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Abstract
Network embedding assigns nodes in a network
to low-dimensional representations and effectively
preserves the structure and inherent properties of
the network. Most existing network embedding
methods didn’t consider network noise. However,
it is almost impossible to observe the actual struc-
ture of a real-world network without noise. The
noise in the network will affect the performance of
network embedding dramatically. In this paper, we
aim to exploit node similarity to address the prob-
lem of social network embedding with noise and
propose a node similarity preserving (NSP) embed-
ding method. NSP exploits a comprehensive sim-
ilarity index to quantify the authenticity of the ob-
served network structure. Then we propose an al-
gorithm to construct a correction matrix to reduce
the influence of noise. Finally, an objective func-
tion for accurate network embedding is proposed
and an efficient algorithm to solve the optimization
problem is provided. Extensive experimental re-
sults on a variety of applications of real-world net-
works with noise show the superior performance of
the proposed method over the state-of-the-art meth-
ods.

1 Introduction
Network embedding is an important method to learn low-
dimensional representations of a network through the study
of its high-dimensional representation, while preserving the
network’s structure and its inherent properties. Based on net-
work embedding, mining information in networks, such as
link prediction [Yu et al., 2017], classification [Liu et al.,
2017], and network visualization [Tang et al., 2015], can be
directly conducted in the low-dimensional space.

Given a network G = (V,E), the network embedding is
a mapping f = vi → yi ∈ Rd. The function f maps each
node vi in the node set V to d-dimensional space [Goyal and
Ferrara, 2018]. Various methods of network embedding have
been proposed [Cui et al., 2017] and many network properties
such as first-order proximity [Wang et al., 2016], high-order
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Figure 1: Example of network noise affecting embedding. In sub-
graph (a), the blue dashed line between nodes 1 and 3 is a false link
and the red dashed line between nodes 1 and 2 is a missing link. The
subgraph (b) presents the incorrect embedding results.

proximity [Zhu et al., 2018], and social community [Zhang et
al., 2018] have been considered. Essentially, most of meth-
ods didn’t consider network noise. However, the observed
data always contains noise. That is, false links always exist
in observed network data and many actual links are missing
during network observation. We call this problem network
embedding with noise. The noise in the network will affect
the performance of network embedding dramatically. Fig. 1
presents an example to illustrate the incorrect embedding of
a network due to noise.

To some extent, the effect of network noise can be reduced
and the actual network structure can be recovered by node
similarity. In Fig. 1 (a), according to the common neigh-
bor (CN) index method [Liben-Nowell and Kleinberg, 2007],
nodes 1 and 2 have high similarity because they share many
common neighbors, thus there is a high probability that a link
exists between nodes 1 and 2. On the contrary, the probabil-
ity of the existence of a link between nodes 1 and 3 is low
because they have low similarity according to the CN index.
As a result, the false link and the missing link in Fig. 1 (a) can
be detected by node similarity. Intuitively, we aim to exploit
node similarity to quantify the authenticity of the observed
network structure and reduce network noise. The greater the
similarity between two nodes, the higher the authenticity of
the link between them; therefore, they should be represented
closely to each other, and vice versa.

In this paper, we propose a node similarity preserving
(NSP) embedding method to reduce the influence of network
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noise through the analysis of node similarity. In general, node
similarity is quantified by a single similarity index, and many
such indices have been proposed [Hu et al., 2017]. However,
existing single indices cannot fully describe node similarity
in complex real-world social networks [Wang et al., 2017a].
In view of this, we propose a comprehensive similarity index
to quantify node similarity accurately. For a given network, a
similarity matrix is constructed from the adjacency matrix by
using the comprehensive similarity index. Then we propose
a correction matrix that can reduce the noise in the adjacency
matrix by the analysis of the similarity matrix. Finally, we
formulate an objective function for accurate network embed-
ding and propose an efficient algorithm based on interactive
search to solve the optimization problem. As a result, the
learned network representation can preserve the actual net-
work structure well. The contributions of this paper can be
summarized as follows:
• We propose a comprehensive similarity index to mea-

sure node similarity and compute a node similarity ma-
trix. Compared to existing single similarity indices, the
proposed index is more accurate.
• We propose an algorithm to construct a correction matrix

to reduce the influence of noise on a given network and
recover the actual network structure.
• We formulate an objective function for accurate network

embedding by introducing a weight matrix and a penalty
function. We also propose an efficient algorithm to solve
the optimization problem of network embedding.

2 Related Work
Various methods of network embedding have been proposed
in the literature. For example, DeepWalk [Perozzi et al.,
2014] aims to preserve the neighbor structure of nodes and
uses the SkipGram model to learn the representations of
nodes. Node2Vec [Grover and Leskovec, 2016] is able to
learn the representations that closely embed nodes that be-
long to the same network community. LINE [Tang et al.,
2015] is intended for large-scale network embedding, and can
preserve both first-order and second-order proximities. Com-
munity structure is also an important property in network rep-
resentation. [Wang et al., 2017c] propose a modularized non-
negative matrix factorization (M-NMF) model for network
embedding that preserves both the microscopic structure and
the mesoscopic (community) structure. In addition, some
other network properties such as non-transitivity [Ou et al.,
2015], asymmetric transitivity [Ou et al., 2016], node side in-
formation [Yang et al., 2015], and structure balance [Wang et
al., 2017b] have been embedded into representation vectors.
Despite the success of these network embedding approaches,
they all assume that there is no noise in the observed network
data. Therefore, a method to reduce the influence of noise is
still lacking.

3 Problem Definition
A social network is defined as G = (V,E), where V =
{v1, ..., vn} is the node set and E = {e1, ..., em} is the link
set. The adjacency matrix is denoted as A ∈ Rn×n, where

Ai,j ∈ [0, 1] is the link weight between nodes vi and vj .
The value of Ai,j represents the connection strength between
nodes vi and vj . If there is no link between vi and vj , then
Ai,j = 0. Our task is to find an approach to reduce the in-
fluence of noise and embed each node in V into a point in
the embedding space. Let S ∈ Rn×n denote the node sim-
ilarity matrix: Si,j ≥ 0 denotes the similarity between vi
and vj . Let C ∈ Rn×n denote the correction matrix. Let
U ∈ Rn×d denote the embedding matrix. The i-th row of U,
Ui,∗, is the embedding vector of vi. We first need to derive S
from A by using a comprehensive similarity index, so that S
can preserve the accurate similarity between nodes. Since A
contains noise, we need to compute C based on S and A for
noise reduction. Finally, we compute U, such that the learned
representations can preserve the actual network structure.

4 Node Similarity Preserving Embedding
The NSP method has three modules: 1) node similarity con-
struction, which generates a comprehensive similarity index
to evaluate node similarity and constructs the node similarity
matrix S; 2) after node similarity constriction, a noise reduc-
tion module is proposed, which computes a correction ma-
trix C based on S to reduce network noise; 3) finally, a node
similarity embedding module is proposed, which formulates
an objective function for accurate network embedding by ap-
proximating the S and C, and proposes an efficient algorithm
to solve the optimization problem.

4.1 Node Similarity Construction
Node similarity is an important measurement to quantify the
strength of node relationship and is used to predict links be-
tween nodes [Yu et al., 2017]. In general, node similarity is
quantified by a similarity index. Most similarity indices are
derived from specific evolution mechanisms. However, real-
world networks are dynamic and jointly driven by a hybrid
mechanism [Zhang et al., 2014]. A single index cannot fully
describe the node similarity. To evaluate node similarity ac-
curately, we propose a comprehensive similarity index S that
considers multiple single similarity indices. The definition of
S is as follows:

Definition 1. (Similarity index vector). The similarity index
vector Sv = {s1, ..., si, ..., sγ} is a vector consisting of γ
single similarity indices. For example, si could be the CN
index. For any node pair {vi, vj}, the similarity index vector
is Sv(vi, vj) = {s1(vi, vj), ..., sγ(vi, vj)}.

Since each single similarity index si in Sv plays different
weight in the overall similarity measurement, we introduce a
weight vector for Sv .

Definition 2. (Similarity index weight). The similarity index
weight φ = {ϕ1, ..., ϕi, ..., ϕγ} is the weight vector of Sv . ϕi
denotes the weight of index si in Sv .

Definition 3. (Comprehensive similarity index). Given Sv
and φ, the comprehensive similarity index S(vi, vj) between
nodes vi and vj is defined as:

S(vi, vj) =
∑
sk∈Sv

ϕk
sk(vi, vj)−min(sk)
max(sk)−min(sk)

, (1)
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where min(sk) is the minimum sk value of all node pairs in
the network, and max(sk) is the maximum value.

A real-world social network is driven by a hybrid mecha-
nism. Experimental analysis in [Zhang et al., 2014] indicates
that the relative contribution of each mechanism varies in the
evolution of different social networks. While a single similar-
ity index si is derived from a specific evolution mechanism.
When a similarity index is consistent with the network evo-
lution mechanism, the index will provide accurate node sim-
ilarity evaluation [Hu et al., 2017]. Therefore, to make the
comprehensive similarity index S more consistent with the
hybrid network evolution mechanism, we need to determine
the optimal weight value of each single similarity index si
in Sv . A φ whose corresponding S achieves the most accu-
rate node similarity evaluation is defined as the optimal index
weight, φ∗. For a given social network, we need to optimize
the φ∗ to evaluate node similarity accurately.

Note that the Sv can include any existing single similarity
index. To enable the S to be applied to large-scale networks, a
sampling step is included in NSP. In detail, the node similarity
construction phase consists of the following two steps:

Step1: Network Sampling
We sample from the original network with the alias method
[Li et al., 2014] according to the link weights, and treat the
sampled links as binary links. The sampling is conducted by
the following steps.
1) Initialize the sampled networkG′ = (V ′, E′), where v′ ⊂

V , E′ ⊂ E.
2) According to the link weights, sample a link ei from G

by the alias method [Li et al., 2014]. If ei is in E′, then
discard it, else set the weight of ei to 1 and add ei to E′.
For the nodes vi, vj linked by ei, if they do not exist in
V ′, then add them to V ′.

3) Repeat 2) until |E′| = K. K is a control parameter of the
sampled network size.

Step2: Searching For Optimal Index Weight
After the network sampling, we need to search the optimal φ∗
according to the obtained G′.

A good similarity index should provide accurate link pre-
diction [Hu et al., 2017]. To search for the optimal φ∗, we
adopt the AUC [Hu et al., 2017] as the metric of predic-
tion accuracy. Let AUC(φ) denote the prediction accuracy
of the S corresponding to the φ. The problem turns into
searching for the φ∗ such that the corresponding AUC(φ∗)
is maximized. Since this is a random search problem, we use
the quantum-behaved particle swarm optimization method
(QPSO) [Tang et al., 2014] to search φ∗.

Once the S is determined by φ∗ for the given network G′,
we can calculate the Si,j for each node pair {vi, vj} in G to
construct the node similarity matrix S.

4.2 Noise Reduction
In this section, we introduce how to construct the correction
matrix C based on S to reduce the noise in A. According to
the experimental analysis in [Lu and Zhou, 2010], two nodes
are more likely to be connected if they have high similarity.
Inspired by this conclusion, we use the matrix S as a metric to

Algorithm 1 Construct Correction Matrix

Input: adjacency matrix A, similarity matrix S.
Output: correction matrix C.

1: Initialize correction matrix C;
2: if Ai,j > 0 and Si,j < avg(S)× α then
3: calculate Ci,j by Equation (2);
4: else if Ai,j = 0 and Si,j ≥ avg(S)× (α+ 1) then
5: calculate Ci,j by Equation (3);
6: else
7: Ci,j = Ai,j ;
8: end if
9: return C.

evaluate the confidence level of the observed A, and propose
the construct correction matrix (CCM) algorithm to compute
the matrix C to reduce network noise.

There are two types of network noise: false links and miss-
ing links. The CCM algorithm checks the node similarity Si,j
and link weight Ai,j of each node pair {vi, vj} to detect these
two types of noise, and computes the Ci,j to reduce them.

In terms of false links, if Ai,j > 0 and Si,j < avg(S)×α,
where avg(S) is the average of all the elements in S and α
is a threshold parameter such that 0 < α < 1, this means
that there is a link between vi and vj in the observed network
but their similarity Si,j is very small. In this case, we regard
this link as a false link. To reduce the influence of such false
links, we need to reduce the original Ai,j to reflect the actual
connection strength. Thus, the value of Ci,j is defined as
follows:

Ci,j = Ai,j ×
Si,j

avg(S)
× α. (2)

On the contrary, if Ai,j = 0 and Ai,j ≥ avg(S)× (α+1),
this means that there is no link between vi and vj in the ob-
served network but the similarity Si,j is large enough. In this
case, we believe that there is a link between vi and vj in the
actual network, but it has been lost in the observation process.
In this case, we need to increase the Ai,j to compensate for
the missing link. Therefore, the value of Ci,j is defined as
follows:

Ci,j =
Si,j

avg(S)
× (α+ 1). (3)

Finally, the CCM algorithm is detailed in Algorithm 1.

4.3 Node Similarity Preserving Embedding
After obtaining the correction matrix C, we now construct the
network embedding matrix U. The C is derived from A after
a noise reduction process, which is the most direct expression
of network. To make the embedding matrix U preserve the
actual node relationship in the embedding space, we intro-
duce a non-negative basis matrix M ∈ Rn×d according to the
non-negative decomposition [Lee and Seung, 2000]. Then we
expect to make M times U to be as close as possible to C,
which leads to the following objective function:

min
M,U

||C−MUT||2F , s.t.M ≥ 0,U ≥ 0. (4)

Because of the sparsity of real-world networks, the num-
ber of zero elements in C is far greater than the number of
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non-zero elements. This makes the learned U more prone
to reconstruct the zero elements. Inspired by [Wang et al.,
2016], we add a greater penalty to the reconstruction error of
the non-zero elements than to that of the zero elements. For
this purpose, we add a weight matrix W ∈ Rn×n to Equation
(4). Specifically, if Ci,j = 0, Wi,j = 1, else Wi,j = θ > 1.
The revised objective function is as follows:

min
M,U

||(C−MUT)�W||2F , s.t.M ≥ 0,U ≥ 0, (5)

where � means the Hadamard product.
To further reduce the impact of noise, we add a penalty

function to the objective function (5). Since the matrix
S accurately evaluates node similarity, it is well-suited for
this purpose. We adopt the theory of Laplacian Eigenmaps
[Belkin and Niyogi, 2003], which adds a penalty when sim-
ilar nodes are mapped far apart in the embedding space. Let
||Ui,∗ −Uj,∗||2 denote the distance between nodes vi and vj
in the embedding space. The penalty function is as follows:

min
U

n∑
i,j=1

Si,j ||Ui,∗ −Uj,∗||2. (6)

Based on Laplacian Eigenmaps, we can reformulate Equa-
tion (6) to the following objective function:

min
U

tr(UTLU), s.t.U ≥ 0, (7)

where Laplacian L = D− S and D is a diagonal matrix with
the sum of each row of S on its diagonal, and tr(X) is the
trace of matrix X.

Finally, the actual network structure can be preserved by
combining Equations (5) and (7) and jointly minimizing the
following objective function:

min
M,U

||(C−MUT)�W||2F + βtr(UTLU),

s.t.M ≥ 0,U ≥ 0.

(8)

Because the objective function (8) is not convex, it is im-
possible to give closed-form solutions. Inspired by [Wang et
al., 2017c], we propose an algorithm to find an approximate
solution. Our method iteratively updates U and M until the
function (8) converges. The updating steps for U and M are
as follows.

Update M: When matrix U is fixed during the up-
date process of M, Equation (8) can be revised to
min
M,U

||(C−MUT)�W||2F , s.t.M ≥ 0. According to

[Wang et al., 2017c], the updating of M can be obtained as:

M←M� (C�W �W)U

[(MUT)�W �W]U
. (9)

Update U: When matrix M is fixed during the update pro-
cess of U, the Lagrange multiplier matrix ψ = [ψi,j ] is intro-
duced to guarantee that U is nonnegative. Then Equation (8)
is equivalent to:
min
U

L(U) = tr([(C−MUT)�W][(C−MUT)�W]T)

+ βtr(UTLU) + tr(ψUT).
(10)

Setting derivatives of L(U), with respect to U, to 0, we have:

ψ = −2(CT �WT �WT)M+ 2βLU

+ 2[(UMT)�WT �WT]M.
(11)

Following the Karush-Kuhn-Tucker (KKT) [Wang et al.,
2017c] condition for the nonnegativity of U, we have the fol-
lowing equation:

([(CT �WT �WT)]M)i,jUi,j − β(LU)i,jUi,j

− ([(UMT)�WT �WT]M)i,jUi,j = 0.
(12)

This equation leads to the following updating formula:

U← U� (CT �WT �WT)M+ βSU

[(UMT)�WT �WT]M+ βDU
. (13)

To prove the convergence of the updating rule (13), we intro-
duce an auxiliary function as in [Lee and Seung, 2000]. The
definition of the auxiliary function is as follows.

Definition 4. A function V (x, x′) is an auxiliary function of
function F (x) where V (x, x′) ≥ F (x) and V (x, x) = F (x)
for any x, x′.

Based on the auxiliary function, [Lee and Seung, 2000]
proposed the following lemma.

Lemma 1. If V is an auxiliary function of F , then F is non-
increasing under the updating rule:

x(t+1) =
argmin

x
V (x, x(t)). (14)

Let Fi,j denote the part of objective function (10) which is
only relevant to Ui,j . Then we have:
∂Fi,j
∂Ui,j

= F ′i,j = −2(CT �WT �WT)i,j + 2β(LU)i,j

+ 2(((UMT)�WT �WT)M)i,j ,

(15)

∂2Fi,j
∂U2

i,j

= F ′′i,j =

n∑
k=1

W2
i,kM

2
k,j + 2βLi,i. (16)

Now we propose a specific auxiliary function V (x, x′) for
Fi,j based on Lemma 2.

Lemma 2. The function

V (Ui,j ,U
(t)
i,j ) = Fi,j(U

(t)
i,j ) + F ′i,j(U

(t)
i,j )(Ui,j −U

(t)
i,j )

+
([(UMT)�WT �WT]M+ βDU)i,j

U
(t)
i,j

(Ui,j −U
(t)
i,j )

2,

(17)
is an auxiliary function for Fi,j .

Proof. It is obvious that Fi,j(Ui,j) = V (Ui,j ,Ui,j), so we
need to prove V (Ui,j ,U

(t)
i,j ) ≥ Fi,j(Ui,j). The Taylor series

expansion of Fi,j(Ui,j) at U(t)
i,j is

Fi,j(Ui,j) = Fi,j(U
(t)
i,j ) + F ′i,j(U

(t)
i,j )(Ui,j −U

(t)
i,j )

+(
n∑
k=1

W2
i,kM

2
k,j + βLi,i)(Ui,j −U

(t)
i,j )

2.
(18)
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Compared to Equation (17), we need to prove that

([(UMT)�WT �WT]M+ βDU)i,j

U
(t)
i,j

≥
n∑
k=1

W2
i,kM

2
k,j

+ 2βLi,i.
(19)

We have

([(UMT)�WT �WT]M)i,j =

n∑
a=1

W2
i,aMa,j

m∑
b=1

U
(t)
i,bMa,b

≥
n∑
a=1

W2
i,aM

2
a,jU

(t)
i,j ,

(20)

β(DU)i,j = β
n∑
k=1

Di,kU
(t)
i,j ≥ βDi,iU

(t)
i,j

≥ β(D− S)i,iU
(t)
i,j = βLi,iU

(t)
i,j .

(21)

Therefore, Equation (19) is proved.

Based on Lemmas 1 and 2, we can show the convergence
of the update rule (13).

Theorem 1. The objective function (10) is nonincreasing un-
der the update rule of Equation (13) for U.
Proof. According to Lemma 2, V (Ui,j ,U

(t)
i,j ) in Equa-

tion (17) is an auxiliary function of Fi,j . Replacing the
V (Ui,j ,U

(t)
i,j ) in Equation (14) by Equation (17), we have

the following update rule:

U
(t+1)
i,j ← U

(t)
i,j

[(CT �WT �WT)M+ βSU]i.j
([(UMT)�WT �WT]M+ βDU)i.j

,

(22)
which is the same as (13). Following Lemma 1, under this
update rule, the objective function (10) will be nonincreasing.

Finally, the objective function (8) can be achieved by up-
dating M and U in Equations (9) and (13), respectively.
The complexity of the updating rules in (9) and (13) is
O(n2d + nd2), since n � d, so the overall complexity of
the update rules of NSP is O(n2d).

5 Experimental Evaluation
In this section, we conduct experiments to validate the ef-
fectiveness of NSP on several real-world applications: node
classification, node clustering, and link prediction. We evalu-
ated the method on four social networks. 1) BlogCatalog is a
network of social relationships of bloggers listed on the Blog-
Catalog website (10312 nodes, 333983 links, and 39 different
labels). 2) Cora is a citation network of scientific publications
(2708 nodes, 5278 links, and 7 different labels). 3) EmailEu
is an email network of a large European research institution
(1005 nodes, 25571 links, and 42 different labels). 4) Pol-
blogs is a blog network about US politics recorded in 2005
(1490 nodes, 16715 links, and 2 different labels).

The following five network embedding algorithms are used
in our experiments for comparison: DeepWalk [Perozzi et

Figure 2: The accuracy of node classification with varying R.

al., 2014], LINE [Tang et al., 2015], Node2vec [Grover and
Leskovec, 2016], M-NMF [Wang et al., 2017c], and GraRep
[Cao et al., 2015]. The parameters of the comparison algo-
rithms are set to their default values, and the parameters of
NSP are tuned by using grid search on the validation set. The
Sv of NSP is consists of two local similarity indexes CN and
AA, and two global similarity indexes KI and SimRank [Lu
and Zhou, 2010]. We uniformly set the representation dimen-
sion d = 128.

5.1 Node Classification
This section presents the performance of all algorithms on
the node classification task with varying proportions of noise
in the network datasets. Let R denote the proportion of noise
added. We first delete |E|/R links from the experimental net-
work, to simulate the missing links, and then we randomly
add |E|/R links to the network to simulate false links. For
node classification, the learned representations of nodes are
used to classify these nodes into a set of labels. Following
[Wang et al., 2017c], we used the KNN algorithm to train the
classifiers. For each class of a given network, we randomly
selected 80% of the nodes as the training nodes and the rest
as the testing nodes. The prediction accuracy is used as the
evaluation metric.

As illustrated in Fig. 2, in these four networks, the classifi-
cation accuracy of all algorithms decreases with the increase
of noise ratio R, especially in the Cora and Polblogs net-
works. This is because the network noise disturbs the network
structure and leads to inferior performance in all of the algo-
rithms. In the absence of artificial noise (R = 0), the accu-
racy of NSP is similar to the optimal results in BlogCatalog,
Cora, and Polblogs, while NSP achieves the best accuracy
in EmailEu. With increased network noise, R ∈ [5%, 20%],
the advantage of NSP becomes increasingly apparent: when
R > 5%, NSP outperforms other algorithms in all networks;
when R = 20%, the accuracy of NSP is about 5% − 15%
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Figure 3: The NMI of node clustering with varying R.

in BlogCatalog, Cora, and Polblogs. This is because NSP
adopts more node similarity measures; hence, it is more ef-
fective in eliminating part of the noise.

5.2 Node Clustering
In this section, we evaluate the performance of all algorithms
on the node clustering task. Following [Wang et al., 2017c],
we adopt the K-means algorithm in this experiment to per-
form the node clustering and use normalized mutual infor-
mation (NMI) [Goyal and Ferrara, 2018] for evaluating the
clustering results. Since K-means is sensitive to the initial-
ization of the centroids, we adopt k-means++ [Bachem et al.,
2016] for centroids initialization and run each clustering 10
times.

As we can see, the NMI of all algorithms decreases as the
noise rate R increases in these four networks, just like the
results in Section 5.1. This again suggests that the existence
of noise has a significant impact on the effectiveness of em-
bedding algorithms. By considering the node similarity, NSP
has a stronger noise tolerance than the other algorithms. NSP
outperforms the other algorithms when R > 5% in the Blog-
Catalog, Cora, and EmailEu networks. Although the NMI
of NSP is not the largest in the Polblogs network, its rate of
decline is the smallest. When R increases from 0% to 20%,
the NMI of NSP only decreases about 0.04 in Polblogs, in
contrast to M-NMF (decreases 0.12), Node2vec (0.14), and
LINE (0.15). These results again show the advantages of in-
troducing node similarity to network embedding.

5.3 Link Prediction
In this section, we concentrate on the link prediction task and
experiment on the BlogCatalog and EmailEu networks. In
the link prediction task, for each dataset we first randomly
hide 20% of the network links and learn the embedding using
the remaining 80% of the links, to predict from the learned
embedding the most likely links that are not observed in the

Algorithm P@10 P@100 P@500 P@1000 P@2000

DeepWalk 0 0 0.052 0.034 0.045
LINE 0 0.15 0.122 0.103 0.202
Node2Vec 0.2 0.05 0.056 0.088 0.132
GraRep 0 0.12 0.026 0.108 0.152
M-NMF 0 0.11 0.034 0.056 0.144
NSP 0.2 0.18 0.136 0.115 0.154

Table 1: precision@k on BlogCatalog network for link prediction.
The best performing algorithm is highlighted in bold.

Algorithm P@10 P@100 P@500 P@1000 P@2000

DeepWalk 0.3 0.29 0.293 0.158 0.167
LINE 0.4 0.38 0.432 0.432 0.312
Node2Vec 0.2 0.16 0.116 0.105 0.182
GraRep 0.2 0.04 0.032 0.038 0.045
M-NMF 1 0.96 0.884 0.798 0.564
NSP 1 1 0.892 0.808 0.576

Table 2: precision@k on EmailEu network for link prediction. The
best performing algorithm is highlighted in bold.

training data. The precision@k [Goyal and Ferrara, 2018]
is adopted as the evaluation metric of predicting the hidden
links. The results of all embedding algorithms on BlogCata-
log and EmailEu are presented in Tables 1 and 2.

The results in the BlogCatalog and EmailEu networks
show that as k increases, the performance of our method is
consistently better than other network embedding algorithms,
especially in the EmailEu network. (When k = 1000, the
precision of NSP is still greater than 0.8, while other com-
petitors are all less than 0.8.) This is because the idea of NSP
preserves the node similarity quantified by the hybrid similar-
ity index in the network embedding process, thereby giving
NSP better link prediction power.

6 Conclusion
We propose the node similarity preserving (NSP) method in
this paper to perform network embedding for social networks
with noise. NSP uses a comprehensive similarity index to
construct the node similarity matrix S. S can quantify the
credibility of the observed network structure. Based on S,
we obtain a corrected matrix C, which has reduced noise.
NSP also includes a objective function that preserves the con-
structed node similarity S and the corrected network struc-
ture C. Finally, efficient updating rules, with correctness and
convergence guarantees, are also provided in NSP. Compre-
hensive experiments comparing NSP with state-of-the-art ap-
proaches on four real-world social networks demonstrated the
substantial gains of the proposed method for node classifica-
tion, node clustering, and link prediction tasks.
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