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Abstract

Utilizing multiple modalities to learn a good dis-
tance metric is of vital importance for various clin-
ical applications. However, it is common that
modalities are incomplete for some patients due to
various technical and practical reasons in health-
care datasets. Existing metric learning methods
cannot directly learn the distance metric on such
data with missing modalities. Nevertheless, the
incomplete data contains valuable information to
characterize patient similarity and modality rela-
tionships, and they should not be ignored during
the learning process. To tackle the aforementioned
challenges, we propose a metric learning frame-
work to perform missing modality completion and
multi-modal metric learning simultaneously. Em-
ploying the generative adversarial networks, we in-
corporate both complete and incomplete data to
learn the mapping relationship between modali-
ties. After completing the missing modalities, we
use the nonlinear representations extracted by the
discriminator to learn the distance metric among
patients. Through jointly training the adversarial
generation part and metric learning, the similarity
among patients can be learned on data with miss-
ing modalities. Experimental results show that the
proposed framework learns more accurate distance
metric on real-world healthcare datasets with in-
complete modalities, comparing with the state-of-
the-art approaches. Meanwhile, the quality of the
generated modalities can be preserved.

1 Introduction
With the advances in data collection techniques, large
amounts of healthcare data collected from multiple sources
are becoming available. Such multi-source data can provide
complementary information that can reveal the fundamen-
tal characteristics of patients. For example, in the study of
Alzheimer’s disease, different types of measurements such
as magnetic resonance imaging (MRI), positron emission
tomography (PET) and cerebrospinal fluid (CSF) are used
to examine morphological changes, metabolic changes and

cerebrospinal pathology associated with the disease respec-
tively. Extracting valuable information from such multi-
source (a.k.a multi-modal) data may effectively improve clin-
ical decision support.

For many clinical applications such as personalized
medicine, trajectory analysis and cohort study, it is cru-
cial to learn a proper distance function or similarity mea-
surement metric from multi-modal data. However, existing
metric learning models for measuring similarity among pa-
tients [Zhan et al., 2016; Huai et al., 2018] only focus on
single-modal data, instead of multi-modal data. In other
applications, such as image retrieval and face recognition,
multi-modal metric learning methods [Xie and Xing, 2013]
have been developed through linear or non-linear integration
of features from multiple modalities.

However, one common problem that hampers the use of
multi-modal metric learning approaches for patient similarity
analysis is the issue of missing data. In the healthcare area,
each examination generates a modality of data. Due to the
potential risks in certain examinations such as PET scans, or
invasive procedures such as CSF biomarkers, patients may
not be recommended to take all examinations in disease di-
agnosis. Also, the dropout of patients during the study and
data privacy policies can cause the missing modality issue. In
the multi-modal datasets, data can be missing in one or multi-
ple modalities, i.e., for a patient, certain data source is either
available or missing. Due to the unique challenge of health-
care data, existing unimodal or multi-modal metric learning
methods cannot directly measure the distance between two
patients with different available modalities.

A simple approach for solving the missing data problem
is to remove all samples with missing values, but this dra-
matically reduces the amount of samples and results in a se-
vere loss of valuable information. In fact, the large amount of
data with incomplete modalities provides more information,
which is important to characterize the similarity of samples
and the relationship between modalities. This motivates us
to complete the missing modalities for complementary study,
which not only enables patient similarity learning, but also
provides potential patterns of the missing sources that can be
used for further clinical analysis. Traditional missing data im-
putation techniques, such as mean and matrix completion are
not suitable for large-scale high-dimensional datasets.

To tackle the aforementioned problems, we propose
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a Metric Learning with Incomplete Modalities (MeLIM)
method that jointly infers the missing modalities and simi-
larity information. The proposed model contains a modality
completion part and a metric learning part. In the model, we
employ generative adversarial network (GAN) to capture the
relationship between the existing modality and the missing
one. The missing modality is completed by mapping the ex-
isting modality through a generator. A discriminator is used
to distinguish the true data and the generated one. Mean-
while, the large amount of incomplete data is incorporated
into the GAN framework during the training process. In this
way, the relationship between modalities is captured by the
generative network and the missing modality can be imputed.
We then connect the imputation part with metric learning by
incorporating an auxiliary task in the discriminator to make
use of the extracted non-linear multi-modal representations.
In the proposed model, data of high quality and discrimi-
nativeness can be generated, which helps to better measure
the similarity among samples. Our main contributions can be
summarized as follows:

• We propose a new framework of patient similarity learn-
ing on multi-modal healthcare data with incomplete
modalities. It imputes the missing modality and learns
the sample representation jointly, without a need for a
separate imputation step.

• Our proposed method can utilize both complete and in-
complete data in the training process. The complete data
provides supervised information, and the large amount
of incomplete data provides more information of modal-
ity characteristics and relationships.

• Comparing with the state-of-the-art approaches, the pro-
posed method not only learns a more accurate distance
metric, but also preserves the quality of the generated
data, which is validated on a real-world dataset.

2 Related Work
The goal of metric learning is to learn a distance metric so that
similar samples are grouped together and dissimilar samples
are separated. Metric learning has prompted the development
of patient similarity analysis [Zhan et al., 2016; Huai et al.,
2018; Ni et al., 2017; Suo et al., 2018], which is a key task in
clinical decision support applications.

When it comes to integrating information from multiple
sources, multi-modal learning approaches [Xie and Xing,
2013; Zhang et al., 2017; Hu et al., 2014; Zhang et al., 2018;
Yuan et al., 2018] cannot be easily applied in healthcare do-
main because of the missing modality problem. To tackle
the missing modality problem, [Li et al., 2018] partitions the
data into multiple complete subgroups; [Yang et al., 2018] in-
tegrates the consistency of modalities. For high dimensional
data such as bio-images, deep learning based approaches are
adopted. [Li et al., 2014] learns PET from MRI images
by minimizing the pixel difference between predicted im-
ages and true ones. However, the loss function may lead
to a blurry problem. To generate high quality data, models
based on GAN [Goodfellow et al., 2014] are developed to
learn the mapping between modalities. GAN models have
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Figure 1: Illustration of multi-modal data with missing modalities.

achieved great success in image-to-image translation [Isola
et al., 2017; Gan et al., 2017; Zhu et al., 2017], attribute-
to-image generation [Du et al., 2018], etc. The basic GAN
framework consists of a generator network and a discrimina-
tor network. The generator takes a known distribution and
generates new data, while the discriminator is used to distin-
guish the generated samples from real data distribution. The
generator and discriminator play a minimax game.

Recently, several works [Wang et al., 2018; Cai et al.,
2018; Shang et al., 2017] have emerged utilizing the genera-
tive ability of GAN models to impute missing data. These
works mainly focus on data generation using GAN, while
few of them explore the downstream tasks, such as met-
ric learning. We combine the data generation process and
metric learning to resolve the missing modality issue in
patient similarity analysis. In terms of cross modal gen-
eration and classification, the proposed model is also re-
lated to domain adaptation works [Hoffman et al., 2017;
Russo et al., 2018]. However, different from these methods
that evaluate only on the target domain, the proposed model
is a multi-modal learning, i.e., the prediction utilizes the com-
plementary information of all domains. Moreover, they min-
imize the difference between domains via an unsupervised
mapping, while we learn the domain relationship using both
paired and unpaired modalities.

3 Methodology
3.1 Problem Formulation
Performing patient similarity analysis relies on learning a
proper distance metric among patients. In metric learning,
a linear or non-linear transformation function f(·) maps the
input data into a new space. The metric in the transformed
space measures the sample distances for a considered task.
Without loss of generality, the distance metric between two
samples pi and pj can be written as:

d2(pi,pj) =‖ f(pi)− f(pj) ‖2 . (1)

For each pair of samples pi and pj , a pairwise label gij de-
notes whether these two samples are similar or not. If pi and
pj are similar (i.e. they belong to the same group), then gij
is set to 1, otherwise -1. The distance constraints can be con-
structed via various types of loss functions. In this paper, we
minimize the pairwise hinge loss:

Lm =
∑
T

[
1− gij(γ − d2(pi,pj))

]
+
, (2)
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Figure 2: Overall framework.

where [·]+ = max(·, 0), γ is the unit margin, and T =
{(pi,pj , gij)} is the set of annotated positive and negative
sample pairs. Each patient pk ideally has two modalities x
and y, and such patients are considered as complete/paired
samples. We assume that there are N complete samples, de-
noted as Ωxy = {(px

k,p
y
k)}Nk=1. However, modality missing

is a common issue in healthcare area. There are two cases in
our setting: x or y modality missing. The sample set without
y modality is denoted as Ωx = {px

k}
Mx

k=1, and Ωy = {py
k}

My

k=1
is the set without x modality. The total number of samples is
N+Mx+My . Figure 1 illustrates the three types of data. In
Eq. (2), pi can be (px

i ,p
y
i ), px

i or py
i , and so as pj .

Due to the issue of incomplete modalities, it is hard to di-
rectly apply traditional metric learning to learn similarities
among patients. To tackle this issue, we need to design an ef-
fective model to automatically infer an appropriate mapping
from the observed modality to the missing one. Thus, the
proposed model consists of two main parts: missing modality
generation and metric learning, and connects them in an end-
to-end way, which is illustrated in Figure 2. We first employ
GAN to generate the missing modality based on the observed
modality, and then feed the latent representation which con-
tains the multi-modal information into a metric learning layer
to learn the distance metric. The two parts are optimized si-
multaneously in the framework. For simplicity, we use x for
px and y for py when it is unambiguous.

3.2 Modality Generation
Intrinsically, multiple modalities share consistency with each
other and can provide complementary information together.
Through learning the hidden relationship between modalities,
the missing modality can be reconstructed according to the
observed one. To achieve this goal, we develop the following
framework for modality completion.

The proposed generative network includes two generators
Gy : x→ y and Gx : y→ x. The goal is to train the genera-
tor networks to infer the missing modality from the observed
one. From a probabilistic perspective, suppose that x is
drawn from the distribution px(x), and y is drawn from py(y).
The generator Gy characterizes the conditional distribution
py(y|x), and Gx defines the conditional distribution in the

other direction px(x|y). In the generation process, a sample
x is drawn from the data belonging to domain x, and then the
generatorGy produces a fake sample ỹ = Gy(x) in domain y
following py(y|x). Hence, the fake sample pair (x, ỹ) follows
the joint distribution pGy

(x, y) = py(y|x)px(x). Similarly, a
fake pair (x̃, y) can be obtained from Gx, i.e. x̃ = Gx(y),
following pGx

(x, y) = px(x|y)py(y).

Loss of Paired Data
For the paired training data, both of the two modalities x and
y are available. We use a discriminator D1 to distinguish
whether a sample (x, y) is real or fake. Since the incomplete-
ness exists in both modalities in our problem, this requires the
proposed model to be able to generate data from two direc-
tions. It leads to the failure of the unidirectional conditional
generation process proposed in [Cai et al., 2018]. There-
fore, we develop the following objective function to enable
the conditional generation in two directions:

min
Gx,Gy

max
D1

Lp
adv = Ex∼px,y∼py log(D1(x, y))

+Ex∼px
log(1−D1(x, ỹ))

+Ey∼py log(1−D1(x̃, y)).

(3)

The adversarial loss is optimized based on a minimax game.
We treat D1 as a binary classification network. The true data
sample (x, y) is set with label 1, and the predicted samples
(x, ỹ) and (x̃, y) are given label 0. We minimize the binary
cross-entropy lossLce(ĉ, c) = −(c log(ĉ)+(1−c) log(1−ĉ))
to train the classifier. Therefore, the loss function of D1 can
be expressed as:

LD1
=Lce(D1(x, y), 1) + Lce(D1(x, ỹ), 0)

+Lce(D1(x̃, y), 0).
(4)

To minimize Euclidean distance between the predicted and
true data, the mean squared error loss Lmse is calculated as:

Lmse(x, y, x̃, ỹ) = ‖x− x̃‖22 + ‖y − ỹ‖22. (5)

Loss of Unpaired Data
In real world applications, it is usually hard to obtain com-
plete data. The small amount of available complete data may
not provide enough information to characterize the dataset.
The incomplete data contain partial extra information and are
expected to improve the performance of downstream tasks.
Therefore, how to incorporate the incomplete data into train-
ing is the issue that we aim to resolve. For unpaired data, we
lack supervision in the form of paired modalities. To make
use of the unpaired data, motivated by [Dumoulin et al.,
2016; Donahue et al., 2016], we use the following equation
to enable joint distribution matching:

min
Gx,Gy

max
D2

Lu
adv = Ey∼py

logD2(x̃, y)

+Ex∼px log(1−D2(x, ỹ)),
(6)

where the discriminator D2 is used to distinguish whether a
fake modality pair is from p(x, ỹ) or p(x̃, y). Similarly toD1,
the loss function of D2 is:

LD2
= Lce(D2(x̃, y), 1) + Lce(D2(x, ỹ), 0). (7)
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Loss of Generation
The generators Gx and Gy learn the mapping between two
domains, and are optimized to make the imputed data hard
to be distinguished from the real data. Following the opti-
mization strategy in [Goodfellow et al., 2014], we train the
generators with the objective function:
LGx,Gy = Lce(D1(x, ỹ), 1) + Lce(D1(x̃, y), 1)

+ Lce(D2(x̃, y), 0) + Lce(D2(x, ỹ), 1)

+ Lmse(x, y, x̃, ỹ).

(8)

The generators and discriminators are all deep neural net-
works. In particular, the generatorsGx andGy follow a U-net
encoder-decode network [Ronneberger et al., 2015] structure
with skip connections between layers. The discriminatorsD1

and D2 extract high-level representations h1 and h2 respec-
tively from their input sample pairs. The representation vec-
tors h1 and h2 are not only used for discriminating the sample
pairs, but also for performing the metric learning task.

3.3 Metric Learning Layer
Through the generators Gx and Gy in Section 3.2, we can
predict the missing modalities and obtain three types of data
(x, y), (x̃, y) and (x, ỹ). We then perform the multi-modal
metric learning on the whole training data. We make use
of the latent representations of the discriminators to perform
metric learning, by training the distance metric as an auxiliary
task [Odena et al., 2017] in the discriminator. In this way, the
adversarial network and metric learning layer are optimized
in an end-to-end way. The similarity information learned by
metric learning is expected to improve the discriminability
of the generated domains, i.e., a generated sample should be
more similar to the samples in the same group and dissimi-
lar to the samples from another group. Meanwhile, the high
quality and discriminability of the generated data in return
can improve metric learning performance.

During the training process, a sample pi ∈ Ωx with only
modality xi is fed into Gy to generate the missing modality
ỹi, and then a complementary sample pi = (xi, ỹi) can be de-
rived. The sample (xi, ỹi) is fed into discriminators D1 and
D2 for adversarial training as described in Section 3.2. Mean-
while, latent representations h1i and h2i are extracted by D1

and D2, respectively. The vectors h1i and h2i are non-linear
abstract representations which capture the characteristics of
(xi, ỹi). We then transform h1i and h2i to obtain a latent vec-
tor hi, i.e., hi = f(h1i ⊕ h2i ), where ⊕ is the concatenation
operator and f(·) is a fully-connected layer. Here hi can be
considered as the representation in the transformed space for
pi in Eq. (1). Similarly, the vector representations for (xj , yj)
and (x̃k, yk) are obtained from the latent vectors learned from
D1 and D2. Note that (xj , yj) does not contribute to the
adversarial loss of D2. After obtaining the representations
for a batch of samples, including {(xi, ỹi)}, {(xj , yj)}, and
{(x̃k, yk)}, we calculate the metric learning loss in Eq. (2)
for sample pairs in the mini-batch.

3.4 The Learning Framework
In the proposed method, the generators are trained to produce
fake data which can fool the discriminators. The discrimina-
tors produce not only the probability distribution of real/fake

modality pairs, but also the distance distribution of sample
pairs. Metric loss Lm is involved to optimize the parameters
of discriminators and generators. Generators are trained to
minimize αLm+Lu

adv +Lp
adv , and discriminators are trained

to minimize αLm − Lu
adv − L

p
adv , where α is a trade-off pa-

rameter. In the training process, we first randomly choose a
batch of paired and unpaired samples, and then use genera-
tors to predict the corresponding fake data. Generator and
discriminator are updated iteratively by fixing one and updat-
ing the other. When it comes to testing, we use the generators
to obtain the imputed data, and the metric learning network
to obtain the distance metric.

4 Experiments
4.1 Dataset
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1

project aims to track the progression of Alzheimer’s disease
using biomarkers and clinical measures. There are 840 pa-
tients in three cohorts: 231 cognitively normal (CN), 410
mild cognitive impairment (MCI), and 199 Alzheimer’s dis-
ease (AD) patients. In this work, we use the available modal-
ities in the database: MRI images and PET images, and gen-
erate the missing images from each other. We first preprocess
the MRI and PET images for each patient. The T1-weighted
MRI images are skull-stripped and intensity inhomogeneity
corrected. After that, each MRI is segmented into gray mat-
ter, white matter and cerebrospinal fluid, and further spatially
normalized into a template space using SPM2 and CAT123

softwares. In the experiments, we use the gray matter tis-
sue density maps as the MRI modality. The PET modality is
coregistered, spatially normalized and rigidly aligned to the
MRI modality. The MRI gray matter images and PET images
are further smoothed using a unit standard deviation Gaussian
kernel. To reduce the computational cost, we downsample the
images to 32×32 2D slices as the inputs.

4.2 Experimental Setup
Baseline Approaches
We compare the proposed metric learning framework on the
incomplete dataset with the state-of-the-art approaches. For
the baseline approaches, we follow a two-step strategy: first
impute the missing modalities using data completion meth-
ods, and then perform multi-modal metric learning. The
approaches for imputing missing modalities include: Multi-
modal Autoencoder (MultiAE), Pix2pix [Isola et al., 2017]
and CycleGAN [Zhu et al., 2017]. The approaches for multi-
modal metric learning include: LM3L [Hu et al., 2014],
FISH-MML [Zhang et al., 2018] and HM3L [Zhang et al.,
2017]. Among the imputation approaches, MultiAE and
Pix2pix are trained on paired data, and CycleGAN is trained
on unpaired data. All the methods have the same generator
and discriminator network structure as the proposed method,
but different loss functions. For the metric learning ap-
proaches, since they cannot handle incomplete examples, we

1https://adni.loni.usc.edu/
2https://www.fil.ion.ucl.ac.uk/spm/
3http://www.neuro.uni-jena.de/cat/
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Datasets Methods
5% paired 20% paired

Classification Clustering Classification Clustering

Accuracy F1 Purity RI Accuracy F1 Purity RI

CN-AD

LM3L .507(.019) .425(.030) .550(.032) .506(.006) .525(.024) .396(.081) .540(.030) .504(.007)
FISH-MML .663(.019) .559(.030) .514(.000) .500(.000) .665(.011) .596(.016) .517(.006) .500(.001)

HM3L .577(.017) .447(.030) .523(.006) .501(.001) .635(.004) .480(.014) .514(.001) .500(.000)
MultiAE .698(.017) .667(.015) .692(.023) .575(.018) .727(.013) .701(.014) .722(.013) .599(.012)
Pix2pix .728(.011) .701(.015) .723(.011) .600(.010) .734(.010) .714(.012) .729(.008) .605(.007)

CycleGAN .719(.002) .696(.005) .705(.019) .584(.015) .732(.013) .710(.020) .726(.013) .602(.012)
MeLIM .756(.004) .737(.009) .755(.006) .630(.006) .783(.005) .759(.005) .782(.005) .659(.006)

MCI-AD

LM3L .499(.037) .558(.023) .557(.038) .508(.012) .519(.023) .583(.033) .531(.007) .500(.001)
FISH-MML .583(.015) .663(.011) .555(.033) .507(.009) .576(.023) .645(.017) .540(.024) .502(.006)

HM3L .547(.026) .640(.022) .584(.002) .513(.001) .583(.007) .666(.004) .575(.020) .511(.006)
MultiAE .645(.035) .660(.035) .649(.025) .545(.015) .672(.012) .688(.011) .665(.009) .554(.006)
Pix2pix .672(.012) .688(.011) .665(.009) .554(.006) .709(.010) .723(.009) .703(.012) .582(.010)

CycleGAN .700(.008) .714(.007) .692(.020) .574(.014) .703(.007) .720(.010) .695(.013) .576(.010)
MeLIM .708(.006) .732(.007) .706(.006) .584(.005) .731(.005) .761(.004) .725(.007) .601(.006)

Table 1: Performance evaluation of learned distance metrics on two datasets.

first fill in the missing modalities with the imputation method
that gives the best performance among baselines. We also
conduct experiments by first completing the data using dif-
ferent modality completion methods, and then training a deep
metric learning network on each imputed dataset to optimize
the loss in Eq. (2). The metric learning network has the same
structure as the discriminator in the proposed framework.

Implementation Details and Measurement
We randomly divide the patient set into training, validation
and testing sets in a 0.75:0.05:0.2 ratio. Adam optimizer is
used for models with deep architectures. We set the learning
rate and the network structures the same as [Cai et al., 2018]
but in a 2D fashion. We evaluate the learned distance metric
in two tasks: disease prediction and patient clustering. For
the disease prediction task, k-nearest neighbor (KNN) clas-
sification is performed on the learned distance metric. For
each testing patient, we assign the predicted label with the
most common class label among the top-k neighbors from
the training set. We set k = 3 in the KNN classifier, and
use accuracy and F1 as measures for the comparison. For
the patient clustering task, we perform k-means algorithm
with k= 2 on the testing examples based on the learned dis-
tance metric. The quality of clustering is reported in terms
of purity and Rand index (RI). We also evaluate the perfor-
mance of data generation part, by employing structural simi-
larity (SSIM) [Cai et al., 2018] to quantitatively measure the
structural difference between predicted images and the cor-
responding true ones. The SSIM values are in the range of
[0,1], and the higher the better.

4.3 Experimental Results
We evaluate the performance on two tasks separately: distin-
guishing CN and AD patients (CN-AD), and MCI and AD
patients (MCI-AD). Each task can be viewed as a dataset.
For the training set, we use a small ratio of paired data and
the available unpaired data. For the testing set, we keep half
paired data and half unpaired data. We repeat all the ap-
proaches five times on the two datasets.

Patient Similarity Analysis

There are two main ways for similarity comparison of incom-
plete data. One way is to first complete the missing modal-
ities and then conduct metric learning. The other is to inte-
grate missing modality imputation and metric learning into an
end-to-end learning framework. For the baseline algorithms,
we follow the two-step procedure. For the proposed method,
image generation and metric learning are trained jointly.

In Table 1, we present the average and standard deviation
values of different methods by varying the ratio of paired
data in the training set (i.e. 5% paired and 20% paired). In
the table, we can see that the proposed method MeLIM out-
performs baselines in terms of both disease classification and
patient clustering tasks. Since we measure the distance met-
ric on the testing set with both complete and imputed sam-
ples, we expect that the imputed data can be both realistic
and distinguishable. In general, if the imputed data are in
high quality, the performance of the downstream task (i.e.
metric learning in our problem) will be better. MultiAE and
Pix2pix can utilize only paired data samples. The number
of available data is so small that they cannot learn a good
mapping. Since MultiAE optimizes the content loss Lmse,
it suffers from the so-called “blurry” problem. CycleGAN
is an unsupervised image-to-image translation method, and
it suffers from the lack of supervision. These data comple-
tion methods optimize the data generation process, but can
not guarantee a good representation for learning the similar-
ity among patients. MeLIM optimizes modality generation
and metric learning simultaneously, and thus obtains the best
results. The traditional multi-modal metric learning models,
LM3L, FISH-MML and HM3L learn linear transformations
to map the original inputs to new spaces, which is not suit-
able for high-dimensional complex dataset. Therefore, they
cannot obtain satisfactory results for lack of the ability to ex-
tract precise representations. MeLIM utilizes the latent space
learned by the discriminator which has a deep architecture,
and thus high level features which better characterize the in-
puts can be extracted. For each method, the performance on
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Figure 3: SSIM values between generated images and corresponding
true images on two datasets.

the CN-AD dataset is generally better than that on the MCI-
AD dataset. Since MCI is the mild stage of AD, it is easier
to distinguish AD patients from CN groups than from MCI
groups. We also observe that using more modality complete
samples during training leads to better performance. This
demonstrates that supervised information helps the data gen-
eration process, and the higher quality of generated data can
help to improve downstream tasks.

Data Quality Comparison
In this subsection, we show that the proposed framework not
only learns accurate distance metric, but also preserves the
quality of generated images. We calculate the SSIM values
between the predicted images and the true images. Figure 3
shows the results using different modality completion meth-
ods. In the figure, we provide the average SSIM values of
MRI and PET generations. It can be seen that MultiAE and
Pix2pix are not able to generate high quality data when there
is not enough paired training data. CycleGAN is trained on
the whole datasets without paired information, so that its re-
sults do not change with the ratio of paired data. Since the
proposed method takes into consideration both the paired and
unpaired data, it generates high quality images that are more
similar to the ground truth. By comparing the results on the
data with different ratios of complete samples, we can see that
using 20% paired samples is generally better than using 5%
paired samples, especially for MultiAE and Pix2pix. This is
due to the fact that more complete samples can provide more
supervision to the data generation process. In the diagnosis of
AD, doctors focus more on some critical regions and less on
the whole images. Therefore, in this work, we mainly focus
on the patient similarity analysis using the generated images,
and do not emphasize too much on the overall image quality.

Complete vs. Imputed Data
To validate the importance of modality imputation, we con-
duct the following experiments by comparing the metric
learning performance on complete and imputed dataset. We
train a deep metric learning model using only the com-
plete/paired data in the training set, and report model perfor-
mance on the testing set of complete data. For comparison,
we train MeLIM using the whole training set (including both
paired and unpaired data), and report the performance on the
same testing set. The comparison results between the above
two strategies can be seen in Figure 4. We conduct experi-

ments on the two datasets with 5% paired training samples.
We observe that by incorporating the imputed data during
training, metric learning can achieve much better results. As
the majority of patients have missing modalities, the infor-
mation in the complete dataset may not be sufficient, so that
metric learning model cannot be well optimized using only
complete data. Our proposed method enables metric learn-
ing model to incorporate the incomplete data into the training
process. The imputed data provides useful information to im-
prove the performance of metric learning.
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Figure 4: Performance comparison between complete and imputed
data on two datasets.

5 Conclusion and Discussion
The problem of incomplete modalities hampers the develop-
ment of metric learning approaches on healthcare domain.
Moreover, the incomplete data contains extra information
which should not be abandoned. To tackle this issue, we
propose a new framework to perform metric learning on
healthcare data with incomplete modalities. In the proposed
method, modality imputation and metric learning are con-
ducted simultaneously in an end-to-end way. In the modal-
ity generation part, we incorporate both complete and incom-
plete data in the learning process, making use of the com-
plementary information contained in the two types of data.
Meanwhile, the non-linear high-level representations of both
complete and imputed samples are extracted by the discrim-
inators, and then fed into a metric learning layer as an auxil-
iary task. Experiments show that the proposed model learns
an accurate distance metric and also generates high quality
data. The proposed method can be generalized for other types
of data, by adjusting the network structures of generators and
discriminators. The future research may address the scenario
in which the datasets contain more than two modalities, but
there exists incomplete or missing data in some modalities.
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