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Abstract

We consider the problem of learning a mapping di-
rectly from annotated music to waveforms, bypass-
ing traditional single note synthesis. We propose a
specific architecture based on WaveNet, a convolu-
tional autoregressive generative model designed for
text to speech. We investigate the representations
learned by these models on music and conclude that
mappings between musical notes and the instrument
timbre can be learned directly from the raw audio
coupled with the musical score, in binary piano roll
format. Our model requires minimal training data (9
minutes), is substantially better in quality and con-
verges 6 times faster in comparison to strong base-
lines in the form of powerful text to speech models.
The quality of the generated waveforms (generation
accuracy) is sufficiently high, that they are almost
identical to the ground truth. Our evaluations are
based on both the RMSE of the Constant-Q trans-
form, and mean opinion scores from human subjects.
We validate our work using 7 distinct synthetic in-
strument timbres, real cello music and also provide
visualizations and links to all generated audio.

1 Introduction

WaveNets [Van Den Oord et al., 2016] have revolutionized text
to speech by producing realistic human voices. Even though
the generated speech sounds natural, upon a closer inspec-
tion the waveforms are different to genuine recordings. As a
natural progression, we propose a WaveNet derivative called
SynthNet which can learn and render (in a controlled way) the
complex harmonics in the audio training data, to a high level
of fidelity. While computer vision is well established, there
is little understanding over what audio generative models are
learning. Towards enabling similar progress, we give insights
into the learned representations of WaveNets, upon which we
build our model.

WaveNets were trained using raw audio waveforms aligned
with linguistic features. We take a similar approach to learning
music synthesizers and train our model based on the raw audio
waveforms of entire songs and their symbolic representation
of the melody. This is more challenging than speech due to
the following differences: 1) in musical compositions multiple

notes can be played at the same time, while words are spoken
one at a time; 2) the timbre of a musical instrument is arguably
more complex than speech; 3) semantically, utterances in
music can span over a longer time.
[Van Den Oord et al., 2016] showed that WaveNets can gen-

erate new piano compositions based on raw audio. Recently,
this work was extended by [Dieleman et al., 2018], delivering
a higher consistency in compositional styling. Closer to our
work, [Engel et al., 2017] describe a method for learning syn-
thesizers based on individually labelled note-waveforms. This
is a laborious task and is impractical for creating synthesizers
from real instruments. Our method bypasses this problem
since it can directly use audio recordings of an artist playing a
given song, on the target instrument.

SynthNet can learn representations of the timbre of a musi-
cal instrument more accurately and efficiently via the dilated
blocks through depthwise separable convolutions. We show
that it is enough to condition only the first input layer, where a
joint embedding between notes and the corresponding funda-
mental frequencies is learned. We remove the skip connections
and instead add an additional loss for the conditioning signal.
We also use an embedding layer for the audio input and use
SeLU [Klambauer et al., 2017] activations in the final block.

The benchmarks against the WaveNet [Van Den Oord et al.,
2016] and DeepVoice [Arik et al., 2017] architectures show
that our method trains faster and produces high quality audio.
After training, SynthNet can generate new audio waveforms
in the target timbre, based on a given song which was not seen
at training time. While we focus on music, SynthNet can be
applied to any time-series domain.

Our contributions are as follows. 1) We show that musi-
cal instrument synthesizers can be learned end-to-end based
on real and synthetic raw audio and a binary note representa-
tion, with minimal training data. Multiple instruments can be
learned by a single model, including real instruments (subsec-
tion 4.5). 2) We give insights into the representations learned
by dilated causal convolutional blocks and consequently pro-
pose SynthNet, which provides substantial improvements in
quality and training time. Indeed, we demonstrate (Figure 3)
that the generated audio is practically identical to the ground
truth. 3) The benchmarks against existing architectures con-
tains an extensive set of experiments spanning over three sets
of hyperparameters, where we control for the receptive field
size. We show that the RMSE of the Constant-Q Transform
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(RMSE-CQT) is highly correlated with the mean opinion score
(MOS). 4) We find that reducing quantization error via dither-
ing is a critical preprocessing step towards generating the
correct melody and learning the correct pitch to fundamental
frequency mapping.

2 Related Work

In music, style can be defined as the holistic combination of the
melodic, rhythmic and harmonic components of a particular
piece. The delay and sustain variation between notes deter-
mines the rhythmic style. The latter can vary over genres (e.g.
Jazz vs Classical) or composers. Timbre or harmonic style
can be defined as the short term and steady state (sustained
frequency distribution) acoustical properties of a musical in-
strument [Sethares, 2005]. Our focus is on learning the timbre,
while controlling the (given) melodic content and avoiding
any rhythmic variations.

The research on content creation is plentiful. For an in depth
survey of deep learning methods for music generation we point
the reader to the work of [Briot et al., 2017]. Generative au-
toregressive models were used in [Van Den Oord et al., 2016;
Mehri et al., 2016] to generate new random content with simi-
lar harmonics and stylistic variations in melody and rhythm.
Recently, the work of [Van Den Oord et al., 2016] was ex-
tended by [Dieleman et al., 2018] where the quality is im-
proved and the artificial piano compositions are more realistic.
We have found piano to be one of the easier instruments to
learn. [Donahue et al., 2018] introduce WaveGANs for gener-
ating music with rhythmic and melodic variations.
Closer to our work, [Engel et al., 2017] propose WaveNet

Autoencoders for learning and merging the harmonic proper-
ties of instrument synthesizers. The major difference with
our work is that we are able to learn timbres from entire
songs (a mapped sequence of notes to the corresponding wave-
form), while their method requires individually labelled notes
(NSynth dataset). With our method, the overhead of learning
a new instrument is greatly reduced. Moreover, SynthNet
requires minimal data and does not use note velocity.

Based on the architecture proposed by [Engel et al., 2017],
and taking a domain adaptation approach, [Mor et al., 2018]
condition the generation process based on raw audio. An
encoder is used to learn note mappings from a source audio
timbre to a target audio timbre. The approach can be more
error prone than ours, since it implies the intermediary step
of correctly decoding the right notes from raw audio. This
can significantly decrease the generation quality. Interestingly,
[Mor et al., 2018] play symphonic orchestras from a single
instrument audio. However, there is no control over which
instrument plays what. Conversely, we use individual scores
for each instrument, which gives the user more control. This
is how artists usually compose music.

3 End-to-end Synthesizer Learning
[Van Den Oord et al., 2016] and [Arik et al., 2017] have shown
that generative convolutional networks effectively learn the
human voice from raw audio. This has advanced the state of
the art in text to speech (TTS). We further explore the possi-
bilities of these architectures by benchmarking them in the

domain of learning music synthesizers. There are considerable
differences between the human voice and musical instruments.
Firstly, the harmonic complexity of musical instruments is
higher than the human voice. Second, even for single instru-
ment music, multiple notes can be played at the same time.
This is not true for speech, where only one sound utterance is
produced at a time. Lastly, the melodic and rhythmic compo-
nents in a musical piece span a larger temporal context than a
series of phonemes as part of speech. All of these factors make
the music domain arguably more challenging than speech.

3.1 Baseline Architectures

Our starting point is the model proposed by [Van Den Oord
et al., 2016] with the subsequent refinements in [Arik
et al., 2017]. We refer the reader to the these arti-
cles for further details. Our data consists of triplets
{(x1,y1, z1), . . . , (xN ,yN , zS)} over N songs and S styles,
where xi is the 256-valued encoded waveform, yi is the
128-valued binary encoded MIDI and zs ∈ {1, 2, . . . , S} is
the one-hot encoded style label. Each audio sample xt is
conditioned on the audio samples at all previous timesteps
x<t = {xt−1, xt−2, . . . , x1}, all previous binary MIDI sam-
ples and the global conditioning vector. The joint probability
of a waveform x = {x1, . . . , xT } is factorized as follows:

p(x|y, z) =
T
∏

t=1

p(x|x<t,y<t, z). (1)

The hidden state before the residual connection in dilation
block ℓ is

hℓ =τ
(

W ℓ
f ∗ xℓ−1 + V ℓ

f ∗ yℓ−1 +U ℓ
f · z

)

⊙

σ
(

W ℓ
g ∗ xℓ−1 + V ℓ

g ∗ yℓ−1 +U ℓ
g · z

)

, (2)

while the output of every dilation block, after the residual
connection is

xℓ = xℓ−1 +W ℓ
r · hℓ, (3)

where τ and σ are respectively the tanh and sigmoid activation
functions, ℓ is the layer index, f indicates the filter weights,
g the gate weights, r the residual weights and W , V and U
are the learned parameters for the main, local conditioning
and global conditioning signals respectively. The f and g
convolutions are computed in parallel as a single operation
[Arik et al., 2017]. All convolutions have a filter width of F .
The convolutions with W ℓ and V ℓ are dilated.

To locally condition the audio signal, [Van Den Oord et al.,
2016] first up-sample the y time series to the same resolution
as the audio signal (obtaining yℓ) using a transposed convo-
lutional network, while [Arik et al., 2017] use a bidirectional
RNN. In our case, the binary midi vector already has the same
resolution.

We use an initial causal convolution layer (Equation 4) that
only projects the dimension of the signal from 128 channels
to the number of residual channels. The first input layers
are causal convolutions with parametersW 0 and V 0 for the
waveform and respectively the piano roll:

yℓ = V 0 ∗ y, ∀ℓ (4)

x0 = W 0 ∗ x. (5)
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Input Dilated conv Skip Final block

Channels Type Activation Separable Connection 1x1 Conv Activation

WaveNet 1 Scalar Conv None No Yes No ReLU
DeepVoice 256 1-hot Conv Tanh No Yes Yes ReLU

SynthNet 1 Scalar Embed Tanh Yes No No SeLU

Table 1: Differences between the two baselines and SynthNet.

All other architecture related details are kept identical to the
ones presented in [Van Den Oord et al., 2016] and [Arik et al.,
2017] as best as we could determine. The differences between
the two architectures and SynthNet are summarized in Table 1.

We compare the performance and quality of these two base-
lines against SynthNet initially in Table 3 over three sets of
hyperparmeters (Table 2). For the best resulting models we
perform MOS listening tests, shown in Table 5. Results for
global conditioning experiments are provided in Table 4.

3.2 Gram Matrix Projections

We perform a set of initial experiments to gain more insight
into the learned representations. We use Gram matrices to
extract activation statistics since these have been previously
used for artistic style transfer[Gatys et al., 2015]. After train-
ing, the validation data is fed through five locally conditioned
networks, each trained with a distinct timbre.
The data has identical melodic content but has different

harmonic content (i.e. same song, different instruments). The
Gram matrices are extracted from the outputs of each dilated
block (Equation 3) for each network - timbre. These are
flattened and projected onto 2D, simultaneously over all layers
and styles via T-SNE [Maaten and Hinton, 2008]. The results
presented in Figure 1 show that the activations separate further
as the layer index increases. A broad interpretation is that the
initial layers extract low-level generic audio features, these
being common to all waveforms.
However, since this is a controlled experiment, we can be

more specific. The timbre of a musical instrument is charac-
terized by a specific set of resonating frequencies on top of
the fundamental frequency (pure sine wave). Typically one
identifies individual notes based on their fundamental, or low-
est prominent frequency. These depend on the physics of the
musical instrument and effects generated, for example, by the
environment. Since the sequence of notes is identical and the
timbres differ, we conjectured that Figure 1 could imply a
frequency-layer correspondence. While the latter statement
might be loose, Gram matrices extracted from the lower layers
are nevertheless much closer due the increased similarity with
the fundamental frequency.

3.3 SynthNet Architecture

Figure 1 provides indicative results from many experiments.
We hypothesize that the skip connections are superfluous and
the conditioning of the first input layer should suffice to drive
the melodic component. We also hypothesize that the first
audio input layer learns an embedding corresponding to the
fundamental pitches. Then, we aim to learn mapping from
the symbolic representation (binary midi code) to the pitch
embeddings (Equation 8). Therefore, in SynthNet there are
no parameters learned in each dilation block for local con-

L01
L02
L03
L04
L05
L06
L07
L08
L09
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26

��Guitar ��Trumpet��Piano ✖ G l o c k e n s p i el��Cello

Figure 1: Gram matrix projection using Equation 3. Layers in color,
shapes correspond to timbre.

ditioning and the hidden activation with global conditioning
(omitted in Figure 2) becomes

hℓ = τ
(

W ℓ
f ∗x

ℓ−1+U ℓ
f ·z

)

⊙σ
(

W ℓ
g ∗x

ℓ−1+U ℓ
g ·z

)

. (6)

The input to the dilated blocks is the sum of the embedding
codes and the autoencoder latent codes:

yh = τ(V 0 · y) (7)

x0 = τ(W 0 · x) + τ(V h · yh) (8)

ŷ = V out · τ(V h · yh). (9)

As it can be seen in Figure 2 there are no skip connections and
Equation 4 no longer applies. We also found that using SeLU
activations [Klambauer et al., 2017] in the last layers improves
generation stability and quality. Other normalization strate-
gies could have been used, we found SeLU to work well. In
addition, we further increase sparsity by changing the dilated
convolution in Equation 6 with a dilated depthwise separable
convolution. Separable convolutions perform a channel-wise
spatial convolution that is followed by a 1× 1 convolution.

In our case each input channel is convolved with its own set
of filters. Depthwise separable convolutions have been suc-
cessfully used in mobile and embedded applications [Howard
et al., 2017] and in the Xception architecture [Chollet, 2017].
As we show in Table 4 and Table 5, the parsimonious ap-
proach works very well since it reduces the complexity of the
architecture and speeds up training.
SynthNet is trained with an additional auxiliary auto-

regressive task on the midi data (y) (see Figure 2). In principle,
this allows the model to jointly generate both audio and midi.
In practice, the midi part of the model is too simple to gener-
ate interesting results. Nonetheless, we found the multitask
training beneficial. We conjecture it forces basic midi features
to be extracted. In summary, in contrast with Equation 1 we
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+

Figure 2: SynthNet (also see Table 1) with a multi-label cross-entropy
loss for binary midi.

optimize the joint log p(x,y|z), so that

L = −
1

N

N
∑

i=1

⎡

⎣

|x|=256
∑

j=1

xi
j log x̂

i
j+

|y|=128
∑

j=1

(

yij log ŷ
i
j + (1− yij) log(1− ŷij)

)

⎤

⎦ .

4 Experiments

We compare exact replicas of the architectures described in
[Van Den Oord et al., 2016; Arik et al., 2017] with our pro-
posed architecture SynthNet. All are implemented in PyTorch,
available at https://github.com/florinsch/synthnet . We train
the networks to learn the instrument timbre using raw audio
waveforms. The networks are conditioned locally with a 128
binary vector indicating note on-off, extracted from the midi
files. The latter describes the melodic content.
For the purpose of validating our hypotheses, we chose to

eliminate extra sources of error by manually upsampling the
midi files. That is, we simply treat the midi note on/offs as
points in continuous time and look up whether the note is on
at the given grid point, where the grid may be arbitrarily fine
grained. For the results in Table 4, the network is also con-
ditioned globally with a one-hot vector which designates the
style (instrument) identity. Hence, multiple instrument synthe-
sizers are learned in a single model. For the hyperparameter

search experiments (Table 3) and the final MOS results (Ta-
ble 5) we train one network for each style, since it is faster. We
use the Adam [Kingma and Ba, 2014] optimizer with a batch
size of 1, a learning rate of 10−3, β1 = 0.9, β2 = 0.999 and
ε = 10−8 with a weight decay of 10−5. We find that for most
instruments 100-150 epochs is enough for generating high
quality audio, however we keep training up to 200 epochs to
observe any unexpected behaviour or overfitting. All training
is done on Tesla P100 GPUs with 16GB of memory.

4.1 Synthetic Registered Audio

We generate the dataset using the freely available Timidity++1

software synthesizer. For training we selected parts 2 to 6
from Bach’s Cello Suite No. 1 in G major (BWV 1007). We
found that this was enough to learn the mapping from midi to
audio and to capture the harmonic properties of the musical
instruments. From this suite, the Prelude (since it is most
commonly known) is not seen during training and is instead
used for measuring the validation loss and for conditioning
the generated audio.
After synthesizing the audio, we have approximately 12

minutes of audio for each timbre, of which 9 minutes (75%)
is used for training and 3 minutes (25%) for validation. We
experiment with S = 7 timbres, which were selected to be
as different as possible. Each style corresponds to a specific
preset from the ‘Fluid-R3-GM’ sound font. These are (preset
number - instrument): S01 - Bright Yamaha Grand, S09 -
Glockenspiel, S24 - Nylon String Guitar, S42 - Cello, S56 -
Trumpet, S75 - Pan Flute and S80 - Square Lead.

For training, the single channel waveforms are sampled
at 16kHz and the bit-depth is reduced to 8 bit via mu-law
encoding. Before reducing the audio bit depth, the waveforms
are dithered using a triangular noise distribution with limits
(−0.009, 0.009) and mode 0. This reduces perceptual noise
but more importantly keeps the quantization noise out of the
signal frequencies, which is critical for the learning process.

Without dithering there are melodic discontinuities and clip-
ping errors in the generated waveforms. The latter errors are
most likely due to notes getting mapped to the wrong set of
frequencies (artifacts appear due to the quantization error).
From all timbres, the added white noise due to dithering is
most noticeable for Glockenspiel, Cello and Pan Flute. The
midi is upsampled to 16kHz to match the audio sampling rate
and each frame contains a 128 valued vector which designates
note on-off times for each note (piano roll).

4.2 Measuring Audio Generation Quality

Quantifying the performance of generative models is a non-
trivial task. Similarly to [Van Den Oord et al., 2016;
Arik et al., 2017] we have found that once the training and val-
idation losses go beyond a certain lower threshold, the quality
improves. However, the losses are only informative towards
convergence and overfitting (Figure 4) - they are not sensitive
enough to accurately quantify the quality of the generated
audio. This is critical for ablation studies where precision is
important.

1http://timidity.sourceforge.net/
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SynthNet: Constant-Q Power

SynthNet: RMSE-CQT 8.11

DeepVoice: Constant-Q Power

DeepVoice: RMSE-CQT 15.92

Ground Truth: Constant-Q Power

Ground Truth: Harmonic (blue) Percussive (red)

Figure 3: Left: 1 second of ground truth audio of Bach’s BWV1007 Prelude, played with FluidSynth preset 56 Trumpet. Center: SynthNet
high quality generated. Right: DeepVoice low quality generated showing delay. We encourage the readers to listen to the samples here:
http://bit.ly/synthnet_appendix_a

[Theis et al., 2015] argue that generative models should be
evaluated directly. Then, the first option is the mean opinion
score (MOS) via direct listening tests. This can be impractical,
slowing down the hyperparameter selection procedure. How-
ever, we provide MOS ratings for the best found models in
Table 5. Instead, we propose to measure the root mean squared
error (RMSE) of the Constant-Q Transform (RMSE-CQT) be-
tween the generated audio and the ground truth waveform
(Figure 4, lower plots). Similarly to the Fourier transform, the
CQT [Brown, 1991] is built on a bank of filters, however un-
like the former, it has geometrically spaced center frequencies
that correspond to musical notes.

Although we evaluated other metrics, only the RMSE-CQT
was correlated with the quality of the generated audio. This
subjective observation was initially made by listening to the
audio samples and by comparing the plots of the audio wave-
forms (Figure 3). Roughly speaking, as we also show in
Figure 3 (top captions) and Figure 4 (lower plots), we find
that a RMSE-CQT value below 10 corresponds to a generated
sample of reasonable quality. The RMSE-CQT also penalizes
temporal delays (Figure 3 - right) and is also correlated with
the MOS (Table 3 and Table 5).
We generate every 20 epochs during training and compute

the RMSE-CQT to check generation quality. Indeed, Figure 4
shows that the generated signals match the target audio better
as the training progresses, while the losses flatten. However,
occasionally the generated signals are shifted or the melody is
slightly inaccurate – that is, the wrong note is played (Figure 3
- right). This is not necessarily only a function of the network
weight state since the generation process is stochastic. We set
a fixed random seed at generation time, thus we only observe
changes in the generated signal due to weight changes. For
one model, the RMSE-CQT is averaged over all epochs.

4.3 Hyperparameter Selection

There are many possible configurations for the filter width
F , the number of blocks B, and the maximum dilation rate
R. The dilation rates per each block are: {20, 21, . . . , 2R−1}.
In addition, there is the choice of the number of residual and
skip channels. For speech [Arik et al., 2017] use 64 resid-
ual channels and 256 skip channels, [Engel et al., 2017] use
512 residual channels and 256 skip channels, while [Mor et

al., 2018] use 512 for both. These methods have a receptive
field ∆ < 1. Since the latter two works are also focused on
music, we use 512 channels for both the residual and skip
convolutions and set the final two convolutions to 512 and
384 channels respectively. We hypothesize that it is better to
maximize the receptive field ∆ while minimizing the number
of layers. Thus, in Table 3 the receptive field is set to 1 second
and the other parameters are varied according to Table 2. We
observed that the networks train faster and the quality is better
when the length of the audio slice is maximized within GPU
memory constraints. It can be seen in Table 3 that SynthNet
outperforms both baselines. Some instruments are more dif-
ficult to learn than others (also see Figure 4). This is also
observable from listening to and visualizing the generated
data, available here: http://bit.ly/synthnet_table3 .

The lowest errors for the first four instruments are observed
for SynthNet L48 while the last three are lowest for SynthNet
L24 (Table 3 italic text). This could be due to either an in-
creased granularity over the frequency spectrum, provided by
the extra layers of the L48 model or a better overlap. The best
overall configuration is SynthNet L24. For DeepVoice and
WaveNet, both L24 and L48 have more parameters (Table 3,
second last row) and are slower to train, even though all setups
have the same number of hidden channels (512) over both
baseline architectures. This is because of the skip connections
and associated convolutions.

Global Conditioning. We benchmark only DeepVoice L26
against SynthNet L24, with the difference that now one model
is trained to learn all 7 timbres simultaneously (Table 4). This
slows down training considerably. The errors are higher as
opposed to learning one model per instrument, however Synth-
Net has the lowest error. We believe that increasing the number
of residual channels would have resulted in lower errors.

Filter width F Num blocks B Max dilation R Receptive field ∆

L24 3 2 12 1.0239 sec
L26 2 2 13 1.0240 sec
L48 2 4 12 1.0238 sec

Table 2: Three setups for filter, dilation and number of blocks result-
ing in a similar receptive field.
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WaveNet DeepVoice SynthNet
L24 L26 L48 L24 L26 L48 L24 L26 L48

S01 16.56±4.67 14.83±5.39 18.15±2.88 10.80±1.66 9.32±1.97 17.28±2.19 6.30±1.01 5.96±1.10 5.51±0.85
S09 24.01±5.38 22.20±4.56 25.47±3.96 22.65±5.25 17.54±3.86 27.48±2.55 11.58±1.50 12.53±2.37 10.91±1.40
S24 17.68±3.05 18.95±4.13 19.30±1.26 18.03±1.58 16.33±1.79 19.19±1.25 8.00±1.71 8.53±1.51 7.82±1.32
S42 15.83±3.91 17.20±3.53 16.29±3.38 11.92±0.94 13.77±2.06 13.89±1.73 8.61±1.12 8.84±0.96 8.33±0.74
S56 18.50±2.23 17.25±2.98 22.89±1.73 17.04±0.34 17.16±1.05 21.45±1.37 8.90±0.95 10.37±1.41 8.97±1.42
S75 20.89±6.90 20.03±6.73 19.78±5.15 11.93±1.30 12.75±1.93 11.30±0.64 9.68±1.22 9.83±1.10 10.20±1.60
S80 27.73±2.29 26.74±3.92 26.96±4.71 20.41±1.80 20.09±2.91 20.95±2.77 5.14±1.46 7.66±2.31 7.91±2.41

All 20.02±1.79 19.60±1.73 21.35±1.48 16.18±1.30 15.31±1.10 18.57±1.36 8.32±0.63 9.10±0.70 8.52±0.62

Params 8.23e+7 6.18e+7 1.14e+8 8.90e+7 6.89e+7 1.27e+8 7.35e+6 7.80e+6 1.36e+7
Time 4d2h 4d2h 8+ days 4d10h 3d9h 8+ days 16 hours 16 hours 1d5h

Table 3: Mean RMSE-CQT and 95% confidence intervals (CIs). Two baselines are benchmarked for three sets of model hyperparameter
settings (Table 2), all other parameters identical. One second of audio is generated every 20 epochs (over 200 epochs) and the error versus the
target audio is measured and averaged over the epochs, per instrument. Total number of parameters and training time are also given. Audio and
visuals available here: http://bit.ly/synthnet_table3
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Figure 4: Seven networks are trained, each with a different timbre. Top, losses: training (left) validation (right). Bottom, RMSE-CQT:
DeepVoice L26 (left [Table 3, column 6]) and SynthNet L24 (right [Table 3, column 8]). DeepVoice overfits for Glockenspiel (top right, dotted
line). Convergence rate is measured via the RMSE-CQT, not the losses. The capacity of DeepVoice is larger, so the losses are steeper.

4.4 MOS Listening Tests

Given the results in Table 3, we benchmark the best three
obtained setups: SynthNet L24, DeepVoice L26 and WaveNet

L26. For these experiments, we generate samples based on
three musical pieces using the converged models, from all
instruments. We generate 5 seconds of audio from Bach’s
Cello suites not seen during training, namely Part 1 of Suite

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3372



Experiment Piano Glockenspiel Guitar Cello Trumpet Flute Square All Time

DeepVoice L26 14.01±1.41 19.68±3.29 16.10±1.60 13.80±2.11 18.68±2.04 15.40±3.22 15.64±1.76 16.19±0.91 12d3h
SynthNet L24 9.37±0.71 15.12±3.39 11.88±0.95 11.66±2.35 13.98±1.70 12.01±1.36 10.90±1.17 12.13±0.74 5d23h

Table 4: RMSE-CQT Mean and 95% CIs. All networks learn 7 timbres simultaneously - global conditioning, in addition to local conditioning.

Experiment Piano Glockenspiel Guitar Cello Trumpet Flute Square All

WaveNet L26 2.22±0.25 2.48±0.23 2.18±0.25 2.37±0.28 2.18±0.29 2.37±0.22 2.30±0.09 2.30±0.10
DeepVoice L26 2.55±0.32 1.85±0.23 2.30±0.39 2.62±0.27 2.28±0.32 2.20±0.25 1.87±0.03 2.24±0.11

SynthNet L24 4.75±0.14 4.45±0.17 4.30±0.19 4.50±0.15 4.25±0.18 4.15±0.21 4.10±0.16 4.36±0.07

Table 5: Listening MOS and 95% CIs. 5 seconds of audio are generated from 3 musical pieces (Bach‘s BWV 1007, 1008 and 1009), over
7 instruments for the best found models. Subjects are asked to listen to the ground truth reference, then rate samples from all 3 algorithms
simultaneously. 20 ratings are collected for each file. Audio and visuals here: http://bit.ly/synthnet_mostest

No. 1 in G major (BWV 1007), Part 1 of Suite No. 2 in D
minor (BWV 1008) and Part 1 of Suite No. 3 in C major
(BWV 1009) which cover a broad range of notes and rhythm
variations.

Table 5 shows that the samples generated by SynthNet are
rated to be almost twice as good than the baselines, over all
timbres. By listening to the samples (http://bit.ly/synthnet_
mostest), one can observe that Piano is the best overall learned
model, while the baseline algorithms have trouble playing the
correct melody over longer time spans for other styles. It is
noteworthy that these results are obtained from only 9 minutes
of training data.

4.5 Synthesizing Real Instruments
We used labeled audio recordings of real audio performances
from the MusicNet dataset [Thickstun et al., 2016]. We se-
lected Bach’s 3rd and 4th cello suites for training, leaving out
the first part of Bach’s 3rd cello suite for testing (i.e. genera-
tion) - it was also used during the synthetic audio MOS tests.
We used 44kHz audio for training the L24 SynthNet setup. We
encourage the reader to listen to the audio generated based on
real cello recordings here: http://bit.ly/synthnet_real_cello .

The latter demonstrates that timbre can be reproduced even
from real recordings and, importantly, that the melody re-
mains accurate. While improvements can be made by pre- and
post-processing the audio (e.g. with compression) and further
tuning the hyperparameters (e.g. increasing the network ca-
pacity to account for increased complexity); our objective is
to demonstrate the effectiveness of the model itself.

5 Discussion
In the current work, we gave some insights into the learned rep-
resentations of autoregressive generative convolutional models.
We tested the hypothesis that the first causal layer learns fun-
damental frequencies. We validated this empirically, arriving
at the SynthNet architecture which converges faster and pro-
duces higher quality audio. To the best of our knowledge, this
is the first time an autoregressive generative model is used to
learn synthesizers.
Our method is able to simultaneously learn the character-

istic harmonics of a musical instrument (timbre) and a joint

embedding between notes and the corresponding fundamen-
tal frequencies. While we focus on music, we believe that
SynthNet can also be successfully used for other time series
problems, and we plan to investigate this in future work.
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