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Abstract
Latent-state environments with long horizons, such
as those faced by recommender systems, pose sig-
nificant challenges for reinforcement learning (RL).
We identify and analyze several key hurdles for RL
in such environments, including belief state error
and small action advantage. We develop a general
principle called advantage amplification that can
overcome these hurdles through the use of temporal
abstraction. We propose several aggregation meth-
ods and prove they induce amplification in certain
settings. We also bound the loss in optimality in-
curred by our methods in environments where latent
state evolves slowly and demonstrate their perfor-
mance empirically in a stylized user-modeling task.

1 Introduction
Long-term value (LTV) estimation and optimization is of in-
creasing importance in the design of recommender systems
(RSs), and other user-facing systems. Often the problem is
framed as a Markov decision process (MDP) as reinforce-
ment learning (RL) [Shani et al., 2005; Taghipour et al., 2007;
Choi et al., 2018; Archak et al., 2012; Mladenov et al., 2017;
Zhao et al., 2018; Gauci et al., 2018; Ie et al., 2019]. Typi-
cally, the action set is the set of recommendable items; states
reflect information about the user (e.g., static attributes, past
interactions, context/query); and rewards measure some form
of user engagement (e.g., clicks, views, time spent, purchase).
Such event-level models have seen some success, but current
state-of-the-art is limited to very short horizons.

When dealing with long-term user behavior, it is vital to
consider the impact of recommendations on user latent state
(e.g., satisfaction, latent interests, or item awareness) which
often governs both immediate and long-term behavior. Indeed,
the main promise of using RL/MDP models for RSs is to: (a)
identify user latent state (e.g., uncover user interests in new
topics via exploration, or estimate user satisfaction); and (b)
influence the latent state (e.g., create new interests, improve
awareness or increase satisfaction). That said, evidence is
emerging that at least some aspects of user latent state evolve
very slowly. For example, Hohnhold et al. [2015] show that
varying ad quality and ad load induces slow, but inexorable
(positive or negative) changes in user click propensity over

a period of months, while Wilhelm et al. [2018] show that
explicitly diversifying recommendations in YouTube induces
similarly slow, persistent changes in user engagement (see
such slow “user learning” curves in Fig. 1).

Event-level RL in such settings is challenging for several
reasons. First, the effective horizon over which an RS policy
influences the latent state can extend up to O(104–105) state
transitions. Indeed, the cumulative effect of recommendations
is vital for LTV optimization, but the long-term impact of
any single recommendation is often dwarfed by immediate
reward differences. Second, the MDP is partially observable,
requiring some form of belief state estimation. Third, the
impact of latent state on immediate observable behavior is
often small and very noisy—the problems have a low signal-to-
noise ratio (SNR). We detail below how these factors interact.

Given the importance of LTV optimization in RSs, we pro-
pose a new technique called advantage amplification to over-
come these challenges. Intuitively, advantage amplification
seeks to overcome the error induced by state estimation by
introducing (explicit or implicit) temporal abstraction across
policy space. We require that policies “commit” to taking a
series of actions, thus allowing more accurate value estimation
by mitigating the cumulative effects of state-estimation error.

We first consider temporal aggregation, where an action is
held fixed for a short horizon. We show that this can lead to
significant amplification of the advantage differences between
abstract actions (relative to event-level actions). This is a
form of MDP/RL temporal abstraction as used in hierarchical
RL [Sutton et al., 1999; Barto and Mahadevan, 2003] and
can be viewed as options designed to allow distinction of
good and bad behaviors in latent-state domains with low SNR
(rather than, say, for subgoal achievement). We generalize this
by analyzing policies with (artificial) action switching costs,
which induces similar amplification with more flexibility.

Limiting policies to temporally abstract actions induces
potential sub-optimality [Parr, 1998; Hauskrecht et al., 1998].
However, since the underlying latent state often evolves slowly
in RS settings, we identify a “smoothness” property that is
used to bound the induced error of advantage amplification.

Our contributions are as follows. We introduce a stylized
model of slow user learning in RSs in Sec. 2. We formalize this
model as a POMDP in Sec. 3 and define several properties that
we exploit in our analysis. In Sec. 4.1, we show that low SNR
in the POMDP interacts poorly with belief-state approxima-
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Figure 1: Gradual user response: (a) ad load/quality [Hohnhold et al., 2015]; (b) YouTube recommendation diversity [Wilhelm et al., 2018].

tion, and develop advantage amplification as a principle. We
prove that action aggregation (Sec. 4.2) and switching cost reg-
ularization (Sec. 4.3) provide strong amplification guarantees
with minimal policy loss under suitable conditions and suggest
potential extensions in Sec. 4.4. Experiments with stylized
models in Sec. 4.5 show the effectiveness of our methods.1

2 User Satisfaction: An Illustrative Example
Before formalizing our problem, we describe a stylized model
reflecting the dynamics of user satisfaction as a user interacts
with an RS. The model is intentionally stylized to help illus-
trate key concepts underlying the formal model and analysis
developed in the sequel. While it ignores much of the true
complexity of user satisfaction and RS interaction, its core
elements permeate many recommendation domains. Finally,
though focused on user-RS engagement, the principles apply
more broadly to any latent-state system with low SNR and
slowly evolving latent state.

Our model captures the relationship between a user and an
RS over an extended period (e.g., a content recommender of
news, video, or music) through overall user satisfaction, which
is not known to the RS. We hypothesize that satisfaction is one
(of several) key latent factors that impacts user engagement;
and since new treatments often induce slow-moving or delayed
effects on user behavior, we assume this latent variable evolves
slowly as a function of the quality of the content consumed
[Hohnhold et al., 2015] (and see Fig. 1 (left)). Finally, the
model captures the tension between (often low-quality) content
that encourages short-term engagement (e.g., manipulative,
provocative or distracting content) at the expense of long-term
engagement; and high-quality content that promotes long-term
usage but can sacrifice near-term engagement.

Our model includes two classes of recommendable items.
Some items induce high immediate engagement, but degrade
user engagement over the long run. We dub these “Choco-
late” (Choc)—immediately appealing but not very “nutri-
tious.” Other items—dubbed “Kale,” less attractive, but more
“nutritious”—induce lower immediate engagement but tend to
improve long-term engagement.2 We call this the Choc-Kale
model (CK). A stationary, stochastic policy can be represented

1Proofs, auxiliary lemmas and additional experiments are avail-
able in an extended version of the paper [Mladenov et al., 2019].

2Our model allows a real-valued continuum of items (e.g., degree

by a single scalar 0 ≤ π ≤ 1 representing the probability of
taking action Choc. We sometimes refer to Choc as a “nega-
tive” and Kale as a “positive” recommendation.

We use a single latent variable s ∈ [0, 1] to capture a
user’s overall satisfaction with the RS. Satisfaction is driven
by net positive exposure p, which measures a user’s total (dis-
counted) accrued positive and negative recommendations, with
a discount 0 ≤ β < 1 applied to ensure that p is bounded:
p ∈

[
−1
1−β ,

1
1−β

]
. (The dynamics of p is detailed below.) We

view p as a user’s learned perception of the RS and s as how
this influences gradual changes in engagement.

A user response to a recommendation a is given by her
degree of engagement g(s, a), and depends stochastically
on both the quality of the recommendation, and her latent
state s. Engagement g is a random function; e.g., responses
might be normally distributed: g(s, a) ∼ N(s · µa, σ2

a) for a ∈
{Choc,Kale}. We abuse notation and sometimes let g(s, a)
denote expected engagement. We require that Choc results
in greater immediate (expected) engagement than Kale, i.e.,
g(s,Kale) < g(s,Choc), for any fixed s.

The dynamics of p is straightforward. A Kale exposure
increases p by 1 and Choc decreases it by 1, with discounting:
pt+1 ← βpt + 1 with a Kale recommendation and pt+1 ←
βpt − 1 with Choc. Satisfaction s is a user-learned function
of p and follows a sigmoidal learning curve: s(p) = 1/(1 +
e−τp), where τ is a temperature/learning rate parameter. Other
learning curves are possible, but the sigmoidal model captures
both positive and negative exponential learning as hypothe-
sized in psychological-learning literature [Thurstone, 1919;
Jaber, 2006] and as observed in the empirical curves in Fig. 1.3

To illustrate the workings of this model, we compute the
Q-values of Choc and Kale for each satisfaction level s and
plot them in Fig. 2a (see the figure caption for model pa-
rameters). We observe that when satisfaction is low, Kale

of Choc between [0, 1] as in our experiments) like measures of ad
quality. We use the binary form to streamline our initial exposition.

3Such learning curves are often reflective of aggregate behavior,
obscuring individual differences that are much less “smooth.” How-
ever, unless cues are available that allow us to model such individual
differences, the aggregate model is our best resource, even when
optimizing for individual users. Indeed, prediction of user responses
in RSs usually relies on fairly coarse user features—and not user
identity—and already relies on similar aggregate behavior.
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(a) event-level, observable (b) event-level, noisy (c) aggregated, observable (d) aggregated, noisy

Figure 2: Q-values as a function of satisfaction level in the Choc-Kale model. Model parameters: β = 0.9, τ = 0.25, µChoc = 8, µKale = 2,
σChoc = σKale = 0.5. Observations (satisfaction s) are corrupted with additive Gaussian noise (mean 0, stddev. 0.3) truncated on [−1, 1].

is a better recommendation, and above some level Choc be-
comes preferable, as expected. We also see that for any s the
difference in Q-values is rather small. In complex domains,
any required function approximation will limit our ability to
accurately model the Q-function. With additional noise, the Q-
values become practically indistinguishable for a large range
of satisfaction levels, as shown in Fig. 2b). This illustrates the
hardness of RL in this setting.

3 Problem Statement
We outline a basic latent-state control problem as a partially
observable MDP (POMDP) that encompasses the notions
above. We highlight several properties that play a key role in
the analysis of latent-state RL we develop in the next section.

We consider environments that can be modeled as a POMDP
M = 〈S,A, T,Z, O,R, b0, γ〉 [Smallwood and Sondik,
1973]. States S reflect user latent state and other observable
aspects of the domain. In the stylized CK model, the state
is simply a user’s current satisfaction s, but more faithful RS
models will use much richer state representations. Actions A
are recommendable items: in CK, we distinguish only Choc
from Kale. The transition kernel T (s, a, s′) captures state dy-
namics: in the CK model we use a simple deterministic model,
T (s′, a, s) = 1 if s′ = (1 + exp(β log (1− 1/s) − βτa))−1,
where a is 1 (resp., -1) for action Kale (resp., Choc).4 Ob-
servations Z reflect observable user behavior and O(s, a, z)
the probability of z ∈ Z when a is taken at state s. In CK,
Z is the observed engagement with a recommendation while
O reflects the random realization of g(s, a). The immedi-
ate reward R(s, a) is (expected) user engagement (we let
rmax = maxs,aR(s, a)), b0 the initial state distribution, and
γ ∈ [0, 1) is a discount factor.

In this POMDP, an RS does not have access to the true
state s, but must generate policies that depend only on the
sequence of past action-observation pairs—letH∗ be the set
of all finite such sequences (at, zt)t∈N. Any such history can
be summarized, via optimal Bayes filtering, as a distribution
or belief state b ∈ ∆(S). More generally, this “belief state”
can be any summarization of H∗ used to make decisions. It
may be, say, a collection of sufficient statistics, or a deep

4This is easily randomized if desired.

recurrent embedding of history. We assume some belief state
representation (B, U), where B is the set of (realizable) belief
states, and the mapping U : B × A × Z → B describes the
update U(b, a, z) of any b ∈ B given a ∈ A, z ∈ Z .

A (stochastic) policy is a mapping π : B → ∆(A) that
selects an action distribution π(b) for execution given belief
b; we write π(a|b) to indicate the probability of action a.
Deterministic policies are defined in the usual way. The value
of a policy π is given by the standard recurrence:5

V π(b)= E
a∼π(b)

[
R(b, a)+γ

∑
z∈Z

Pr(z|b, a)V π(U(b, a, z))

]
(1)

We define Qπ(b, a) by fixing a in Eq. (1) (rather than taking
the action distribution π(b)). An optimal policy π∗ = supV π

over B has value (resp., Q) function V ∗ (resp., Q∗). Op-
timal policies and values can be computed using dynamic
programming or learned using (partially observable) RL meth-
ods. When we learn a Q-function Q, whether exactly or ap-
proximately, the policy induced by Q is the greedy policy
π(b) = arg maxaQ(b, a) and its induced value function is
V (b) = maxaQ(b, a) = Q(b, a∗(b)). The advantage func-
tion A(a, b) = V ∗(b) − Q∗(b, a) reflects the difference in
the expected value of taking action a at b (and then acting
optimally) vs. acting optimally at b [Baird III, 1999]. If a2 is
the second-best action at b, the advantage at that belief state
is A(b) = V ∗(b)−Q∗(b, a2).

Eq. (1) assumes optimal Bayesian filtering, i.e., the rep-
resentation (B, U) must be such that the (implicit) expecta-
tions over R and O are exact for any history that maps to b.6
Unfortunately, exact recursive state estimation is intractable,
except for special cases (e.g., linear-Gaussian control). As
a consequence, approximation schemes are used in practice
(e.g., variational projections [Boyen and Koller, 1998]; fixed-
length histories, incl. treating observations as state [Singh et
al., 1994]; learned PSRs [Littman and Sutton, 2002]; recur-
sive policy/Q-function representations [Downey et al., 2017]).

5Here R(b, a) and Pr(z|b, a) are given by expectations of R and
O, respectively, w.r.t. s ∼ b if b ∈ ∆(S).

6When the belief state is exact, the POMDPM becomes a fully
observable MDP in belief space, with action-transition stochasticity
dictated by observation randomness (since exact belief state update
is deterministic given a specific observation).
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Approximate histories render the process non-Markovian; as
such, a counterfactually estimated Q-value of a policy (e.g.,
using offline data) differs from its true value due to modified
latent-state dynamics (not reflected in the data). In this case,
any RL method that treats b as (Markovian) state induces a
suboptimal policy. We can bound the induced suboptimality
using ε-sufficient statistics [Francois-Lavet et al., 2017]. A
function φ : H∗ → B is an ε-sufficient statistic if, for all
Ht ∈ H∗,

|p(st+1|Ht)− p(st+1|φ(Ht))|TV < ε ,

where | · |TV is the total variation distance. If φ is ε-sufficient,
then any MDP/RL algorithm that constructs an “optimal”
value function V̂ over B incurs a bounded loss w.r.t. V ∗
[Francois-Lavet et al., 2017]:∣∣∣V ∗(φ(H))− V̂ (φ(H))

∣∣∣ ≤ 2εrmax

(1− γ)3
. (2)

The errors in Q-value estimation induced by limitations of B
are irresolvable (i.e., they are a form of model bias), in contrast
to error induced by limited data. Moreover, any RL method
relying only on offline data is subject to the above bound,
regardless of whether the Q-values are estimated directly or
not. The impact of this error on model performance can be
related to certain properties of the underlying domain as we
outline below. A useful quantity for this purpose is the signal-
to-noise ratio (SNR) of a POMDP, defined as:

S ,
supbA(b)

sup{A(b) : A(b) ≤ 2εrmax/(1− γ)2}
− 1,

(the denominator is treated as 0 if no b meets the condition).
As discussed above, many aspects of user latent state, such

as satisfaction, evolve slowly. We say a POMDP is L-smooth
if, for all b, b′ ∈ B, and a ∈ A s.t. T (b′, a, b) > 0, we have

|Q∗(b, a)−Q∗(b′, a)| ≤ L.

Smoothness ensures that for any state reachable under an
action a, the optimal Q-value of a does not change much.

4 Advantage Amplification
We detail how low SNR causes difficulty for RL in POMDPs,
especially with long horizons (Sec. 4.1). We introduce the
principle of advantage amplification to address it (Sec. 4.2)
and analyze two realizations of this principle, temporal aggre-
gation in Sec. 4.2 and switching cost in Sec. 4.3. We suggest
several extensions in Sec. 4.4 and conclude with an empirical
illustration of our mechanisms in Sec. 4.5.

4.1 The Impact of Low SNR on RL
The bound given by Eq. (2) can help assess the impact of low
SNR on RL. Assume that policies, values and/or Q-functions
are learned using an approximate belief representation (B, U)
that is ε-sufficient. We first show that the error induced by
(B, U) is tightly coupled to optimal action advantages.

Consider an RL agent that learns Q-values using a behav-
ior (data-generating) policy ρ. The non-Markovian nature of
(B, U) means that: (a) the resulting estimated-optimal policy
π will have estimated values Q̂π that differ from its true values

Qπ; and (b) the estimates Q̂π (hence, the choice of π itself)
will depend on ρ. We bound the loss of π w.r.t. the optimal
π∗—here π∗ assumes exact filtering—as follows. First, for
any (belief) state-action pair (b, a), let the maximum differ-
ence between its inferred and optimal Q-values is bounded for
any ρ: |Q∗(b, a)−Qπ(b, a)| ≤ δ. Using Eq. (2), we set

δ =
εQmax

1− γ ≤
εrmax

(1− γ)2
. (3)

If A(b) ≤ 2δ (i.e., b has small advantage), under behavior
policy ρ, the estimate Q̂(b, a2) (the second-best action) can
exceed that of Q̂(b, a∗(b)), in which case π executes a2. If π
visits b (or states with similarly small advantages) at a constant
rate, the loss w.r.t. π∗ compounds, inducing O( 2δ

1−γ ) error.
The tightness of the second part of the argument depends

on the structure of the advantage function A(b). To illustrate,
consider two extreme regimes. First, ifA(b) ≥ 2δ at all b ∈ B,
i.e., if SNR S =∞, state estimation error has no impact on
the recovered policy and incurs no loss. In the second regime,
if all A(b) are less than (but on the order of) 2δ, i.e., if S = 0,
then the inequality is tight provided ρ saturates the state-action
error bound. We will see below that low-SNR environments
with long horizons (e.g., practical RSs, or our stylized CK
model) often have such small (but non-trivial) advantages
across a wide range of state space.

The latter situation is illustrated in Fig. 2. In Fig. 2a, the
Q-values of the CK model are plotted against the level of
satisfaction (treating it as fully observable). The small advan-
tages are notable. Fig. 2b shows the Q-value estimates for
10 independent tabular Q-learning runs when noise is added
to the estimated belief state s (the thin lines show individual
runs, the thick lines show the average) . The corrupted Q-
values at all but the highest satisfaction levels are essentially
indistinguishable, leading to extremely poor policies.

4.2 Temporal Abstraction: Action Aggregation
There is a third regime in which state error is relatively benign.
Suppose the advantage at each state b is either small, A(b) ≤
σ, or large, A(b) > Σ for some constants σ � 2δ ≤ Σ. The
induced policy incurs a loss of σ at small-advantage belief
states, and no loss on states with large advantages. This leads
to a compounded loss of at most σ

1−γ , which may be much
smaller than the εrmax

(1−γ)2 error in Eq. (3), depending on σ.
If the environment is smooth, action aggregation can be

used to tramsform a problem falling in the second regime into
one that falls in the third regime, with σ depending on the level
of smoothness. This can significantly reduce the impact of
estimation error on policy quality by turning the problem into
one that is essentially Markovian. More specifically, if at state
b, we know that the optimal (stationary) policy takes action
a for the next k decision periods, we consider a reparameteri-
zationM×k of the belief-state MDP where, at b, any action
taken must be executed k times in a row, no matter what the
subsequent k states are. In this new problem, the Q-value of
the optimal repeated action Q∗(b, a×k) is the same as that of
its event-level counterpart Q∗(b, a), since the same sequence
of expected rewards will be generated. Conversely, all subop-
timal actions incur a cumulative reduction in Q-value inM×k
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since their suboptimality compounds over k periods. Thus, in
M×k, the optimal policy π×k∗ generates the same cumulative
discounted return as the event-level optimal policy, while the
advantage of a×k over any other repeated action a′×k at b is
larger than that of a over a′ in the event-level problem.

To derive bounds, note that, for an L-smooth POMDP, at
any state where the advantage is at least 2kL, the optimal
action persists for the next k periods (its Q-value can decrease
by at most L while that of the second-best can at most in-
crease by L). If we apply aggregation only at such states, the
advantage increases to some value Σ, putting us in regime
3 (i.e., the advantage is either less than σ = 2kL or more
than Σ). Of course, we cannot “cherry-pick” only states with
high advantage for aggregation, but instead apply this action
aggregation uniformly over B. Naturally, aggregating over all
states induces some loss due to the inability to switch actions
quickly. We bound that cost when determining σ and Σ. to
complete the analysis. This allows us to first lower bound the
regret of the best k-aggregate policy:

Theorem 1. Let k be a fixed horizon, and let Q∗—the event-
level optimal Q function—be L-smooth. Then for all b,
|V ∗(b) − V ×k∗(b)| ≤ 2kL

1−γ , where V ×k∗(b) is the value of
state b under an optimal k-aggregate policy.7

This theorem is proved by constructing a policy which
switches actions every k events and showing that it has
bounded regret. This policy, at the start of any k-event period,
adopts the optimal action from the unaggregated MDP at the
initiating state. Due to smoothness, Q-values cannot drift by
more than kL during the period, after which the policy cor-
rects itself. This, together with the reasoning above, offers an
amplification guarantee:
Theorem 2. In an L-smooth MDP, let k be a fixed repetition
horizon. For any belief state where A(b) ≥ 2kL, the k-
aggregate-horizon advantage is bounded below as follows:

Q×k∗(b, a×k)−Q×k∗(b, a′×k)

≥ A(b)
1− γk

1− γ − 2L
γ − (1 + k − γk)γk+1

(1− γ)2
− 2kL

1− γ .

This result is especially useful when the event-level advan-
tage is more than σ = 2kL

1−γ . In this case, an aggregation
horizon of k can mitigate the adverse effects of approximating
belief state with an ε-sufficient statistic for any ε up to

εmax ≤ L
k(γ − γk)− γ(1− (1 + k − γk)γk)

rmax
,

at the cost of the aggregation loss of 2kL
1−γ .

Figs. 2c and 2d illustrate the benefit of action aggregation:
they show the Q-values of the k-aggregated CK model with
k = 5 with both perfect and imperfect state estimation, respec-
tively (the amount of noise is the same as in Fig. 2b). As we
show in Sec. 4.5, the recovered policies incur very little loss
due to state estimation error.

We conclude with the following observation.

7The reparameterized problem in which a decision can be made
every k event-level steps is also an MDP, so the optimal value function
and deterministic policy are well-defined.

Corollary 1. Optimal repeating policies are near-optimal for
the event-level problem as L→ 0 and amplification at every
state is guaranteed.

4.3 Temporal Regularization: Switching Cost

While temporal aggregation is guaranteed to improve learning
in slow environments, it has certain practical drawbacks due
to its inflexibility. One is that, in the non-Markovian setting
induced by belief-state approximation, training data should
ideally be collected using a k-aggregated behavior policy.8
Another drawback arises if the L-smoothness assumption is
partially violated. For example, if certain rare events cause
large changes in state or reward for short periods, the changes
in Q-values may be abrupt. Notice that such changes are harm-
less from an SNR perspective if they induce large advantage
gaps; but an agent “committed” to a constant action during an
aggregation period is unable to react to such events. We thus
propose a more flexible advantage amplification mechanism,
namely, a switching-cost regularizer. Intuitively, instead of
fixing an aggregation horizon, we impose a fictitious cost (or
penalty) T on the agent whenever it changes its action.

More formally, the goal in the switching-cost (belief-state)
MDP is to find an optimal policy defined as:

π∗ = arg max
π

∑
t

γtEπ (Rt − T · 1[at 6= at−1]) . (4)

This problem is Markovian in the extended state space B ×
A representing the current (belief) state and the previously
executed action. This state space allows the switching penalty
to be incorporated into the reward function as R(b, at−1, at) =
R(b, at)− T · 1[at 6= at−1].

The switching cost induces an implicit adaptive action ag-
gregation—after executing action a, the agent will keep repeat-
ing a until the cumulative advantage of switching to a different
action exceeds the switching cost T . We can use this insight
to bound the maximum regret of such a policy (relative to the
optimal event-level policy) and also provide an amplification
guarantee, as is the case with action aggregation.

In the case of problems with two actions, we can analyze
the action of the switching-cost regularizer in a relatively
intuitive way. As with Thm. 1, we bound the regret induced
by the switching cost by constructing a policy that behaves
as if it had to pay T with every action switch. In particular,
the optimal policy under this penalty adopts the action of the
event-level optimal policy at some state bt, then holds it fixed
until its expected regret for not switching to a different action
dictated by the event-level optimal policy exceeds T . Suppose
the time at which this switch occurs is (t + ω). The regret
of this agent is no more than the regret of an agent with the
option of paying T upfront in order to follow the event-level
optimal policy for ω steps. We can show that the same regret
bound holds if the agent were paying to switch to the best
fixed action for ω steps instead of following the event-level
optimal policy. This allows derivation of the following bound:

8This is unnecessary if the system is Markovian, since (s, a, r, s′)
tuples may be reordered to emulate any behavioral policy.
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Theorem 3. The regret of the optimal switching cost policy
for a two-action MDP is less than 2κL

1−γ , where

κ =
log γ + (γ − 1)W

(
γ1/(1−γ)

γ−1

(
(1−γ)2
2γL

T − 1
)

log γ
)

(γ − 1) log γ
,

and where W is the Lambert W-function [Corless et al., 1996].

This leads to an amplification result, analogous to Thm. 2:

Theorem 4. Let κ be as in Thm. 3. In a two-action MDP, any
state whose advantage in the event-level optimal policy is at
least (1 + 1

1−γ )2κL has an advantage of at least 2T in the
switching-cost regularized optimal policy.

4.4 Discussion
We suggest several generalizations of the proposals above
which we offer opportunities for further research. We have
shown that L-smoothness of the dynamics can be incorporated
into an methods like Q-learning to improve the quality of the
learned policy. We do this by either restricting the policy space
to policies that repeat the same action multiple times, or adding
a penalty for switching from one action to another. Both have
the effect of injecting a specific bias into the learning process
which makes the resulting policy less susceptible to the effects
of an inaccurate (or incomplete) belief state representation.

Both temporal (action) aggregation and switching cost are
framed in the context of deterministic policies. However,
it is well-known that under conditions of approximate state
representation, stochastic policies may perform better than
deterministic ones [Singh et al., 1994]. One important general-
ization of our approaches is to develop regularization methods
for stochastic policies. We can extend the basic form of policy
regularization to stochastic policies easily by penalizing the
difference (e.g., KL-divergence) between consecutive action
distributions π(st) and π(st+1). On the one hand, this natu-
rally generalizes temporal (action) aggregation, exploiting the
continuous nature of the “softened” decision space in a way
that is ill-suited to deterministic policies.9 On the other hand,
this also generalizes the switching cost mechanism in a natural
way. Such a mechanism should result in softmax-like policies
and provides an interesting avenue for future research.

A second line of generalization is broader—action aggre-
gation can be seen as a hierarchical approach to RL, using
a particular class of macros or options. Unlike most work
in options, the options are constructed with the explicit aim
of reducing loss due to an inaccurate belief state representa-
tion. Extending our existing mechanisms to develop general
principles for constructing arbitrary macros for state-noise
mitigation could be of significant value for RL for complex,
partially observable environments.

4.5 Empirical Illustration
We experiment with synthetic models to demonstrate the
theoretical results above. In a first experiment, we apply
both action aggregation and switching cost regularization

9For actions in some metric space, e.g., as in many continuous
control tasks, “smoother” aggregation methods are sensible even in
deterministic policy space.

to the simple Choc-Kale POMDP from Sec. 2 with param-
eters β = 0.9, τ = 0.25, µChoc = 8, µKale = 2, and
σChoc = σKale = 0.5. To illustrate the effects of approxi-
mate belief-state estimation, we corrupt the satisfaction level
s with zero-mean Gaussian noise truncated on [−1, 1]. As we
increase the variance σN of the noise distribution (we vary it
in this experiment), state-estimation accuracy decreases.

To mitigate the effect of state-estimation error, we apply
temporal aggregation of 3 and 5 actions using discounts of
γ = 0.95 and 0.99 (Fig. 3a,b); and enforce switching costs of
1, 2 and 3 (Fig. 3c). For each parameter setting, we train 10
policies using tabular Q-learning, discretizing state space into
50 buckets. For each training run, we train using 30000 event-
level transitions, exploring using actions taken uniformly at
random—aggregated actions in the aggregation setting. Once
trained, we evaluate the discounted return of each policy using
100 Monte Carlo rollouts of length 1000.

Figs. 3a, b and c show the average performance across the
10 training runs (with 95% confidence intervals) as a function
of σN . We see that action aggregation has a profound effect
on solution quality, improving policy performance by nearly a
factor of 2 with γ = 0.99. Switching cost regularization has
a more subtle effect, providing more modest improvements
in performance. We conjecture that this difference in perfor-
mance is due to action aggregation having a double effect on
the value estimates—apart from amplification, it also provides
a more favorable behavioral policy.

A second experiment takes an “options-oriented” perspec-
tive. Recommendable items now have a continuous “kaleness”
score in [0, 1], with item i’s score denoted v(i). At each time
step, a set of 7 items is drawn from a [0, 1]-truncated Gaus-
sian with mean equal to the kaleness score of the previously
consumed item. The RL agent sets a target kaleness score
θ ∈ {0, 0.25, 0.5, 0.75, 1} (its action space). This translates
to a specific “presentation” of the 7 items to the user such that
the user is nudged to consume an item whose score is closer
to the target. Specifically, the user chooses an item i using
a softmax distribution: P (i) ∝ exp(−|v(i) − θ|/λ), with
temperature λ = 0.2. We compare the performance of action
aggregation with 3 and 5 actions with that of unregularized
policy in Fig. 3d: aggregation exhibits a comparable level of
improvement as in the binary-action case.

5 Related Work
The study of time series at different scales of granularity has a
long-standing history in econometrics, where the main object
of interest is the behavior of various autoregressive models
under aggregation [Silvestrini and Veredas, 2008]. However,
the behavior of aggregated systems under control does not
seem to have been investigated in that field.

In RL, time granularity arises in several contexts. Classi-
cal semi-MDP/options methods employ temporal aggregation
to organize the policy space into a hierarchy, where a pre-
specified sub-policy, or option, is executed for some period of
time (termination is generally part of the option specification)
[Sutton et al., 1999]. That options might help with partial
observability (“state noise”) has been suggested—e.g., Daniel
et al. [2016] informally suggest that reduced control frequency
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(a) Temporal aggr., γ = 0.95. (b) Temporal aggr., γ = 0.99. (c) Switching cost, γ = 0.95. (d) Hierarchical, γ = 0.95.

Figure 3: Experimental results. Cumulative discounted returns of event-level, aggregated and regularized policies on the Choc-Kale POMDP.

can improve SNR. However, a formal characterization of this
phenomenon has not been addressed to the best of our knowl-
edge. The learning to repeat framework (see [Sharma et al.,
2017] and references therein) provides a modeling perspective
that allows an agent to choose an action-repetition granular-
ity as part of the action space itself, but does not study these
models theoretically. SNR has played a role in RL, but in
different ways than studied here, e.g., as applied to policy
gradient (rather than as a property of the domain) [Roberts
and Tedrake, 2009].

The effect of the advantage magnitude (also called action
gap) on the quality and convergence of RL algorithms was
first studied by Farahmand [2011]. Bellemare et al. [2016]
observed that the action gap can be manipulated to improve the
quality of learned polices by introducing local policy consis-
tency constraints to the Bellman operator. Their considerations
are, however, not bound to specific environment properties.

Our framework is closely related with the study of regular-
ization in RL and its benefits when dealing with POMDPs.
Typically, an entropy-based penalty (or KL-divergence w.r.t. to
a behavioral policy) is added to the reward to induce a stochas-
tic policy. This is usually justified in one of several ways:
inducing exploration [Nachum et al., 2017]; accelerating opti-
mization by making improvements monotone [Schulman et al.,
2015]; and smoothing the Bellman equation and improving
sample efficiency [Fox et al., 2016]. Of special relevance is
the work of Thodoroff et al. [2018], who, akin to this work,
exploit the sequential dependence of Q-values for better Q-
value estimation. In all of this work, regularization is typically
treated as a price to be paid to achieve an auxiliary goal (e.g.,
better optimization or improved statistical efficiency). While
stochastic policies often perform better than deterministic ones
when state estimation is approximate or error-prone [Singh et
al., 1994]—indeed, methods that exploit this have been pro-
posed in restricting settings (e.g., corrupted rewards [Everitt
et al., 2017])—the connection to regularization has not been
made explicitly to the best of our knowledge. An alternative
way of dealing with limited state representations is to directly
optimize the policy return via policy gradient.

Finally, LTV optimization for user satisfaction is often dis-
cussed in the safe RL literature (see, e.g., [Theocharous et al.,
2015]). Typically, the aim is to guarantee a certain level of
performance, or improvement relative to a behavioral policy,

before deploying a policy learned in an off-line fashion. Our
work is somewhat orthogonal (and compatible) with these ap-
proaches. Work on the general application of RL to RSs (see
Sec. 1) is relevant as well.

6 Concluding Remarks
We have developed a framework for studying the impact of
belief-state approximation in latent-state RL problems, espe-
cially suited to slowly evolving, highly noisy (low SNR) do-
mains like recommender systems. We introduced advantage
amplification and proposed and analyzed two conceptually
simple realizations of it. Empirical study on a stylized domain
demonstrated the tradeoffs and gains they might offer.

There are a variety of interesting avenues for further in-
vestigation suggested by this work; we refer to Sec. 4.4 for
further discussion of several of thesem. Among them are: (i)
the study of soft-policy regularization for amplification; (ii)
developing techniques for constructing more general “options”
for amplification, beyond the aggregation methods studied in
this work; (iii) developing amplification methods for arbitrary
sources of modeling error; and (iv) conducting more extensive
empirical analysis on real-world domains.
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