
Incremental Learning of Planning Actions
in Model-Based Reinforcement Learning

Jun Hao Alvin Ng 1, 2 and Ronald P. A. Petrick 1

1 Department of Computer Science, Heriot-Watt University
2 School of Informatics, University of Edinburgh

alvin.ng@ed.ac.uk, R.Petrick@hw.ac.uk

Abstract

The soundness and optimality of a plan depends on
the correctness of the domain model. Specifying
complete domain models can be difficult when in-
teractions between an agent and its environment are
complex. We propose a model-based reinforcement
learning (MBRL) approach to solve planning prob-
lems with unknown models. The model is learned
incrementally over episodes using only experiences
from the current episode which suits non-stationary
environments. We introduce the novel concept of
reliability as an intrinsic motivation for MBRL,
and a method to learn from failure to prevent re-
peated instances of similar failures. Our motiva-
tion is to improve the learning efficiency and goal-
directedness of MBRL. We evaluate our work with
experimental results for three planning domains.

1 Introduction
Planning requires as input a model which describes the dy-
namics of a domain. While domain models are normally
hand-coded by human experts, complex dynamics typical of
real-world applications can be difficult to capture in this way.
This is known as the knowledge engineering problem [Cullen
and Bryman, 1988]. One solution is to learn the model from
data which is then used to synthesize a plan or policy. In this
work, we are interested in applications where the training data
has to be acquired by acting or executing an action. However,
training data acquired in an episode could be insufficient to
infer a complete model. While this is mitigated by includ-
ing past training data from previous episodes, this would be
ill-suited for non-stationary domains where distributions of
stochastic dynamics shift over time.

Following these observations, we present the incremental
learning model (ILM), a model-based reinforcement learn-
ing (MBRL) approach, which learns and refines action mod-
els incrementally over episodes and uses the learned model to
synthesize a plan or policy. We use MBRL as it could be more
sample-efficient than model-free approaches and the learned
models can be reused to achieve different tasks. Relational
rules are used to represent learned models (see Figure 1). Pre-
viously learned action models, or prior action models, are

provided to subsequent episodes and are improved upon ac-
quiring new training data; past training data is not used. Prior
action models could also be hand-coded incomplete models
serving as prior knowledge. Our training data consists of state
transitions (st, at, st+1) where st is the pre-state, at is the
grounded action, and st+1 is the post-state.

While the learning progress cannot be determined without
the true action models, we can estimate it empirically based
on the results of learning and acting. This empirical estimate,
or reliability, is used to guide the search in the space of pos-
sible models during learning and as an intrinsic motivation
in reinforcement learning. When every action is sufficiently
reliable, we instead exploit with Gourmand [Kolobov et al.,
2012], a planner that solves finite-horizon Markov Decision
Processes (MDP) problems online. The learned rules are
translated to PPDDL, a planning language modelling prob-
abilistic planning problems [Younes and Littman, 2004], and
given as inputs to the planner.

Another major contribution of our work is its ability to
learn from failure. Actions fail to be executed if their precon-
ditions are not satisfied in the current state. This is common
when the model is incorrect. Failed executions can have dire
consequences in the real-world or cause irreversible changes
such that goal states cannot be reached. ILM records failed
executions and prevents any further attempts that would lead
to similar failures. This reduces the number of failed execu-
tions and increases the efficiency of exploration.

The rest of the paper is organized as follows. First, we
review related work and present the necessary background.
Next, we provide details of ILM. Lastly, we evaluate ILM in
three planning domains and discuss the significance of our
contributions. Results show that even without past training
data, the models can be improved incrementally.

2 Related Work
R-MAX [Brafman and Tennenholtz, 2002] is a provably
sample-efficient MBRL algorithm which handles the balance
between exploration and exploitation implicitly by assigning
the maximum reward to unknown states which are set to ab-
sorbing states. If the count, defined as the number of times an
action is executed in the state, of every applicable action ex-
ceeds a threshold, then the state is known. R-MAX is imprac-
tical for planning problems with large state spaces. Hence,
additional assumptions such as factored state spaces [Kearns

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3195

Name: moveCar(?from ?to)
Precondition: at(?from) ∧ road(?from ?to) ∧ notFlattire()
Effect: 0.75 at(?to) ∧¬at(?from)

0.25 at(?to) ∧¬at(?from) ∧¬notFlattire()
0 〈 noise 〉

Figure 1: The rule for the true action model representing moveCar
in the Tireworld domain with arguments ?from and ?to.

and Koller, 1999], known structures of dynamic Bayesian net-
works (DBN) [Guestrin et al., 2002], or known maximum in-
degree of DBNs [Diuk et al., 2009] are often made. Con-
versely, we only assume that the arguments of actions are
known. We also use an empirical estimate for the learning
progress, which we call reliability, as intrinsic motivation.
Reliability is also used to quantify prior knowledge which
other works on intrinsic motivation do not address [Chen-
tanez et al., 2005; Hester and Stone, 2017].

We extend the rules learner from [Pasula et al., 2007]
to learn action models. A set of relational rules represent
an action which can have probabilistic effects. A relational
representation allows generalization of the state space un-
like propositional rules which are used in [Oates and Cohen,
1996]. [Mourão et al., 2012; Martı́nez et al., 2016] learn
probabilistic actions but do not address the incremental na-
ture of reinforcement learning. [Gil, 1994; Wang, 1995] learn
deterministic action models incrementally while [Rodrigues
et al., 2010] learns probabilistic action models. Our work is
most similar to the latter which revises relational rules when-
ever contradicting examples are received. They do not store
all the examples but rather track how well each rule explains
the examples. On the other hand, we address incremental
learning over episodes where past training data is not used.
Furthermore, our approach could consider prior knowledge
in the form of incomplete action models which can have ex-
traneous predicates unlike [Zhuo et al., 2013].

3 Background
PPDDL. Action models described in PPDDL are defined
by their preconditions and effects, typically restricted to con-
junctions of predicates. An action is applicable if its precon-
ditions are true in the current state. Executing an applicable
action changes the state according to its effects which can be
deterministic or probabilistic.

Rules. For learning action models, we use a rule-based rep-
resentation as it is well-suited to the incremental nature of
reinforcement learning [Rodrigues et al., 2010]. An action is
described by a set of rules R where a rule r ∈ R has three
parts: the name of the action, the precondition, and the ef-
fect. An example is shown in Figure 1. The noise effect
serves to avoid modelling a multitude of rare effects which
could increase the complexity of synthesizing a plan. When
a rare effect occurs, it is often better to replan. If the action
has disjunctive preconditions or effects, then multiple rules
are required to represent it. A rule covers a state-action pair
(s, a) if it represents a and is applicable in s. Every state-
action pair in the training data is covered by at most one rule

which is called the unique covering rule, denoted as r(s,a).
A propositional rule is obtained from the grounding of a rela-
tional rule by assigning an object or value to every argument
in the rule (e.g., grounding moveCar(?loc1, ?loc2) to move-
Car(l31, l13)). Actions are grounded in a similar fashion.
Markov Decision Processes (MDPs). MDPs model fully-
observable problems with uncertainty. A finite-horizon MDP
is a tuple of the form (S,A, T, R,G, s0, H) where S is a set
of states, A is the set of actions, T : S × A × S → [0, 1] is
the transition function, R : S ×A → R specifies rewards for
performing actions, G is the set of goal states, s0 is the initial
state, and H is the number of decision epochs or planning
horizon. The objective is to find a policy which maximizes
the sum of expected rewards.
Reinforcement Learning. When transition functions in
MDPs are not known, MBRL can be used to learn them
and perform sequential decision-making. This is the same
as learning action models as they can be translated to tran-
sition functions [Younes and Littman, 2004]. Reinforcement
learning deals with the balance between exploration and ex-
ploitation. Exploration seeks meaningful experiences from
which action models are learned while exploitation synthe-
sizes a policy using the models.

4 Incremental Learning Model
We first introduce the concept of reliability which is used as
intrinsic motivation in MBRL and in the rules learner. This
is followed by an outline of the main ILM algorithm. Lastly,
we provide details of the extension made to the rules learner
from [Pasula et al., 2007].

4.1 Reliability of Actions
The reliability of learned action models are empirical esti-
mates of its learning progress. Reliability serves two pur-
poses. We extend the rules learner to consider the prior ac-
tion model and its reliability to learn new rules. In reinforce-
ment learning, less reliable actions are preferred during ex-
ploration. Reliability is defined as:

RE(o) = EX(o) (αs SU(o)− αv V O(o)) + βnRE(o0)

where o is an action, EX is the exposure, SU is the suc-
cess rate, V O is the volatility, αs, αv , and β are scaling
parameters, n is the number of updates, and o0 is the prior
action model which can be an incomplete action model or an
empty action model (no predicates in preconditions and ef-
fects). Reliability is updated whenever o is executed. The
initial values of SU and V O are set to zero. It inherits the
reliability of the prior model with β ∈ (0, 1) as the discount
factor which reduces its significance given new data.
Success Rate. An action with a high success rate indicates
that recent executions are successful which is more likely if it
has a small error. We define the success rate as:

SU(o) =β SU(o) + 1(st = success)

+ 0.5 × 1(st = partial success)

where SU(o) ∈
[
0, 1

1−β

)
, st is the execution status, and the

indicator function 1 equals to 1 if the enclosing condition is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3196

true; otherwise, it is 0. The execution status is ‘failure’ when
the precondition of the action executed is not satisfied. The
state is then assumed to be unchanged. The status is ‘partial
success’ if the post-state is not expected given the learned
effects. SU is computed recursively with β as the discount
factor which gives less importance to past executions.
Volatility. Volatility measures how much a set of rules rep-
resenting an action changes after learning. A low volatility
suggests that learning has converged to the true action model.
Volatility is computed recursively, and is defined as:

V O(o) = β V O(o) + d̃(Rprev, R)

where V O(o) ∈
[
0, 1

1−β

)
, Rprev (R) is the set of rules be-

fore (after) learning, and d̃(Rprev, R) is the normalized dif-
ference between the two sets of rules. The difference between
two rules is defined as:

d(r1, r2) = d−(rp1 , r
p
2) + d−(rp2 , r

p
1)

+ d−(re1, r
e
2) + d−(re2, r

e
1)

where superscripts p and e refer to the precondition and effect
of a rule, respectively, and d−(p1, p2) returns the number of
predicates that are in the set of predicates p1 but not in p2.
The normalized difference is defined as:

d̃(r1, r2) =
d(r1, r2)

|r1|+ |r2|

where the operator |r| refers to the number of predicates in
r. The difference between two set of rules, d(R1, R2), is the
sum of differences of pairs of rules r1 ∈ R1 and r2 ∈ R2

where the rules are paired such that the sum is minimal. Each
rule is paired at most once and the number of predicates in
unpaired rules are added to the sum.

Exposure. Exposure measures the variability (inverse of
similarity [Lang et al., 2012]) of the pre-states in the train-
ing data, and is defined as:

EX(o) =
Ns
|S|C2

∑
si,sj∈S

d−(si, sj)

|si|
+
d−(sj , si)

|sj |

where S is the set of unique pre-states in the state transitions
involving o, andNs is the number of state transitions resulting
from successful executions. The first term is the ratio of state
transitions from successful executions, penalizing those from
failed executions which are less informative. Essentially, ex-
posure is the average pairwise difference between pre-states
weighted byNs. Since probabilities of effects are inferred us-
ing maximum likelihood on successful state transitions, they
converge to the true values asNs increases. Hence, reliability
considers these probabilities implicitly.

4.2 Model-Based Reinforcement Learning
The inputs to the main ILM algorithm (Algorithm 1) are the
prior action models R0 and their reliability RE0, initial state
s0, goal state g, planning horizon H , and the maximum num-
ber of iterations N . EXmax = 0 and tabu = ∅ for the first
episode. Exploration or exploitation is performed at the start

Algorithm 1: Incremental Learning Model
11 Function

ILM(R0, RE0, s0, g,H,N, ζ, EXmax, tabu):
2 h← H
3 R← R0

4 RE ← RE0

5 T ← ∅
6 for t = 0 : N do
7 at ← explore or exploit(st, g, h,R,RE, tabu, ζ)
8 if at = ∅ then break
9 st+1, st← execute(at)

10 T .append(st, at, st+1)
11 if st = fail then
12 tabu.append(relevant predicates(st, at), at)
13 else
14 T .append(synthetic transition(tabu, st+1))
15 Rprev ← R
16 if can learn(R,EX,EXmax) then
17 R← learn rules(R0, T , RE)
18 RE,EX ← update(R,RE0, T , st, Rprev)
19 if s' � g then break
20 if (N − t) < H then h← h− 1
21 return R,RE, max(EX,EXmax), tabu

of each iteration (line 7). If no action is found, then a dead-
end is reached (line 8) and the algorithm terminates. When an
action fails to execute, ILM learns from this failure by record-
ing the failed instance in tabu (line 12: relevant predicates
returns the set of grounded predicates in s that does not con-
tain objects that were not in a), otherwise, synthetic state
transitions (st, aT , st) are generated (line 14) where aT is a
randomly grounded action such that check tabu(st, aT , tabu)
⇒ ⊥. Failed executions are exceedingly less as failed in-
stances are added to tabu. Reconstructing synthetic failed
transitions augment the training data and aids the learning of
rule preconditions.

Learning from training data of low variability (or low ex-
posure) could result in existing rules being generalized where
its literals that are true are removed in the updated rules pre-
conditions or effects. To prevent this, we delay learning until
certain criteria are met (can learn in line 16):
1. If R0 is the set of empty rules, always learn since no

information can be lost. However, this risks learning
incorrect preconditions or effects that can prevent the
agent from reaching the goal state.

2. Otherwise, learn if there is at least one successful tran-
sition, at least one failed or synthetic transition, and
EX > αEX EXmax where αEX ∈ [0, 1].

If learning is allowed, then new rules are learned
(learn rules in line 17) and the values of RE, EX , V O,
and SU are updated (line 18). Otherwise, only RE, EX ,
and SU are updated. The algorithm terminates after reach-
ing the maximum number of iterations or when the goal is
reached. It returns the learned rules, reliability, maximum ex-
posure (EXmax), and tabu. These are used as inputs to the
next function call to Algorithm 1.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3197

Explore or Exploit
We compute the counts for all applicable actions in s
using the context-based density formula from [Lang et
al., 2012] which performs relational generalizations —
the amount of exploration is reduced as states which
are unknown under propositional representations could be
known under relational representations. The count-action
pairs < c, o > are sorted in increasing order of c =
RE(o)

∑
r∈R

∑
(s,a,s')∈T 1(r is applicable in s) in a list,

L, where R are rules of o. Reliability serves as intrinsic mo-
tivation where less reliable actions are explored more.

A state is known if ∀ci ∈ L (ci ≥ ζ), or if the reliability of
every action model exceeds a constant threshold. The second
condition allows exploitation using prior action models when
the counts are still zero. If the state is known, exploitation is
attempted using Gourmand [Kolobov et al., 2012], a planner
that solves problems modelled in finite-horizon MDPs online.
(In general, ILM can use any planner that accepts planning
problems written in PPDDL.) Exploitation fails if no plan is
found or if the first action of the plan is in tabu.

Exploration is attempted if the state is not known or ex-
ploitation fails. An action is popped off the top of L and a list
of grounded actions that are applicable in s are enumerated.
A grounded action that is not in tabu is selected at random
and returned. If no such actions exist, then the next action is
popped off until L is empty, following which random explo-
ration is used where actions are grounded without consider-
ing whether preconditions are satisfied in s. If all grounded
actions are in tabu, then a dead-end is reached.

Learning from Failure
Failed executions due to unsatisfied preconditions are
recorded in tabu. Before an action a is executed in state s,
check tabu(s, a, tabu) checks if (s, a) is in tabu, returning
False if so. We describe check tabu with an example as
shown in Figure 2. A state is described by a set of predi-
cates. We extract the set of predicates fs ⊆ s that does not
have an object in its binding that is not in the arguments of
a. We assume that the arguments of actions are known. fs
is compared to each entry (ft, at) in tabu. The predicates
in ft are grounded with the same substitution as the variable
bindings of a. Hence, the check is lifted to relational repre-
sentations and is applicable even if the objects in the domain
change. If fs does not have at least one predicate that is not
in ft, then a is in tabu. In the example, moveCar(l31, l13) is
in tabu, as are all grounded actions of moveCar that do not
have road(?loc1, ?loc2) in fs. Intuitively, we know s cannot
satisfy the precondition of a if it does not have any additional
predicates as compared to a state where a previously failed to
execute. We exploit experiences from failed executions which
are otherwise uninformative to the rules learner as it cannot
determine the reason for the failure [Walsh et al., 2010].

Since every action is checked before execution, tabu will
not contain identical entries. This keeps the size of tabu to a
minimum which is important as the memory and time com-
plexity is O(|tabu|). The completeness of the algorithm de-
pends on the failed instances in tabu. In the example, if tabu
is ∅, then a is not in tabu. It then fails to execute following
which fs is lifted with σ = {l31→ ?loc1, l13→ ?loc2} and

o: moveCar(?loc1, ?loc2)
a: moveCar(l31, l13)
s: ¬hasspare() notFlattire() at(l31)

road(l11 l21) road(l21 l31) road(l12 l11) road(l13 l12)
road(l13 l22) road(l22 l31) road(l22 l21) road(l12 l22)
spareIn(l11) spareIn(l12) spareIn(l21)

fs: ¬hasspare() notFlattire() at(l31)
ft: ¬hasspare() notFlattire() at(?loc1) spareIn(?loc2)
Perform substitution σ = {?loc1 → l31, ?loc2 → l13} on ft
ft: ¬hasspare() notFlattire() at(l31) spareIn(l13)

Figure 2: An example of checking if (s, a) is in tabu.

inserted with o in tabu. Since no erroneous instance is ever
added, the algorithm is sound.

4.3 Learning Action Models
The rules learner from [Pasula et al., 2007] (called in line 17
of Algorithm 1) applies a search operator, selected at random,
to a rule. Each search operator modifies the rule differently
to yield a set of new rules. For example, a search operator
adds a different predicate to the precondition or effect of a
rule to generate a new rule. An example of a rule is shown in
Figure 1. A greedy search uses a score function as a heuris-
tic. We introduce a deviation penalty, PEN(R,R0), to the
score function such that the greedy search begins from and is
bounded around the prior action models, R0, which can be an
empty rule, or rules of incomplete action models. Hence, the
learner refines R0. The score function is defined as:

Score(R) =
∑

(s,a,s')∈T

log(P̂ (s' | s, a, r(s,a)))

− αp
∑
r∈R

PEN(r)− PEN(R,R0)

where P̂ is the probability of the effect in r(s,a) which covers
the transition (s, a, s'), T is the training data, αp is a param-
eter ∈ [0, 1], and PEN(r) penalizes complex rules to avoid
over-specialization. The deviation penalty increases when R
deviates further from R0, and is defined as:

PEN(R,R0) =
RE(o0)

EX(o)

[
αdrop ∆drop(R,R0)+

+ αadd ∆add(R,R0)
]

where αdrop and αadd are scaling parameters ∈ [0,∞), and
∆drop(R,R0) and ∆add(R,R0) are defined as:

∆drop(R,R0) =
d−(Rp0, R

p)

|Rp|+ |Rp0|
+
d−(Re0, R

e)

|Re|+ |Re0|

∆add(R,R0) =
d−(Rp, Rp0)

|Rp|+ |Rp0|

where the pairings of rules r ∈ R and r0 ∈ R0 are the same
as the pairings in d(R,R0).

Since past training data is not used, the rules learner may
consider a probabilistic effect of R0 as noise if this effect is
rarely seen in the current training data. ∆drop increases when

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3198

this happens. If the probabilistic effect is not seen at all, it
will be dropped in R regardless of how large PEN(R,R0)
is. Such rules will be rejected. The deviation penalty is scaled
by the reliability of the prior action model and the inverse of
exposure. The intuition is that deviation should be limited if
the prior action model is highly reliable, and encouraged if
the training data has high variability.

5 Experimental Results
5.1 Experimental Setup
In one trial of experiments, ten planning problems are at-
tempted sequentially in an order of increasing scale (see Ta-
ble 1) following the idea behind curriculum learning [Bengio
et al., 2009]. We denote each attempt as an episode. Each trial
starts with no prior knowledge; the prior action models for
episode 1 are empty action models. Since the planning prob-
lems are probabilistic, 50 independent trials are conducted.
The machine used to run the experiments was a four core In-
tel(R) i5-6500 with 4 GB of RAM.

We used three planning domains: the Tireworld and
Exploding Blocksworld domains from the Interna-
tional Probabilistic Planning Competition [Younes et al.,
2005], and the Logistics domain. In the Tireworld
domain, the car may get a flat tire when moving to another lo-
cation. If the tire is flat, the car cannot move and a dead-end is
reached if no spare tires are available. Tireworld problems
of the same scale are identical and are constructed systemati-
cally such that there are no unavoidable dead-ends [Little and
Thiebaux, 2007]. In the Exploding Blocksworld do-
main, a block may detonate when it is put down, destroying
the block or table beneath. A destroyed block or table is no
longer accessible. Each block can only detonate once. We set
the goal states as random configurations of three blocks. All
Logistics problems have one truck per city, one airplane,
and one parcel. Loading and unloading parcels may fail and
the state remains unchanged. The models for all domains are
stationary where probabilities of the effects of actions are kept
constant in all episodes.

The performance of ILM is evaluated with the correctness
of the learned model and the goal-directedness. R-MAX and
two variants of ILM are included for comparison. ILM-R
does not use reliability; the relational count is not weighted
and the deviation penalty in the score function used by the
rules learner is zero. It does not delay learning (line 15 of
Algorithm 1) as this requires EXmax, a component of relia-
bility. ILM-T does not learn from failure. ILM, ILM-R, and
ILM-T do not use past training data while R-MAX does.

5.2 Correctness of Learned Models
The correctness of a learned model P̂ can be defined as the
average variational distance between P̂ and the true model
P [Pasula et al., 2007]:

V D(P, P̂) =
1

|T |
∑
Ti∈T

|P (Ti)− P̂ (Ti)|

where T is the set of test examples — 500 state tran-
sitions per action are generated with the true distribution.
Figure 3 show the variational distances for Tireworld,

Scale Episode Tireworld Exploding
Blocksworld Logistics

Small 1 to 3 6 locations 5 blocks 2 cities,
4 locations

Medium 4 to 6 15 locations 7 blocks 2 cities,
6 locations

Large 7 to 10 28 locations 9 blocks 3 cities,
8 locations

Table 1: Number of objects in small, medium, and large-scale plan-
ning problems for each of the three domains.

Exploding Blocksword, and Logistics. The vari-
ational distances at episode 0 are of the prior action models,
which are empty models, for episode 1.
Tireworld. ILM learns action models incrementally as ev-
ident by the decrease in variational distance from episodes 1
to 10. ILM-R performed marginally worse as it learns from
training data of low variability which caused the variational
distances to increase in episodes 4 and 6. The utility of learn-
ing from failure is illustrated by the significantly larger vari-
ational distances for ILM-T and R-MAX. In both cases, most
of the executions led to failure which are less meaningful ex-
periences for the rules learner. Since the maximum number of
iterations is only 15 (moveCar alone has 36 possible ground-
ings for the small-scale planning problems), such inefficient
exploration performs poorly.
Exploding Blocksworld. The lowest variational distances
are achieved with ILM from episodes 1 to 4 and with R-MAX
thereafter. The latter learns from a larger training set which is
important for this domain which has complex actions putOn-
Block and putDown. These actions have conditional effects
which are modelled as separate rules with different precondi-
tions. Preconditions are inferred by comparing pre-states in
the training data. Most of the predicates in the pre-states re-
main unchanged as an action typically changes a small subset
of the state. Hence, more training data is required to learn
more complex preconditions. Since the training data used
by R-MAX are largely from failed experiences, it took four
episodes before it outperforms ILM.
Logistics. ILM had the best performance in all episodes.
The large variational distances for ILM-T is due to the diffi-
culty in learning driveTruck. This action has four arguments
and has 432 possible groundings in the small-scale planning
problems. This has complications in the goal-directedness
which shall be discussed in the next subsection.

5.3 Goal-directedness
We evaluate the goal-directedness by the number of success-
ful trials which are trials of an episode where the goal state
is reached. The goal-directedness for the three domains is
shown in Table 2. It is averaged over episodes with plan-
ning problems of the same scale. Episode 1 is separated
from episodes 2 and 3 to illustrate the advantage of having
prior knowledge. The average number of successful trials for
episodes 2 and 3 were generally larger than episode 1 even
though the scales of the planning problems are the same. This

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3199

Figure 3: Variational distance at the end of each episode for, from
top to bottom, the Tireworld, Exploding Blocksworld,
and Logistics domains. The results are the means and standard
deviations of 50 trials.

is because ILM exploits the learned models from the previous
episode whereas episode 1 had no such prior knowledge.

Tireworld. ILM-R outperforms ILM in episodes 1 to 3 as
the goal state can be reached by executing moveCar repeat-
edly as long as the tire is not flat along the way. ILM attempts
exploitation more often than ILM-R as it weights relational
counts with reliability. For small-scale planning problems,
exploration or exploitation may not make a significant differ-
ence. When the scale increases, the number of steps between
the initial state and the goal state increases and the probabil-
ity of getting a flat tire along the way is higher. A dead-end
is reached if the tire is flat and no spare tire is available. In
such circumstances, exploitation is required and ILM outper-
forms ILM-R in episodes 4 to 10. ILM-T and R-MAX did not
perform well as actions failed to execute most of the time.

Exploding Blocksworld. Dead-ends are often the cause of
failing to reach the goal state. A block could detonate with
a probability of 0.2 when executing putDown or putOnBlock
which destroys the table or the underlying block. These irre-

ILM ILM-R ILM-T R-MAX

Episode T E L T E L T E L T E L

1 18 4 2 22 1 3 3 0 0 6 0 0
2 to 3 38 22 10 42 10 5 6 4 0 16 10 3
4 to 6 17 27 20 16 12 9 2 9 3 13 8 6

7 to 10 6 17 18 4 7 16 1 9 9 2 9 17

Table 2: Average number of successful trials for Tireworld (T),
Exploding Blocksworld (E), and Logistics (L) domains.

versible changes could then lead to dead-ends. ILM has the
most number of successful trials in all episodes. ILM-R per-
formed much poorer than ILM as reaching the goal state with
exploration alone is difficult. Even though R-MAX has lower
variational distances than ILM for episodes 5 to 10, it did not
outperform ILM as it does not learn from failure.
Logistics. The number of successful trials increases even
when the scale of the planning problem increases. In small-
scale planning problems, there were few successful trials be-
cause driveTruck was not learned yet as mentioned previ-
ously. driveTruck failed to execute repeatedly until episode
3 as only two out of 432 grounded actions would succeed.
As a result, a subset of the state space, which could include
the goal state, is not reached. If states where the truck is at a
location with a parcel are never reached, then loadTruck and
unloadTruck could not be executed. This applies to loadAir-
plane and unloadAirplane if a parcel is not at an airport.

6 Conclusions and Future Work
We presented an MBRL approach called ILM which learns
action models incrementally over episodes without the use
of past training data. We introduced a new measure, relia-
bility, which serves as an empirical estimate of the learning
progress and influences the processes of learning and plan-
ning. We also extended an existing rules learner to consider
prior knowledge in the form of incomplete action models.
ILM learns from failure and avoids repeating similar failures,
thereby improving the learning efficiency. We evaluated ILM
on three benchmark domains. Experimental results showed
that variational distances of learned action models decreased
over each subsequent episode. Learning from failure greatly
reduced the number of failed executions leading to improved
correctness and goal-directedness.

For complex domains, more training data is required to
learn action models. While we could use past training data,
this would not work well for non-stationary domains and also
increases the computation time for learning. The first issue
could be resolved by learning the distributions from the cur-
rent training data only. The second issue could be resolved
by maintaining a fixed size of training data by replacing older
experiences while maximizing the exposure, or variability, of
the training data. These will be explored in the future.

Acknowledgements
This work was partially funded by the EPSRC ORCA Hub
under grant number EP/R026173/1.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3200

References
[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour,

Ronan Collobert, and Jason Weston. Curriculum learning.
In Proc. ICML, pages 41–48, 2009.

[Brafman and Tennenholtz, 2002] Ronen I Brafman and
Moshe Tennenholtz. R-MAX - A general polynomial time
algorithm for near-optimal reinforcement learning. JMLR,
3:213–231, 2002.

[Chentanez et al., 2005] Nuttapong Chentanez, Andrew G
Barto, and Satinder P Singh. Intrinsically motivated re-
inforcement learning. In Proc. NIPS, pages 1281–1288,
2005.

[Cullen and Bryman, 1988] Jet Cullen and Alan Bryman.
The knowledge acquisition bottleneck: time for reassess-
ment? Expert Systems, 5(3):216–225, 1988.

[Diuk et al., 2009] Carlos Diuk, Lihong Li, and Bethany R
Leffler. The adaptive k-meteorologists problem and its ap-
plication to structure learning and feature selection in rein-
forcement learning. In Proc. ICML, pages 249–256, 2009.

[Gil, 1994] Yolanda Gil. Learning by experimentation: In-
cremental refinement of incomplete planning domains. In
Proc. ICML, pages 87–95, 1994.

[Guestrin et al., 2002] Carlos Guestrin, Relu Patrascu, and
Dale Schuurmans. Algorithm-directed exploration for
model-based reinforcement learning in factored mdps. In
Proc. ICML, pages 235–242, 2002.

[Hester and Stone, 2017] Todd Hester and Peter Stone. In-
trinsically motivated model learning for developing curi-
ous robots. AIJ, 247:170–186, 2017.

[Kearns and Koller, 1999] Michael Kearns and Daphne
Koller. Efficient reinforcement learning in factored
MDPs. In Proc. IJCAI, pages 740–747, 1999.

[Kolobov et al., 2012] Andrey Kolobov, Mausam, and
Daniel S Weld. LRTDP vs. UCT for online probabilistic
planning. In Proc. AAAI, page 1786–1792, 2012.

[Lang et al., 2012] Tobias Lang, Marc Toussaint, and Kris-
tian Kersting. Exploration in relational domains for model-
based reinforcement learning. JMLR, 13:3725–3768,
2012.

[Little and Thiebaux, 2007] Iain Little and Sylvie Thiebaux.
Probabilistic planning vs. replanning. In Proc. ICAPS
Workshop on the International Planning Competition:
Past, Present and Future, 2007.

[Martı́nez et al., 2016] David Martı́nez, Guillem Alenya,
Carme Torras, Tony Ribeiro, and Katsumi Inoue. Learning
relational dynamics of stochastic domains for planning. In
Proc. ICAPS, page 235–243, 2016.

[Mourão et al., 2012] Kira Mourão, Luke S Zettlemoyer,
Ronald P. A. Petrick, and Mark Steedman. Learning
STRIPS operators from noisy and incomplete observa-
tions. In Proc. UAI, pages 614–623, 2012.

[Oates and Cohen, 1996] Tim Oates and Paul R Cohen.
Learning planning operators with conditional and proba-
bilistic effects. In Proc. AAAI Spring Symposium on Plan-

ning with Incomplete Information for Robot Problems,
pages 86–94, 1996.

[Pasula et al., 2007] Hanna M Pasula, Luke S Zettlemoyer,
and Leslie Pack Kaelbling. Learning symbolic models of
stochastic domains. JAIR, 29:309–352, 2007.

[Rodrigues et al., 2010] Christophe Rodrigues, Pierre
Gérard, and Céline Rouveirol. Incremental learning of
relational action models in noisy environments. In Proc.
ILP, pages 206–213, 2010.

[Walsh et al., 2010] Thomas J Walsh, Kaushik Subramanian,
Michael L Littman, and Carlos Diuk. Generalizing appren-
ticeship learning across hypothesis classes. In Proc. ICML,
pages 1119–1126, 2010.

[Wang, 1995] Xuemei Wang. Learning by observation and
practice: An incremental approach for planning operator
acquisition. In Proc. ICML, pages 549–557, 1995.

[Younes and Littman, 2004] Håkan LS Younes and
Michael L Littman. PPDDL1. 0: An extension to
PDDL for expressing planning domains with probabilistic
effects. Technical Report CMU-CS-04-162, 2004.

[Younes et al., 2005] Håkan LS Younes, Michael L Littman,
David Weissman, and John Asmuth. The first probabilis-
tic track of the International Planning Competition. JAIR,
24:851–887, 2005.

[Zhuo et al., 2013] Hankz Hankui Zhuo, Tuan Anh Nguyen,
and Subbarao Kambhampati. Refining incomplete plan-
ning domain models through plan traces. In Proc. IJCAI,
pages 2451–2458, 2013.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3201

