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Abstract

Classically, imitation learning algorithms have
been developed for idealized situations, e.g., the
demonstrations are often required to be collected
in the exact same environment and usually include
the demonstrator’s actions. Recently, however, the
research community has begun to address some of
these shortcomings by offering algorithmic solu-
tions that enable imitation learning from observa-
tion (IfO), e.g., learning to perform a task from vi-
sual demonstrations that may be in a different envi-
ronment and do not include actions. Motivated by
the fact that agents often also have access to their
own internal states (i.e., proprioception), we pro-
pose and study an IfO algorithm that leverages this
information in the policy learning process. The pro-
posed architecture learns policies over propriocep-
tive state representations and compares the result-
ing trajectories visually to the demonstration data.
We experimentally test the proposed technique on
several MuJoCo domains and show that it outper-
forms other imitation from observation algorithms
by a large margin.

1 Introduction
Imitation learning [Schaal, 1997; Argall et al., 2009; Osa et
al., 2018] is a popular method by which artificial agents learn
to perform tasks. In the imitation learning framework, an
expert agent provides demonstrations of a task to a learn-
ing agent, and the learning agent attempts to mimic the ex-
pert. Unfortunately, many existing imitation learning algo-
rithms have been designed for idealized situations, e.g., they
require that the demonstrations be collected in the exact same
environment as the one that the imitator is in and/or that the
demonstrations include the demonstrator’s actions, i.e., the
internal control signals that were used to drive the behavior.
These limitations result in the exclusion of a large amount
of existing resources, including a large number of videos up-
loaded to the internet. For example, 300 hours of video are
uploaded to YouTube every minute1, many of which include

1https://bit.ly/2quPG6O

different types of tasks being performed. Without new imi-
tation learning techniques, none of this video can be used to
instruct artificial agents.

Fortunately, the research community has recently begun
to focus on addressing the above limitations by considering
the specific problem of imitation from observation (IfO) [Liu
et al., 2018; Torabi et al., 2019d]. IfO considers situations
in which agents attempt to learn tasks by observing demon-
strations that contain only state information (e.g., videos).
Among IfO algorithms that learn tasks by watching videos,
most attempt to learn imitation policies that rely solely on
self-observation through video, i.e., they use a convolutional
neural network (CNN) that maps images of themselves to ac-
tions. However, in many cases, the imitating agent also has
access to its own proprioceptive state information, i.e., direct
knowledge of itself such as the joint angles and torques asso-
ciate with limbs. In this paper, we argue that IfO algorithms
that ignore this information are missing an opportunity that
could potentially improve the performance and the efficiency
of the learning process. Therefore, we are interested here in
IfO algorithms that can make use of both visual and proprio-
ceptive state information.

In this paper, we build upon our previous work [Torabi
et al., 2019b] proposing an algorithm that uses a GAN-like
[Goodfellow et al., 2014] architecture to learn tasks perform
IfO directly from videos. Unlike our prior work, however, our
method also uses proprioceptive information from the imitat-
ing agent during the learning process. We hypothesize that
the addition of such information will improve both learning
speed and the final performance of the imitator, and we test
this hypothesis experimentally in several standard simulation
domains. We compare our method with other, state-of-the-
art approaches that do not leverage proprioception, and our
results validate our hypothesis, i.e., the proposed technique
outperforms the others by a large margin.

The rest of this paper is organized as follows. In Section
2, we review related work in imitation from observation. In
Section 3, we review technical details surrounding Markov
decision processes, imitation learning, and IfO. The proposed
algorithm is presented in Section 4, and we describe the ex-
periments that we have performed in Section 5.
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2 Related Work

In this section, we review research in imitation learning,
plan/goal recognition by mirroring, and recent advances in
imitation from observation (IfO).

Conventionally, imitation learning is used in autonomous
agents to learn tasks from demonstrated state-action trajecto-
ries. The algorithms developed for this task can be divided
into two general categories, (1) behavioral cloning [Bain and
Sommut, 1999; Ross et al., 2011; Daftry et al., 2016] in
which the agents learn a direct mapping from the demon-
strated states to the actions, and (2) inverse reinforcement
learning (IRL) [Abbeel and Ng, 2004; Bagnell et al., 2007;
Baker et al., 2009] in which the agents first learn a reward
function based on the demonstrations and then learn to per-
form the task using a reinforcement learning (RL) [Sutton
and Barto, 1998] algorithm.

In contrast, imitation from observation (IfO) is a frame-
work for learning a task from state-only demonstrations. This
framework has recently received a great deal of attention from
the research community. The IfO algorithms that have been
developed can be categorized as either (1) model-based, or
(2) model-free. Model-based algorithms require the agent to
learn an explicit model of its environment as part of the imi-
tation learning process. One algorithm of this type is behav-
ioral cloning from observation (BCO) [Torabi et al., 2018],
in which the imitator learns a dynamics model of its envi-
ronment using experience collected by a known policy, and
then uses this model to infer the missing demonstrator ac-
tions. Using the inferred actions, the imitator then computes
an imitation policy using behavioral cloning [Bain and Sam-
mut, 1995]. Another approach of this type is reinforced in-
verse dynamics modeling (RIDM) [Pavse et al., 2019] which
also learns a model of its environment using an exploration
policy and then it further optimizes the model using a sparse
reward function. It is shown that in some experiments the
algorithm can even outperform the expert. Another model-
based approach to IfO is imitating latent policies from obser-
vation (ILPO) [Edwards et al., 2019]. Given the current state
of the expert, this approach predicts the next state using a la-
tent policy and a forward dynamics model. It then uses the
difference between the predicted state and the actual demon-
strator next state to update both the model and the imitation
policy. Afterwards, the imitator interacts with its environment
to correct the action labels.

Model-free algorithms, on the other hand, do not require
any sort of model to learn imitation policies. One set of ap-
proaches of this type learns a time-dependent representation
of tasks and then relies on hand-designed, time-aligned re-
ward functions to learn the task via RL. For example, Ser-
manet et al. [2018] propose an algorithm that learns an em-
bedding function using a triplet loss function that seeks to
push states that are close together in time closer together in
the embedded space, while pushing other states further away.
Liu et al. [2018] also propose a new architecture to learn a
state representation—specifically, one that is capable of han-
dling viewpoint differences. Gupta et al. [2017] also propose
a neural network architecture to try to learn a state represen-
tation that can overcome possible embodiment mismatch be-

tween the demonstrator and the imitator. Each of these ap-
proaches requires multiple demonstrations of the same task to
be time-aligned, which is typically not a realistic assumption.
Aytar et al. [2018] propose an IfO algorithm that first learns
an embedding using a self-supervised objective, and then
constructs a reward function based on the embedding repre-
sentation difference between the current state of the imitator
and a specific checkpoint generated by the visual demonstra-
tion. Goo and Niekum [2019] propose an algorithm that uses
a shuffle-and-learn style [Misra et al., 2016] loss in order to
train a neural network that can predict progress in the task
which can then be used as the reward function.

Another set of model-free algorithms follow a more end-to-
end approach to learning policies directly from observations.
An algorithm of this type is generative adversarial imitation
from observation (GAIfO) [Torabi et al., 2019b], which uses a
GAN-like architecture to bring the state transition distribution
of the imitator closer to that of the demonstrator. Another ap-
proach of this type is the work of Merel et al. [2017], which
is concerned instead with single state distributions. Stadie et
al. [2017] also propose an algorithm in this space that com-
bines adversarial domain confusion methods [Ganin et al.,
2016] with adversarial imitation learning algorithms in an at-
tempt to overcome changes in viewpoint. The method we pro-
pose in this paper also belongs to the category of end-to-end
model-free imitation from observation algorithms. However,
it is different from the algorithms discussed above in that we
explicitly incorporate the imitator’s proprioceptive informa-
tion in the learning process in order to study the improvement
such information can make with respect to the performance
and speed of the learning process.

A method that is closely related to imitation from obser-
vation is plan/goal recognition through mirroring [Vered et
al., 2016; Vered et al., 2018] in that in it attempts to infer
higher-level variables such as the goal or the future plan by
observing other agents. However, in plan and goal recogni-
tion the observer already has fixed controllers, and then uses
these controllers to match/explain the observed agent in or-
der to infer their goal/plan. In imitation from observation, on
the other hand, the agent seeks to learn a controller that the
observer can use to imitate the observed agent.

3 Background
In this section, we establish notation and provide background
information about Markov decision processes (MDPs) and
adversarial imitation learning.

3.1 Notation
We consider artificial learning agents operating in the frame-
work of Markov decision processes (MDPs). An MDP can
be described as a 6-tuple M = {S,A, P, r, γ}, where S
and A are state and action spaces, P (st+1|st, at) is a func-
tion which represents the probability of an agent transitioning
from state st at time t to st+1 at time t+1 by taking action at,
r : S ×A → R is a function that represents the reward feed-
back that the agent receives after taking a specific action at a
given state, and γ is a discount factor. In the context of the
notation established above, we are interested here in learning
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a policy π : S → A that can be used to select an action at
each state.

In this paper, we refer to s as the proprioceptive state, i.e.,
s is the most basic, internal state information available to the
agent (e.g., the joint angles of a robotic arm). Since we are
also concerned with visual observations of agent behavior,
we denote these observations as o ∈ O, i.e., an image of the
agent at time t is denoted as ot. The visual observations of the
agent are determined both by the agent’s current propriocep-
tive state s, and also other factors relating to image formation
such as camera position. Importantly, due to phenomena such
as occlusion, it is not always possible to infer s from o alone.

In imitation learning (IL), agents do not receive reward
feedback r. Instead, they have access to expert demonstra-
tions of the task. These demonstrations τe = {(st, at)} are
composed of the state and action sequences experienced by
the demonstrator. Here, however, we specifically consider
the problem of imitation from observation (IfO), in which the
agent only has access to sequences of visual observations of
the demonstrator performing the task, i.e., τe = {ot}.

3.2 Adversarial Imitation Learning
Generative adversarial imitation learning (GAIL) is a recent
imitation learning algorithm developed by Ho and Ermon
[2016] that formulates the problem of finding an imitating
policy as that of solving the following optimization problem:

min
π∈

∏ max
D∈(0,1)S×A

− λHH(π) + Eπ[log(D(s, a)]+

EπE
[log(1−D(s, a))] ,

(1)

where H is the entropy function, and the discriminator func-
tion D : S × A → (0, 1) can be thought of as a classi-
fier trained to differentiate between the state-action pairs pro-
vided by the demonstrator and those experienced by the imi-
tator. The objective in (1) is similar the one used in generative
adversarial networks (GANs) [Goodfellow et al., 2014], and
the associated algorithm can be thought of as trying to in-
duce an imitator state-action occupancy measure that is simi-
lar to that of the demonstrator. Even more recently, there has
been research on methods that seek to improve on GAIL by,
e.g., increasing sample efficiency [Kostrikov et al., 2019;
Sasaki et al., 2019] and improving reward representation [Fu
et al., 2018; Qureshi et al., 2019].

The method we propose in this paper is most related to gen-
erative adversarial imitation from observation [Torabi et al.,
2019b], which models the imitating policy using a randomly-
initialized convolutional neural network, executes the policy
to generate recorded video of the imitator’s behavior, and then
trains a discriminator to differentiate between video of the
demonstrator and video of the imitator. Next, it uses the dis-
criminator as a reward function for the imitating agent (higher
rewards corresponding to behavior the discriminator classi-
fies as coming from the demonstrator), and uses a policy gra-
dient technique (e.g., TRPO [Schulman et al., 2015]) to up-
date the policy. The process repeats until convergence. This
algorithm differs from what we propose in that GAIfO uses
visual data both in the process of discriminator and policy
learning. That is, the learned behavior policy maps images

o to actions using a convolutional neural network. The tech-
nique we propose, on the other hand, leverages propriocep-
tive information in the policy learning step, instead learning
policies that map proprioceptive states s to actions using a
multilayer perceptron architecture.

4 Proposed Method
As presented in Section 3, we are interested in the problem
of imitation from observation (IfO), where an imitating agent
has access to visual demonstrations, τe = {ot}, of an ex-
pert performing a task, and seeks to learn a behavior that is
approximately the same as the expert’s. In many previous ap-
proaches to this problem, the imitator selects actions on the
basis of visual self-observation alone (i.e., using images of
itself). We hypothesize that also leveraging available propri-
oceptive state information, s, during the learning process will
result in better and faster learning.

Inspired by GAIL, our algorithm is comprised of two
pieces: (1) a generator, which corresponds to the imitation
policy, and (2) a discriminator, which serves as the reward
function for the imitator. We model the imitation policy as a
multilayer perceptron (MLP), πθ. The imitating agent, being
aware of its own proprioceptive features s, feeds them into
the policy network and receives as output a distribution over
actions from which the selected action a can be sampled. The
imitator then executes this action and we record a video of the
resulting behavior. After several actions have been executed,
we have accumulated a collection of visual observations of
the imitator’s behavior, τi = {o}.

Meanwhile, we use a convolutional neural network as a
discriminator Dφ. Given visual observations of the demon-
strator, τe, and observations of the imitator, τi, we train
the discriminator to differentiate between the data coming
from these different sources. Since single video frames lack
observability in most cases, we instead stack four frames,
{ot−2, ot−1, ot, ot+1}, and feed this stack as input to the dis-
criminator.

We train the discriminator to output values closer to zero
for the transitions coming from the expert, and values closer
to one for those coming from the imitator. Therefore, the dis-
criminator aims to solve the following optimization problem:

max
φ

(
Eτi [log(Dφ(ot−2 : ot+1))]+

Eτe [log(1−Dφ(ot−2 : ot+1))]
)
.

(2)

The lower the value outputted by the discriminator, the higher
the chance of the input being from the expert. Recall that the
objective for the imitator is to mimic the demonstrator, which
can be thought of as fooling the discriminator. Therefore, we
use

−
(
Eτi [log(Dφ(ot−2 : ot+1))]

)
(3)

as the reward to update the imitation policy using RL. In par-
ticular, we use proximal policy optimization (PPO) [Schul-
man et al., 2017] with gradient steps of

Eτi [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ), (4)
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Figure 1: A diagrammatic representation of our algorithm. A multilayer perceptron (MLP) is used to model the policy, which takes the
proprioceptive features st as the input and outputs an action a. The agent then executes the action in its environment. While the agent
executes the policy, a video of the resulting behavior is recorded. Stacks of four consecutive grayscale images (ot−2 : ot+1) from both the
demonstrator and the imitator are then prepared as the input for the discriminator, which is trained to discriminate between data coming from
these two sources. Finally, the discriminator function is then used as the reward function to train the policy using PPO (not shown).

Algorithm 1
1: Initialize policy πθ randomly
2: Initialize discriminator Dφ randomly
3: Obtain visual demonstrations τe = {o}
4: for i← 0 to N do
5: Execute πθ and record video observation τi = {o}
6: Update the discriminator Dφ using loss

−
(
Eτi [log(Dφ(ot−2 : ot+1))]+

Eτe [log(1−Dφ(ot−2 : ot+1))]
)

7: Update πθ by performing PPO updates with gradient
steps of

Eτi [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ),

where

Q(ŝt, ât) =

− Eτi [log(Dφ(ot−2 : ot+1))|s0 = ŝt, a0 = ât]

8: end for

where Q(s, a) is the state-action value, i.e. the potential re-
ward that the agent receives starting from s and taking action
a:

Q(ŝt, ât) =

− Eτi [log(Dφ(ot−2 : ot+1))|s0 = ŝt, a0 = ât].
(5)

As presented, our algorithm uses the visual information in
order to learn the reward function by comparing visual data
generated by the imitator and the demonstrator. It also takes
advantage of proprioceptive state features in the process of
policy learning by learning a mapping from those features
to actions using a reinforcement learning algorithm. Pseu-
docode and a diagrammatic representation of our proposed
algorithm are presented in Algorithm 1 and Figure 1, respec-
tively.

5 Experiments
The algorithm introduced above combines proprioceptive
state information with video observations in an adversarial
imitation learning paradigm. We hypothesize that using the
extra state information in the proposed way will lead to both
faster imitation learning and better performance on the imi-
tated task when compared to similar techniques that ignore
proprioception. In this section, we describe the experimental
procedure by which we evaluated this hypothesis, and discuss
the results.

5.1 Setup
We evaluated our method on a subset of the continuous con-
trol tasks available via OpenAI Gym [Brockman et al., 2016]
and the MuJoCo simulator [Todorov et al., 2012]: Moun-
tainCarContinuous, InvertedPendulum, InvertedDoublePen-
dulum, Hopper, Walker2d, HalfCheetah.

To generate the demonstration data, we first trained an ex-
pert agents using pure reinforcement learning (i.e., not from
imitation). More specifically, we used proximal policy opti-
mization (PPO) [Schulman et al., 2017] and the ground truth
reward function provided by OpenAI Gym. After the ex-
pert agents were trained, we recorded 64 × 64, 30-fps video
demonstrations of their behavior.

We compared the proposed method with three other im-
itation from observation algorithms that do not exploit the
imitator’s proprioceptive state information: Time Contrastive
Networks (TCN) [Sermanet et al., 2018], Behavioral Cloning
from Observation (BCO) [Torabi et al., 2018], Genera-
tive Adversarial Imitation Learning (GAIfO) [Torabi et al.,
2019b; Torabi et al., 2019a]2.

5.2 Results
We hypothesized that our method would outperform the base-
lines with respect to two criteria: (1) the final performance of
the trained imitator, i.e., how the imitator performs the task
compared to the demonstrator (as measured by the ground
truth reward functions), and (2) the speed of the imitation
learning process as measured by number of learning itera-
tions. The results shown here were generated using ten inde-

2The considered domains, methods, and implementations are
presented in more detail in the longer version of the paper on arXiv
[Torabi et al., 2019c]

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3588



pendent trials, where each trial used a different random seed
to initialize the environments, model parameters, etc.

Figure 2 depicts our experimental results pertaining to the
first criterion, i.e., the final task performance of trained imi-
tating agents in each domain. The rectangular bars and error
bars represent the mean return and the standard error, respec-
tively, as measured over 1000 trajectories. We report perfor-
mance using a normalized task score, i.e., scores are scaled in
such a way that the demonstrating agent’s performance cor-
responds to 1.0 and the performance of an agent with ran-
dom behavior corresponds to 0.0. The x-axis represents the
number of demonstration trajectories, i.e., videos, available
to the imitator. In general, it can be seen that the proposed
method indeed outperforms the baselines in almost all cases,
which shows that using the available proprioceptive state in-
formation can make a remarkable difference in the final task
performance achieved by imitation learning. In the particu-
lar case of InvertedPendulum, both GAIfO and the proposed
method achieve a final task performance equal to that of the
demonstrator, likely due to the simplicity of the task. How-
ever, for the rest of the tasks, it can be clearly seen that the
proposed approach performs better than GAIfO3. Further, we
can see that increasing the number of demonstrated trajecto-
ries results in increased task performance.

To validate our hypothesis with respect to learning speed,
we also studied the transient performance of the various
learning algorithms. Because only one other method, GAIfO,
performed as well as the expert in only one domain, Invert-
edPendulum, Figure 3 only depicts the results for these algo-
rithms in that domain. The x-axis shows the number of iter-
ations, i.e., the number of update cycles for both the policy
and the discriminator. Since updating the policy requires in-
teraction with the environment, a smaller number of iterations
also corresponds to less overhead during the learning process.
As shown in the figure, our method converges to expert-level
performance much faster than GAIfO, which supports our hy-
pothesis that leveraging proprioception speeds the imitation
learning process.

In Figure 2, we can see that two of the baseline methods—
BCO and TCN—do not achieve task performance anywhere
near that of the expert.

For InvertedPendulum and InvertedDoublePendulum, we
suspect that TCN performs poorly due to possible overfit-
ting of the learned state embedding to the specific demon-
strations and, therefore, does not generalize well toward sup-
porting the overall goal of keeping the pendulum balanced
above the rod. For Hopper, Walker2d, and HalfCheetah, the
poor performance of TCN may be due to the fact that the
tasks are cyclical in nature and therefore not well-suited to the

3Note that the performance of GAIfO on Hopper is different
from what was presented in the GAIfO paper [Torabi et al., 2019b].
We hypothesize that the reason is twofold: (1) different physics
engines—MuJoCo is used in this paper, but in the previous work
[Torabi et al., 2019b] Pybullet [Coumans and Bai, 2016 2017] was
used , and (2) differences in video appearance—in this work we do
not alter the default simulator parameters, whereas in the previous
work [Torabi et al., 2019b] some of the parameters were modified
such as the colors used in the video frames in order to increase the
contrast between the agent and the background.
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Figure 2: The rectangular bars and error bars represent the mean nor-
malized return and the standard error, respectively, as measured over
1000 trials. The normalized values have been scaled in such a way
that expert and random performance are 1.0 and 0.0, respectively.
The x-axis represents the number of available video demonstration
trajectories.

time-dependent learned state embedding. TCN performs rel-
atively better in MountainCarContinuous, compared to other
domains because this domain does have the properties re-
quired by TCN. As for BCO, we posit that the low per-
formance is due to the well-known compounding-error issue
present in behavioral cloning.

One interesting thing to note is that Walker2d results in
larger error bars for our technique than those seen for any of
the other domains. We hypothesize that the reason for this is
that the video frames provide very poor information regarding
the state of the demonstrator—here, the agent has two legs,
which sometimes results in occlusion and, therefore, uncer-
tainty regarding which action the agent should take.

Finally, we can see that the proposed technique performs
the most poorly in the HalfCheetah domain. We hypothesize
that this is due to the speed at which the demonstrator acts:
frame-to-frame differences are large, e.g., three to four con-
secutive frames cover a complete cycle of the agent jumping
forwards. This rate of change may make it difficult for our
discriminator to extract a pattern of behavior, which, conse-
quently, would make it much more difficult for the agent to
move its behavior closer to that of the demonstrator. There-
fore, one way that performance might be improved is to in-
crease the frame rate at which the demonstrations are sam-
pled. Another way, as suggested by Figure 2, would be to in-
crease the number of demonstration trajectories beyond what
is shown here.
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Figure 3: Performance of imitation agents with respect to the num-
ber of iterations (N). Solid colored lines represent the mean return
and shaded areas represent standard errors. The returns are scaled so
that the performance of the expert and random policies be zero and
one, respectively.

6 Conclusion and Future Work
In this paper, we hypothesized that including propriocep-
tion would be beneficial to the learning process in the
IfO paradigm. To test this hypothesis, we presented a new im-
itation from observation algorithm that leverages both avail-
able visual and proprioceptive information. It uses visual in-
formation to compare the imitator’s behavior to that of the
demonstrator, and uses this comparison as a reward function
for training a policy over proprioceptive states. We showed
that leveraging this state information can significantly im-
prove both the performance and the efficiency of the learning
process.

However, to achieve the end-goal of true imitation from
observation, several challenges remain. For example, IfO al-
gorithms should be able to overcome embodiment mismatch
(the imitator and the demonstrator have different embodi-
ments), and viewpoint mismatch (the visual demonstrations
are recorded from different viewpoints.). Resolving these
limitations is a natural next step for extending this research.
Another way to improve upon the proposed method is to at-
tempt to make the training more reliable by incorporating
techniques developed to improve the stability of GANs, such
as the work of Arjovsky et al. [2017]. Further, to the best
of our knowledge, nobody has been able to deploy GAN-
like methods on real robots due to high sample complexity.
Therefore, techniques that seek to improve the learning pro-
cess with respect to this metric should also be investigated
further.
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