a; Shang et al., 2019]. The two most popular choic-
es for stochastic gradient estimators are the SVRG estimator
in [Zhang et al., 2013; Johnson and Zhang, 2013] and the
SAGA estimator in [Defazio et al., 2014a]. The main update
steps of SAGA [Defazio et al., 2014a] are

wk=xk−1−η

∇fi(xk−1)−∇fi(φk−1i )+
1

n

n∑
j=1

∇fj(φk−1j )

,
xk = proxhγ(wk),

where η>0 is a learning rate, and proxhγ(·) is a proximal op-
erator. More details can be found in [Defazio et al., 2014a].
We start with an initial vector x0∈Rd and the known deriva-
tives ∇fj(φ0j ) with φ0j =x0 for each j∈{1, 2, . . . , n}. These
derivatives are stored in a table data structure of length n.
At the k-th iteration, we choose randomly sample i, and take
φki = xk and store the gradient ∇fi(φki ) in the table, and all
other entries in the table remain unchanged.

3 Accelerated Incremental Gradient Descent
In section, we propose a simple and direct accelerated incre-
mental gradient descent (AIGD) algorithm.

3.1 A Novel Momentum with Scaling Factor
In this subsection, we design a novel momentum accelera-
tion scheme for incremental gradient descent optimization,
as shown in Algorithm 1. In particular, a scaling factor is in-
troduced into our momentum acceleration scheme to improve

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3046



the convergence rate. For solving Problem (1), our main up-
date rules with momentum acceleration are

yk = θzk−1 + (1−βθ)xk−1, (2)
xk = yk + θ(zk − zk−1), (3)

where θ is the momentum parameter, β is a scaling factor
using which we can improve the convergence rate, and zk is
the solution to the following problem:

zk = arg min
z
{βθh(z/β) + θ〈∇̃fik(yk), z−zk−1〉

+
θ2

2η
‖z−zk−1‖2},

(4)

where ∇̃fi(yk) :=∇fi(yk)−∇fi(φk−1i )+ 1
n

∑n
j=1∇fj(φ

k−1
j ).

Note that in our algorithm, we also use h(z/β) instead of
h(z) used in SNNM. The parameters θ, η and β are set in
Algorithm 1.
Remark 1. There is an important difference between our
method and SSNM. That is, we use yk=θzk−1+(1−βθ)xk−1
instead of yk=θzk−1+(1−θ)φk−1i used in SSNM. Our setting
has the following two advantages: We only need to store the
gradient table, while SSNM requires to store both the “point”
and gradient tables. The second advantage is that our method
removes the independent sample assumption used in SSNM.
This means that our algorithm has a much weaker conver-
gence condition than SSNM.

3.2 Comparison with SAGA, Point-SAGA and
SSNM

• This paper uses F (x)−F (x?) as a convergence critical
rule instead of the Lyapunov function used in SAGA,
point-SAGA and SSNM, making our algorithm easier
to extend for solving structure optimization problems,
such as graph-guided fuzed Lasso [Kim et al., 2009] and
generalized Lasso [Tibshirani and Taylor, 2011].
• In particular, we design a novel momentum scheme for

accelerating SAGA instead of that in SSNM, such that
our algorithm only needs to store the gradient table,
while SSNM requires to store both the “point” and gradi-
ent tables. Therefore, the memory complexity of SSNM
is alwaysO(nd), as analyzed in [Zhou et al., 2019]. This
is a disadvantage of SSNM when the objective is a linear
model, e.g., linear logistic regression and ridge regres-
sion. In contrast, our algorithm only requires an O(d)
memory complexity to simply store a scalar to represent
the gradient of each component function.
• Our AIGD method is a direct accelerated incremental

gradient method, while point-SAGA [Defazio, 2016] re-
quires the proximal operator oracle of each componen-
t function. However, the proximal operator may not
be efficiently computed in practice, which makes point-
SAGA not suitable for many real-world problems.
• Moreover, the update rules of our algorithm are more

elegant than Katyusha and MiG, both of which require a
tricky weighted averaged scheme at the end of each inner
loop. In particular, our algorithm can further improve the
convergence rate of Katyusha, MiG, point-SAGA and
SSNM for the case of n≥3κ/4, where κ=L/µ.

3.3 Extensions and Complexity Analysis
AIGD can be extended to non-smooth and Lipschitz contin-
uous settings. By using adaptive regularization and smooth-
ing techniques as in [Allen-Zhu and Hazan, 2016; Allen-Zhu,
2018], one can get a new and smooth function, which ap-
proximates the original function. That is, our AIGD method
can attain at least the same complexity bounds as Katyusha,
i.e.,O(n log(1/ε)+L

√
n/(µε)) for strongly convex and Lip-

schitz continuous problems and O(n log(1/ε)+
√
nL/ε) for

non-strongly convex and Lipstize continuous problems.
Each iteration of AIGD computes the stochastic gradi-

ents ∇fik(yk) and ∇fik(φ
k−1
ik

), which is the same as exist-
ing stochastic methods such as SVRG [Johnson and Zhang,
2013] and Katyusha [Allen-Zhu, 2018]. In ERM problem-
s, the loss function fi(·) takes the form fi(a

T
i x) for ai,

where ai is a constant vector. With such a structure, we
apply the widely used scheme as in [Roux et al., 2012;
Defazio et al., 2014b] and only need to store the scalar
aTikφ

k−1
ik

for ∇fik(φ
k−1
ik ) rather than the vector in each iter-

ation. Therefore, the storage cost of AIGD can be reduced
from O(nd) to O(n).

4 Convergence Analysis
In this section, we analyze the convergence property of our
AIGD algorithm. Before giving our main convergence result,
we first give and prove the following lemmas.
Lemma 1 (Variance Upper Bound). Let x? be the optimal
solution of Problem (1). Suppose each fi(·) is convex and
L-smooth, and let ∇̃k :=∇̃fik(yk), then we have

Eik [‖∇̃k−∇f(yk)‖2]

≤ 4L (f(x?)− f(yk) + 〈∇f(yk), yk − x?〉)

+
4L

n

n∑
j=1

[
fj(φ

k−1
j )−f(x?)− 〈∇fj(x?), φk−1j −x?〉

]
.

Proof. By the definition of ∇̃k and taking expectation over
the random choice of ik, we have

Eik
[∥∥∥∇̃k −∇f(yk)

∥∥∥2]

=Eik


∥∥∥∥∥∥∇f(yk)− 1

n

n∑
j=1

∇fj(φk−1j )−∇fik(yk)+∇fik(φ
k−1
ik

)

∥∥∥∥∥∥
2


≤Eik
[∥∥∇fik(yk)−∇fik(φ

k−1
ik

)
∥∥2]

≤2Eik
[
‖∇fik(yk)−∇fik(x?)‖

2
+
∥∥∇fik(x?)−∇fik(φk−1ik

)
∥∥2]

≤ 4L[f(x?)− f(yk) + 〈∇f(yk), yk − x?〉]

+
2

n

n∑
j=1

‖∇fj(φk−1j )−∇fj(x?)‖2

≤ 4L[f(x?)− f(yk) + 〈∇f(yk), yk − x?〉]

+
4L

n

n∑
j=1

[
fj(φ

k−1
j )−f(x?)−〈∇fj(x?), φk−1j −x?〉

]
,
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where the first inequality follows from the facts that
Eik[∇fik(φ

k−1
ik

)] = 1
n

∑n
j=1∇fj(φ

k−1
j ), Eik[∇fik(yk)] =

∇f(yk), E[fik(φ
k−1
ik

)] = 1
n

∑n
j=1fj(φ

k−1
j ) and Eik[‖Eik [x]−

x‖2] = Eik[‖x‖2] − ‖Eik [x]‖2 ≤ Eik[‖x‖2]; the
third inequality holds due to Eik[∇fik(yk)] = ∇f(yk),
Eik[∇fik(x?)] = ∇f(x?), and ‖∇fj(x) − ∇fj(y)‖2 ≤
2L[fj(y)−fj(x)+〈∇fj(x), x−y〉] for all x, y∈Rd.

Lemma 2. Suppose each fi(·) is convex and L-smooth, then
we have

E

 1

n

n∑
j=1

(
fj(φ

k−1
j )− f(x?)− 〈∇fj(x?), φk−1j − x?〉

)
≤E

 1

n

n∑
j=1

Fj(φ
k−1
j )− F (x∗)

 ,
where E denotes the expectation with respect to all random-
ness, and Fj(·)=fj(·)+h(·).

Proof.

E

 1

n

n∑
j=1

(
fj(φ

k−1
j )− f(x?)− 〈∇fj(x?), φk−1j − x?〉

)
=E

 1

n

n∑
j=1

(
fj(φ

k−1
j )−f(x?) + 〈∂h(x?), φk−1j − x?〉

)
− E

 1

n

n∑
j=1

〈∂h(x?) +∇fj(x?), φk−1j − x?〉


≤E

 1

n

n∑
j=1

(
fj(φ

k−1
j )− f(x?) + h(φk−1j )− h(x?)

)
− E

 1

n

n∑
j=1

〈∂h(x?) +∇fj(x?), φk−1j − x?〉


≤E

 1

n

n∑
j=1

Fj(φ
k−1
j )− F (x?)


− E

 1

n

n∑
j=1

〈∂h(x?) +∇fj(x?), φk−1j − x?〉

 ,
where ∂h(x?) is a subgradient of h(·) and ∂h(x?)+∇f(x?)=
0. Let F ′j(x

?) :=∇fj(x?)+∂h(x?), and using the result in
SAGA [Defazio et al., 2014a], we have

Eik−1
[
1

n

n∑
j=1

〈F ′j(x?), φk−1j − x?〉]

=
1

n
〈F ′(x?), xk−1−x?〉+

n−1

n2

n∑
j=1

〈F ′j(x?), φk−2j −x?〉

=
n−1

n2

n∑
j=1

〈F ′j(x?), φk−2j − x?〉.

Let F ′(x?) := ∇f(x?)+∂h(x?), and we have F ′(x?) = 0.
Thus, the following result holds:

E

 1

n

n∑
j=1

〈∂h(x?) +∇fj(x?), φk−1j − x?〉


=E

(1− 1

n

)
1

n

n∑
j=1

〈F ′j(x?), φk−2j − x?〉


...

=E

(1− 1

n

)k−1
1

n

n∑
j=1

〈F ′j(x?), φ0j − x?〉


=E

[(
1− 1

n

)k−1
〈F ′(x?), x0 − x?〉

]
= 0.

Therefore, we have

E

 1

n

n∑
j=1

(
fj(φ

k−1
j )− f(x?)− 〈∇fj(x?), φk−1j − x?〉

)
≤E

 1

n

n∑
j=1

Fj(φ
k−1
j )− F (x?)

 .
This completes the proof.

Theorem 1. Suppose h(·) is µ-strongly convex, and let
{(xk, yk, zk)} be the sequence generated by Algorithm 1.
Then Algorithm 1 has the following geometric convergence
in expectation:

E [F (xK)− F (x?)] ≤ O(ρK) [F (x0)− F (x?)],

where

ρ =


1

1 +
√

µ
3Ln

, if n <
3L

4µ
,

1− 3

4n
, if n ≥ 3L

4µ
.

That is, Algorithm 1 achieves an ε-suboptimal solution using
at most

O
(

(n+
√
nκ) log

F (x0)− F (x?)

ε

)
iterations.

Remark 2. Theorem 1 shows that AIGD achieves the ora-
cle complexity of O ((n+

√
nκ) log(1/ε)) for strongly con-

vex problems, which is the same as the best-known result in
[Defazio, 2016; Allen-Zhu, 2018], and also matches the up-
per complexity bound provided in [Woodworth and Srebro,
2016]. In particular, in the case of n ≥ 3L/4µ, the con-
vergence rate of both SAGA in [Defazio et al., 2014a] and
Finito [Defazio et al., 2014b] is (1− 1

2n )n ≈ exp(−1/2) =
0.606, and Katyusha [Allen-Zhu, 2018] can obtain the rate
of 1/1.5 = 0.667, while the convergence rate of AIGD is
(1− 3

4n )n≈0.517. That is, our AIGD algorithm improves the
best-known convergence rates.
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Before giving the proof of Theorem 1, we first give the
following property.
Property 1. Given any w1, w2, w3, w4 ∈ Rd, then we have

〈w1−w2, w1−w3〉=
1

2

[
‖w1−w2‖2+‖w1−w3‖2−‖w2−w3‖2

]
.

Proof of Theorem 1:

Proof. From the optimality condition of (4) in Algorithm 1
with respect to zk with η = 1

Lαθ , we have

θ〈∇̃k+β∂h̃(zk)+Lαθ(zk−zk−1), z−zk〉≥0, for any z∈Rd,
where h̃(z) := h(z/β), and ∂h̃(z) = ∂h(z/β)/β. Using the
above inequality with z=βx?, then we have

θ〈∇̃k, zk − βx?〉
≤ θ〈∂h(zk/β) , βx?−zk〉+Lαθ2〈zk−zk−1, βx?−zk〉

≤βθh(x?)−βθh(zk/β)− µθ
2β
‖βx?−zk‖2

+Lαθ2〈zk−zk−1, βx?−zk〉

≤βθh(x?)+(1−βθ)h(xk−1)−h(xk)− µθ
2β
‖βx?−zk‖2

+
Lαθ2

2

(
‖βx?−zk−1‖2−‖βx?−zk‖2 − ‖zk−1−zk‖2

)
,

(5)
where the second inequality holds due to the strong convexity
of h(·); the last inequality holds due to the update rule xk =
θzk+(1−βθ)xk−1, Property 1 and the convexity of h(·).

Since f(·) is L-smooth, and by the update rule yk =
θzk−1 + (1−βθ)xk−1, xk = θzk + (1−βθ)xk−1, and taking
expectation over the random choice of ik, we have

Eik [F (xk)]

≤Eik [f(yk) + h(xk) + θ〈∇̃k, zk − βx? + βx? − zk−1〉]

+ Eik [〈∇f(yk)− ∇̃k, xk − yk〉+
Lθ2

2
‖zk − zk−1‖2]

a
≤Eik

[
f(yk) + h(xk) + θ〈∇̃k, zk − βx? + βx? − zk−1〉

]
+ Eik [

1

2L(α−1)
‖∇f(yk)−∇̃k‖2 +

Lαθ2

2
‖zk−zk−1‖2]

b
≤Eik[f(yk)+h(xk)+βθh(x?)+(1−βθ)h(xk−1)− h(xk)]

+Eik
[
−µθ

2β
‖βx?−zk‖2+

Lαθ2

2
(‖x?−zk−1‖2−‖x?−zk‖2)

]
+Eik

[
θ〈∇̃k, βx?− zk−1〉+

1

2L(α−1)
‖∇f(yk)− ∇̃k‖2

]
c
≤Eik

[
f(yk)+βθh(x?)+(1−βθ)h(xk−1)− µθ

2β
‖βx?−zk‖2

]
+
Lαθ2

2
E
[
‖βx?−zk−1‖2 − ‖βx?−zk‖2)

]
+ βθf(x?) + (1− βθ)f(xk−1)− f(yk) +Ak−1

=βθF (x?) + (1− βθ)F (xk−1) +Ak−1

+ Eik [
Lαθ2

2
‖βx?−zk−1‖2−(

Lαθ2

2
+
µθ

2β
)‖βx?−zk‖2],

where the inequality
a
≤ follows from the Young’s inequality

〈∇f(yk)−∇̃k, xk− yk〉 ≤ 1
2La‖∇f(yk)−∇̃k‖2 + La

2 ‖xk−

yk‖2; the inequality
b
≤ follows from the inequality (5), and

Ak−1 := 1
n

∑n
j=1

(
fj(φ

k−1
j )−f(x?)−〈∇fj(x?), φk−1j −x?〉

)
;

the inequality
c
≤ holds due to the fact that

Eik
[

1

2L(α−1)

∥∥∥∇̃k −∇f(yk)
∥∥∥2 + 〈∇̃k, βθx?− θzk−1〉

]
= 〈∇f(yk), 2(yk−x?)/(α−1)〉+ 2

L(α−1)
[f(x?)−f(yk)]

+ 〈∇f(yk), βθx? − θzk−1〉+Ak−1
= 〈∇f(yk), (βθ−2/(α−1))x?− θzk−1+ 2yk−1/(α−1)〉

+
2

α−1
[f(x?)− f(yk)] +Ak−1

≤βθf(x?) + (1− βθ)f(xk−1) +Ak−1,

where the first equation follows from Lemma 1 and
Eik [∇̃k] = ∇f(yk), and the last inequality holds due to the
convexity of the function f(·) and βθ − 2/(α−1) > 0. By
using Lemma 2 and the above analysis, we have

E[F (xk)− F (x?)]

≤(1−βθ)E[F (xk−1)−F (x?)]+
2

α−1

n∑
j=1

1

n
Fj(φ

k−1
j )−F (x?)

+
Lαθ2

2
E
[
‖βx?−zk−1‖2

]
−(

Lαθ2

2
+
µθ

2β
)E
[
‖βx?−zk‖2

]
.

(6)

Using the result in SAGA [Defazio et al., 2014a], we have

E

 n∑
j=1

1

n
Fj(φ

k
j )

= E

 1

n
F (xk−1)+

n−1

n2

n∑
j=1

Fj(φ
k−1
j )

.
Thus, 1

nE[Gk−1] = Pk−(1− 1
n )Pk−1, whereGk :=F (xk)−

F (x?), Pk := 1
n

∑n
j=1Fj(φ

k
j )−F (x∗) and E[Pk] = Σk−1j=0 (1−

/n)k−j−11/nPj . Let Qk := ‖βx?−zk‖2, and using (6) and
multiplying each side of the above inequality by γK−k, 0 <
γ ≤ 1, and summing it over k=1, · · · ,K − 1, we have

K−1∑
k=1

γK−kE
[
Gk +

1

2
Pk

]

≤
K−1∑
k=1

γK−kE
[
(1−βθ+

1

2n
)Gk−1+

(
n−1

2n
+

2

α−1

)
Pk−1

]

+
K−1∑
k=1

γK−k
(
Lαθ2

2
E[Qk−1]−(

Lαθ2

2
+
µθ

2
)E[Qk]

)
.

(7)

Next, we consider the following two cases.
Case 1: n < 3L

4µ . We set γ = 1

1+
√

µ
3Ln

. With η =
√
3√

Lµn
,

α=8n/β, and θ= 1
Lαη , we have 1>γ(1−βθ + 1

2n ), 1/2 ≥
γ ((1− 1/n)/2 + 2/(α−1)), and Lαθ2 = γ(Lαθ2+µθ/β).
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(a) The well-conditioned case: λ=10−4

0 20 40 60 80 100 120
Number of effective passes

10-12

10-8

10-4

O
bj

ec
tiv

e 
m

in
us

 b
es

t

Ours
SAGA
SVRG
SSNM
Katyusha

0 5 10 15 20 25
Running time (sec)

10-12

10-8

10-4

O
bj

ec
tiv

e 
m

in
us

 b
es

t

Ours
SAGA
SVRG
SSNM
Katyusha

(b) The ill-conditioned case: λ=10−7

Figure 1: Comparison of all the algorithms for solving logistic regression problems on Covtype.

Thus, (7) is rewritten as follows:

γE[GK−1 +
1

2
PK−1]

≤O(γK−1)τE[G0]−E[
γθ(Lαθ+µ/β)

2
QK−1],

(8)

where τ=3/2−1/(4n)+1/8, since P0 =G0 and ‖x?−x0‖≤
1
µG0, we have (1−βθ)G0+( 1

2−
1
2n+ 2

α−1 )P0+
Lαθ2

2 Q0 =τG0.
Using (6) with k=K and α=5, we have

E[GK ] ≤E
[
(1−βθ)GK−1+

1

2
PK−1

]
+ E

[
5Lθ2

2
QK−1−(

5Lθ2

2
+
µθ

2β
)QK

]
.

(9)

Since γ > (1−βθ) and 5Lθ2

2 < γθ(Lαθ+µ/β)
2 , and by using

the above two inequalities, we have

E[GK ] ≤O(γK−1)τE[G0]−E[(
5Lθ2

2
+
µθ

2
)QK ].

That is,

E[Gk] ≤ O

( 1

1 +
√

µ
3Ln

)KG0.

Case 2: n ≥ 3L
4µ . We set γ = 1

1+3/(4n) = 1−3/(4n+3).
With η= 3

4µn , α= 8n/β and θ= 1
Lαη , and using the similar

derivation, we have the following result

E [GK ] ≤ O

((
1− 3

4n

)K)
G0.

This completes the proof.

5 Experimental Results
In this section, we evaluate the performance of our algorithm
for justifying our theoretical results.

We conducted many experiments of the strongly convex l-
ogistic regression problem on the two real-world data sets:
Covtype (581,012 examples and 54 features) and a9a (32,562
examples and 123 features). Note that each feature vector
of the two data sets was scaled down by the average Eu-
clidean norm of the whole data set as in [Allen-Zhu and
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Figure 2: Comparison of all the algorithms for solving logistic re-
gression problems for the ill-conditioned case (λ=10−8) on a9a.

Yuan, 2016]. For SVRG and Katyusha, we set the epoch
size m = 2n, as suggested in [Johnson and Zhang, 2013;
Allen-Zhu, 2018]. Figs. 1 and 2 show how the objective
gap (i.e., F (xK)−F (x?)) of all these algorithms decreases
for logistic regression with different regularization parame-
ters λ= 10−4, 10−7, 10−8. All the results show that the ac-
celerated methods (i.e., Katyusha, SSNM and our algorithm)
usually perform much better than the non-accelerated meth-
ods, SVRG and SAGA, especially with relatively small reg-
ularization parameters, e.g., λ= 10−7. SAGA and Katyusha
achieve similar performance for the well-conditioned case,
while Katyusha is significantly faster than SAGA for the ill-
conditioned case (i.e., the case of small regularization param-
eters). Our algorithm outperforms the other methods (includ-
ing the accelerated algorithms, Katyusha and SSNM) in terms
of running time. This further justifies the effectiveness of our
momentum acceleration technique for accelerating SAGA.

6 Conclusions

In this paper, we proposed a novel accelerated incremental
gradient descent algorithm with the proposed momentum ac-
celeration technique. Unlike the existing accelerated algo-
rithms such as point-SAGA and SSNM, our algorithm is a di-
rect accelerated method, and requires significantly less mem-
ory than SSNM for various large-scale linear models. More-
over, we provided the convergence property of our algorithm
for solving strongly convex problems, which shows that our
algorithm attains the best-known oracle complexity, and an
improved convergence rate for the case of n≥L/µ. Our algo-
rithm can be extended to non-convex setting and constrained
composite convex minimization setting, especially, the prob-
lems of the general ADMM form as in [Liu et al., 2017].
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