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Abstract
Label distribution learning (LDL) is a newly arisen
learning paradigm to deal with label ambiguity
problems, which can explore the relative impor-
tance of different labels in the description of a par-
ticular instance. Although some existing LDL algo-
rithms have achieved better effectiveness in real ap-
plications, most of them typically emphasize on im-
proving the learning ability by manipulating the la-
bel space, while ignoring the fact that irrelevant and
redundant features exist in most practical classifi-
cation learning tasks, which increase not only stor-
age requirements but also computational overhead-
s. Furthermore, noises in data acquisition will bring
negative effects on the generalization performance
of LDL algorithms. In this paper, we propose a
novel algorithm, i.e., Latent Semantics Encoding
forLabelDistributionLearning (LSE-LDL), which
learns the label distribution and implements feature
selection simultaneously under the guidance of la-
tent semantics. Specifically, to alleviate noise dis-
turbances, we seek and encode discriminative origi-
nal physical/chemical features into advanced laten-
t semantic features, and then construct a mapping
from the encoded semantic space to the label space
via empirical risk minimization. Empirical studies
on 15 real-world data sets validate the effectiveness
of the proposed algorithm.

1 Introduction
Learning with label ambiguity has increasingly attracted at-
tention in recent machine learning and data mining areas. At
present, single-label learning (SLL) and multi-label learning
(MLL) [Gibaja Galindo and Ventura, 2014; Zhang and Zhou,
2014; Zhang et al., 2018] are two widely-used paradigms
to deal with the label ambiguity problems, where each in-
stance only belongs to a single label in SLL, whereas each
instance may be associated to multiple labels simultaneously
in MLL. Although SLL and MLL have achieved a lot of suc-
cess [Boutell et al., 2004; Huang and Zhou, 2012] in classifi-
cation learning tasks, both of them focus on a relatively broad

˚Lin Shang is the corresponding author.

label ambiguity problem, i.e., “which labels can describe a
particular instance?”, thus the output of an SLL/MLL algo-
rithm often is a set of labels with the implicit assumption that
these labels are considered to be equally important. However,
sometimes ones need to deal with the further label ambigui-
ty problem of “to what extent will different labels describe a
particular instance?”, in other words, the relative importance
of different labels involved in the description of an instance,
i.e., a distribution over the set of labels, is expected to be
obtained. For example, a facial expression usually is consti-
tuted by a variety of different emotional components, such
as dejection, pleasure, enthusiasm and so on. Different emo-
tional components make different contributions to building a
particular facial expression, and they form an emotion dis-
tribution [Zhou et al., 2015] for facial expression. To solve
such learning problems with label ambiguity, [Geng and Ji,
2013] first proposed the concept of label distribution learning
(LDL), which can be viewed as a more generalized learning
paradigm when compared with the traditional SLL and MLL.

Although LDL has been successfully applied to some prac-
tical scenarios [Zhou et al., 2015; Geng and Hou, 2015], most
of the previous LDL algorithms aim to boost the learning per-
formance by manipulating the label space, such as exploiting
the correlations existing among different labels. Neverthe-
less, similar to SLL/MLL tasks, there may also exist irrele-
vant and redundant features in LDL tasks, which will result
in the increasing of storage requirements and computational
overheads. Moreover, in data acquisition, noise disturbances
are common due to the limits of the precision and reliabili-
ty of data collector (temperature/light/heat/pressure sensors,
etc.), it could have negative effects on the generalization per-
formance of LDL algorithms. Existing studies on feature s-
election [Liu and Motoda, 1998] for SLL/MLL tasks have
shown that only a subset of relevant features contains the
most discriminative information in general, and the ability of
classification learning will be improved [Yu and Liu, 2004;
Xu et al., 2016] via removing some irrelevant, redundant, and
noisy features. It is worth noting that even if both MLL and
LDL are placed in the setting of multiple labels, most feature
selection algorithms for MLL cannot be well adapted to LDL
tasks, since they usually destroy the geometry structure [Guo
et al., 2019] of feature space, which leads to the inconsisten-
cy between the feature space and the label space, i.e., two in-
stances, whose label distributions are close, may not be close
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to each other in the selected feature space.
To solve the above problem, inspired by [Jian et al., 2016],

in this paper, we propose a novel LDL algorithm termed
Latent Semantics Encoding for Label Distribution Learning,
shortly LSE-LDL. Specifically, the latent semantic features
are encoded by a regression model from the original phys-
ical/chemical features, and the most discriminative original
features can be selected by the ℓ2,1-norm regularization term.
The encoded latent semantic features can alleviate the neg-
ative effects of noise disturbances in data acquisition by the
assumption that neighbor instances in the label space keep
close to each other in the latent semantic feature space. Un-
der the guidance of latent semantics, the optimization objec-
tive of LSE-LDL will focus on learning the label distribution
and implementing feature selection simultaneously. Besides,
we develop an Alternating-Updating algorithm based on gra-
dient descent for the optimization.
The main contributions of this paper can be summarized as

follows: 1) Constructing the latent semantic features for al-
leviating the negative effects of noise disturbances; 2) Imple-
menting feature selection for eliminating the irrelevant and
redundant features; 3) Developing an efficient algorithm to
address the optimization problem.

2 LSE-LDL Approach
2.1 Preliminaries
Let X P Rm be the m-dimensional input space, Y P r0, 1sp

be the p-dimensional label space, and ty1, y2, . . . , ypu be the
finite set of p possible labels. Suppose that we have n training
instances xi P X (i “ 1, 2, . . . , n), and each instance xi is as-
sociated with a label distribution di “ rdy1

xi
, dy2

xi
, . . . , d

yp
xi sT,

where dyl
xi

denotes the description degree of label yl (l “

1, 2, . . . , p) to xi. For each xi, @dyl
xi

P r0, 1s, and
řp

l“1 d
yl
xi

“

1, which means all the labels can completely describe xi.
For convenience, we denote the training data matrix as X “

rx1,x2, . . . ,xnsT P Rnˆm and the label distribution matrix
as D “ rd1,d2, . . . ,dnsT P Rnˆp.
In addition, without loss of generality, for any vector g P

Rm, we use gj to denote the j-th element of g, for any matrix
G P Rnˆm, we use Gij to denote the (i, j)-th element of G,
and use Gi: and G:j to denote all elements in the i-th row
and the j-th column of G, respectively. Tr(G) is adopted to
denote the trace of square matrix G, and the ℓ2,1-norm of G

is defined as ||G||2,1 “
řn

i“1

b

řm
j“1 G

2
ij “

řn
i“1 ||Gi:||2.

2.2 Formulation
The goal of LDL is to generate a learner f which can predict
the label distributions of unseen instances. In general, f “

rf1, f2, . . . , fpsT and each fl (l “ 1, 2, . . . , p) is a sub-learner
for label yl.
We formulate the LDL problems via empirical risk mini-

mization in the following learning error:

min
f

n
ÿ

i“1

Losspxi,di, fq ` δΩpfq, (1)

where Lossp¨q denotes the loss function defined on the train-
ing data, Ωpfq is a regularization term to control the com-

plexity of LDL learner f , and δ is a regularization parameter
trading off the two terms.
Some functions [Cha, 2007], which can measure the simi-

larity between the true distribution and the predicted distribu-
tion, are suitable to construct the LDL loss function, such as
Canberra, Kullback-Leibler divergence, and Squared χ2, etc.
Moreover, ℓ1-norm, ℓ2-norm, and F -norm can be the candi-
dates of the regularization term. In this paper, we focus on
the commonly adopted Kullback-Leibler divergence defined
as follows:

Losspxi,di, fq “

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

flpxiq

˘

¯

, (2)

where dyl
xi

and flpxiq denote the true and predicted descrip-
tion degrees of label yl to instance xi, respectively.
Similar to previous works, we assume each sub-learner fl

follows a maximum entropy model [Berger et al., 1996], i.e.,

flpxiq :“ ppyl|xi;θq “
expp

řm
k“1 θlkx

k
i q

řp
l“1 expp

řm
k“1 θlkx

k
i q

, (3)

where xk
i is the k-th (k “ 1, 2, . . . ,m) feature of instance xi,

and θlk is a coefficient with respect to the k-th feature and
the l-th label in feature coefficient matrix θ P Rpˆm. For the
second term of Eq.(1), we implement the regularization term
by F -norm as follows:

Ωpfq “ ||θ||2F “

p
ÿ

l“1

m
ÿ

k“1

θ2
lk. (4)

By substituting Eqs. (2), (3) and (4) into Eq. (1), we can
obtain the following learning error:

min
θ

n
ÿ

i“1

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

ppyl|xi;θq

˘

¯

` δ||θ||2F . (5)

To alleviate the possible noisy corruption in the original
input space X , we create a mapping ϕ : X Ñ Z from them-
dimensional X to the c-dimensional latent semantic feature
space Z as ϕpxiq “ WTxi, where W P Rmˆc is a feature
coefficient matrix. Meanwhile, to eliminate the irrelevant and
redundant features, some original features most related to Z
are selected by ||W||2,1. Note that the local geometry struc-
tures should be consistent between the latent semantic feature
space Z and the label space Y . That is to say, if two instances
xi and xi1 are close to each other in Y , then they should also
be close to each other in Z . Thus, we try to minimize the
following:

min
Z,W

!

α||XW ´ Z||2F ` β||W||2,1

` γ
n

ÿ

i“1

n
ÿ

i1“1

Sii1 ||ϕpxiq ´ ϕpxi1 q||22

)

,
(6)

where Z “ rϕpx1q, ϕpx2q, . . . , ϕpxnqsT P Rnˆc is a latent
semantic feature matrix, and the ℓ2-norm of each row of W,
i.e., ||Wk:||2, denotes the significance of the k-th feature in
approximating the latent semantic feature space Z . With the
ℓ2,1-norm regularization term ||W||2,1 “

řm
k“1 ||Wk:||2,W
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becomes the row-sparsity and can eliminate the insignificant
features in X when constructing Z . The parameters α, β and
γ make a balance among the reconstruction error of latent se-
mantic feature space, the sparsity of feature mapping model
and the degree of preserving local geometry structures. More-
over, Sii1 denotes the similarity between label distributions of
xi and xi1 , and it is defined as follows:

Sii1 “

$

&

%

expp´
||di´di1 ||22

σ2 q pdi P Nρpdi1 q || di1 P Nρpdiqq;

0 potherwiseq,
(7)

whereNρpdiq denotes the ρ-nearest neighbors of instance xi

in the label space Y .
And then, we propose to minimize learning error and im-

plement feature selection simultaneously under the guidance
of latent semantics via the following optimization objective:

min
θ,Z,W

!

n
ÿ

i“1

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

ppyl|ϕpxiq;θq

˘

¯

` α||XW ´ Z||2F

` β||W||2,1 ` γ
n

ÿ

i“1

n
ÿ

i1“1

Sii1 ||ϕpxiq ´ ϕpxi1 q||22 ` δ||θ||2F

)

(8)
with

ppyl|ϕpxiq;θq “
expp

řc
j“1 θljϕpxiqjq

řp
l“1 expp

řc
j“1 θljϕpxiqjq

, (9)

where θlj is a coefficient with respect to the j-th (j “

1, 2, . . . , c) latent semantic feature ϕpxiqj and the l-th label
yl in the latent semantic feature coefficient matrix θ P Rpˆc.

2.3 Learning Algorithm for LSE-LDL
In Eq. (8), following [Nie et al., 2010], the regularization
term ||W||2,1 can be relaxed to be 2TrpWTGWq, where
G is a diagonal matrix with its diagonal element Gkk “

1

2
?

Wk:WT
k:`ϵ

(k “ 1, 2, . . . ,m) and ϵ is a small positive

constant. Meanwhile, the term of preserving local geometry
structures in Eq. (8) can be induced as:

n
ÿ

i“1

n
ÿ

i1“1

Sii1 ||ϕpxiq ´ ϕpxi1 q||22 “ 2Tr
`

ZTpDiag ´ SqZ
˘

,

(10)
where Diag denotes a diagonal matrix with its diagonal ele-
mentDiagii “

řn
i1“1 Sii1 , and (Diag´S) is a graph Lapla-

cian matrix.
Thus, the optimization objective can be formulated as fol-

lows:

Υpθ,Z,Wq “

n
ÿ

i“1

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

ppyl|ϕpxiq;θq

˘

¯

` α||XW ´ Z||2F ` 2βTrpWTGWq

` 2γTr
`

ZTpDiag ´ SqZ
˘

` δ||θ||2F .
(11)

To minimize the optimization objective Υpθ,Z,Wq, we
adopt an Alternating-Updating framework. Specifically, in
each iteration, we update one of the variables tθ,Z,Wu

while fixing the other two variables.

When we fix Z and W to solve θ, the second, third and
fourth terms of Eq. (11) are constants and thus can be ig-
nored, then Eq. (11) can be rewritten as:

Υpθ,Z,Wq “

n
ÿ

i“1

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

ppyl|ϕpxiq;θq

˘

¯

` δ||θ||2F .

(12)
We optimize Eq. (12) with the gradient descent method

and the gradient of Υpθ,Z,Wq w.r.t. θ is

BΥ

Bθlj
“

n
ÿ

i“1

”exppθl:ϕpxiqqϕpxiqj
řp

l“1 exppθl:ϕpxiqq
´ ϕpxiqjd

yl
xi

ı

` 2δθlj .

(13)
When we fix θ and W to solve Z, the third and fifth terms

of Eq. (11) are constants and thus can be ignored, then Eq.
(11) can be rewritten as:

Υpθ,Z,Wq “

n
ÿ

i“1

p
ÿ

l“1

´

dyl
xi

ln
` dyl

xi

ppyl|ϕpxiq;θq

˘

¯

`

α||XW ´ Z||2F ` 2γTr
`

ZTpDiag ´ SqZ
˘

.
(14)

Similarly, we optimize Eq. (14) with the gradient descent
method and the gradient of Υpθ,Z,Wq w.r.t. Z is

BΥ

BZij
“

”

´

p
ÿ

l“1

dyl
xi
θlj `

řp
l“1

`

exppθl:ϕpxiqqθlj
˘

řp
l“1 exppθl:ϕpxiqq

ı

` 2αpZij ´ Xi:W:jq ` 2γ
“

pDiagi: ´ Si:q

` pDiag:i ´ S:iq
T

‰

Z:j .

(15)

When we fix θ and Z to solveW, the first, fourth and fifth
terms of Eq. (11) are constants and thus can be ignored, then
Eq. (11) can be rewritten as:
Υpθ,Z,Wq “ α||XW ´ Z||2F ` 2βTrpWTGWq. (16)
Again, we optimize Eq. (16) with the gradient descent

method and the gradient of Υpθ,Z,Wq w.r.t. W is
BΥ

BWkj
“ 2αpX:kqTpXW:j ´ Z:jq ` 4βGk:W:j . (17)

The pseudo codes of LSE-LDL are presented in Algorithm
1 and Algorithm 2, which correspond to the training phase
and the testing phase, respectively. In Algorithm 1, the co-
efficient matrices θ and W are initialized with all elements
being the random values in the interval r0, 1s. The latent se-
mantic feature matrix Z is initialized with the clustering cen-
ters of feature clustering in the original feature space X , and
k-means clustering is used in this paper. The means of initial-
izing Z is reasonable since the combinations of some highly
correlated features can be considered as one type of latent se-
mantics. Then, an Alternating-Updating framework is used
to search the optimum θ, Z, andW. The optimization objec-
tive in Eq. (11) is a convex function, thus it will converge to
a global minimum. Finally, we can obtain the ranking of the
most discriminative original physical/chemical features. In
Algorithm 2, we will encode the latent semantics for a given
unseen instance x1

i only via itsQmost discriminative original
features rx1

isQ and their corresponding components rWsQ in
the optimum W, and some other irrelevant and redundan-
t features are ignored. Based on this, the label distribution of
unseen instance is predicted by the maximum entropy model.
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Algorithm 1 LSE-LDL (Training Phase)
Input: Training data matrixX, label distribution matrixD;
Parameter: α, β, γ, δ, λθ , λZ, λW and ϵ;
Output: Q top-ranked features;
1: Initialize θ, Z, W, and Calculate graph laplacian matrix

(Diag ´ S) from D by Eq. (7);
2: Repeat:
3: Calculate BΥ

Bθlj
by Eq. (13), and Update θ by: θlj “

θlj ´ λθ
BΥ

Bθlj
;

4: Calculate BΥ
BZij

by Eq. (15), and Update Z by: Zij “

Zij ´ λZ
BΥ

BZij
;

5: Calculate diagonal matrix G by: Gkk “ 1

2
?

Wk:WT
k:`ϵ

;

6: Calculate BΥ
BWkj

by Eq. (17), and Update W by: Wkj “

Wkj ´ λW
BΥ

BWkj
;

7: Until convergence or maximum number of iterations
8: Rank features by ||Wk:||2 in a descending order;
9: return Q top-ranked features, θ and W.

Algorithm 2 LSE-LDL (Testing Phase)
Input: Unseen instance x1

i, θ, W and Q selected features;
Output: Predicted d1

i of x
1
i;

1: Calculate Q-latent semantic feature vector ϕQpx1
iq of x

1
i

as: ϕQpx1
iq “ rWsQ

T
rx1

isQ;
2: ppyl|ϕQpx1

iq;θq “
exppθl:ϕQpx1

iqq
řp

l“1 exppθl:ϕQpx1
iqq

;

3: return d1
i “ rppy1|ϕQpx1

iq;θq, . . . , ppyp|ϕQpx1
iq;θqsT.

3 Experiments
In this section, we evaluate the proposed LSE-LDL algorith-
m on 15 publicly available data sets with six state-of-the-art
LDL algorithms over six different evaluation metrics. We im-
plement all LDL algorithms in Matlab R2017b. All the ex-
periments were carried out on a workstation equipped with
an Intel Core i7 ´ 6850K CPU (3.60 GHz) and 32.00 GB
memory.

Data sets The 15 data sets are coming from LDL web-
site (http://ldl.herokuapp.com/download). Table 1 summa-
rizes some brief statistics of these data sets, and detailed de-
scriptions of them can be found in [Geng, 2016].

Evaluations Following [Geng, 2016], six widely-used met-
rics are employed to evaluate the performance of LDL al-
gorithms, including four distance metrics between two dis-
tributions (the lower the value of metric, the better the
performance), i.e., Chebyshev, Clark, Canberra, and
Kullback-Leibler divergence; and two similari-
ty metrics between two distributions (the higher the value
of metric, the better the performance), i.e., Cosine and
Intersection.

Baselines and Settings We compare the proposed LSE-
LDL algorithm to six state-of-the-art LDL algorithms, includ-
ing AA-BP [Geng et al., 2013], SA-IIS [Geng et al., 2010],
SA-BFGS [Geng et al., 2013], LDLLC [Jia et al., 2018],

ID Data sets n m p

1 Yeast-alpha 2, 465 24 18
2 Yeast-cdc 2, 465 24 15
3 Yeast-cold 2, 465 24 4
4 Yeast-diau 2, 465 24 7
5 Yeast-dtt 2, 465 24 4
6 Yeast-elu 2, 465 24 14
7 Yeast-heat 2, 465 24 6
8 Yeast-spo 2, 465 24 6
9 Yeast-spo5 2, 465 24 3
10 Yeast-spoem 2, 465 24 2
11 Human Gene 17, 892 36 68
12 Natural Scene 2, 000 294 9
13 S-JAFFE 213 243 6
14 S-BU 3DFE 2, 500 243 6
15 Movie 7, 755 1, 869 5

Table 1: Statistics of the 15 LDL data sets, where n is number of
instances,m is number of features and p is number of labels.

LALOT [Zhao and Zhou, 2018], and PT-SVM [Geng and
Ji, 2013]. All the codes of above compared algorithms are
shared by original authors, and we set all parameters to be
default values as recommended in original papers. In LSE-
LDL, to model the local geometry structures in the latent se-
mantic feature space, σ and ρ are set to be 0.05 and 1% of
training instances, respectively. The number of selected fea-
turesQ “ m. The regularization parameters in LSE-LDL are
tuned with a grid-search strategy by varying their values in the
range of t0.001, 0.01, 0.1, 1.0, 10u. The maximum number of
iterations is 5000, and the small positive constant ϵ “ 0.0001.

Results On each data set, ten-fold cross-validation is em-
ployed for the performance evaluation, and the mean value
and the standard deviation of ten experimental results are re-
spectively recorded. Among all comparing LDL algorithms,
the best predictive performance is highlighted in boldface. In
addition, if an LDL algorithm cannot deal with a given data
set, its predictive performance is expressed by the symbol of
Ś

.
There are originally six different evaluation metrics, due

to space limitation, we only present predictive performances
w.r.t. Clark distance and Canberra distance in
Table 2 and Table 3, respectively. Predictive performances on
other evaluation metrics are similar and therefore omitted.
As shown in Table 2 and Table 3, in all the different e-

valuation metrics, the proposed LSE-LDL algorithm achieves
superior predictive performances against all six compared al-
gorithms. As a whole, across 30 predictive performance re-
sults (15 data sets ˆ 2 evaluation metrics), LSE-LDL ranks
in first place among seven comparing algorithms at 70.00%
cases, in second place at 16.67% cases, in third place at on-
ly 6.67% cases. The results are expected since our algorithm
can encode advanced latent semantics for reducing the neg-
ative effects of irrelevant, redundant and noisy features, and
these semantic features are more relevant to learning the label
distribution.
To perform comparisons of predictive performances in
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ID AA-BP SA-IIS SA-BFGS LDLLC LALOT PT-SVM LSE-LDL

1 .8284 ˘ .5093 .3034 ˘ .0942 .2099 ˘ .0824 .2105 ˘ .0821 .2241 ˘ .0806 .2204 ˘ .0807 .2094 ˘ .0823
2 .5887 ˘ .3459 .2926 ˘ .1057 .2159 ˘ .0989

Ś

.2285 ˘ .1012 .2262 ˘ .1013 .2155 ˘ .0988
3 .1543 ˘ .0855 .1651 ˘ .0870 .1396 ˘ .0795 .1393 ˘ .0795 .1491 ˘ .0838 .1529 ˘ .0838 .1393 ˘ .0793
4 .2745 ˘ .1429 .2419 ˘ .1057 .2008 ˘ .1034 .2009 ˘ .1034 .2241 ˘ .1091 .2401 ˘ .1052 .2007 ˘ .1027
5 .1201 ˘ .0729 .1313 ˘ .0754 .0981 ˘ .0622 .0981 ˘ .0623 .1037 ˘ .0632 .1024 ˘ .0630 .0980 ˘ .0622
6 .5253 ˘ .3132 .2756 ˘ .0915 .1991 ˘ .0780

Ś

.2109 ˘ .0773 .2101 ˘ .0776 .1988 ˘ .0776
7 .2201 ˘ .1005 .2240 ˘ .0906 .1828 ˘ .0833 .1825 ˘ .0836 .1889 ˘ .0867 .1907 ˘ .0857 .1823 ˘ .0834
8 .2892 ˘ .1356 .2786 ˘ .1264 .2499 ˘ .1270 .2495 ˘ .1271 .2581 ˘ .1347 .2725 ˘ .1310 .2489 ˘ .1277
9 .1888 ˘ .1243 .1942 ˘ .1256 .1842 ˘ .1237 .1840 ˘ .1239 .1859 ˘ .1246 .1891 ˘ .1249 .1839 ˘ .1241
10

Ś

.1373 ˘ .1101 .1291 ˘ .1054 .1290 ˘ .1054 .1363 ˘ .1134 .1338 ˘ .1144 .1294 ˘ .1048
11 3.358 ˘ .8518 2.128 ˘ 1.240 2.108 ˘ 1.246

Ś Ś Ś

2.116 ˘ 1.244
12 2.463 ˘ .3001 2.468 ˘ .3155

Ś Ś

2.493 ˘ .3428 2.592 ˘ .2603 2.398 ˘ .2663
13 .4153 ˘ .1312 .4587 ˘ .1301

Ś Ś

.4295 ˘ .1224 .4446 ˘ .1336 .3387 ˘ .1151
14 .3993 ˘ .1553 .4191 ˘ .1535

Ś Ś

.4535 ˘ .1578 .4427 ˘ .1591 .3924 ˘ .1450
15 .5618 ˘ .2712 .5801 ˘ .2558 .5541 ˘ .2837 .5138 ˘ .2640

Ś

.8530 ˘ .2453 .7792 ˘ .3970

Table 2: Predictive performances (mean ˘ std.) on the 15 LDL data sets evaluated by Clark distance Ó.

ID AA-BP SA-IIS SA-BFGS LDLLC LALOT PT-SVM LSE-LDL

1 2.749 ˘ 1.719 1.014 ˘ .3208 .6817 ˘ .2604 .6835 ˘ .2588 .7337 ˘ .2540 .7198 ˘ .2555 .6799 ˘ .2604
2 1.785 ˘ 1.021 .8977 ˘ .3128 .6475 ˘ .2725

Ś

.6860 ˘ .2820 .6800 ˘ .2842 .6458 ˘ .2717
3 .2662 ˘ .1471 .2861 ˘ .1521 .2402 ˘ .1356 .2399 ˘ .1357 .2571 ˘ .1440 .2645 ˘ .1446 .2397 ˘ .1354
4 .5926 ˘ .2999 .5284 ˘ .2262 .4311 ˘ .2150 .4314 ˘ .2147 .4831 ˘ .2265 .5136 ˘ .2173 .4312 ˘ .2145
5 .2069 ˘ .1224 .2282 ˘ .1297 .1688 ˘ .1018 .1688 ˘ .1019 .1782 ˘ .1036 .1762 ˘ .1034 .1685 ˘ .1018
6 1.544 ˘ .8953 .8241 ˘ .2710 .5831 ˘ .2127

Ś

.6231 ˘ .2125 .6198 ˘ .2138 .5834 ˘ .2113
7 .4425 ˘ .1956 .4551 ˘ .1810 .3645 ˘ .1584 .3639 ˘ .1587 .3771 ˘ .1654 .3823 ˘ .1647 .3638 ˘ .1586
8 .5943 ˘ .2778 .5733 ˘ .2588 .5137 ˘ .2596 .5130 ˘ .2598 .5330 ˘ .2808 .5624 ˘ .2750 .5127 ˘ .2620
9 .2900 ˘ .1857 .2992 ˘ .1897 .2829 ˘ .1841 .2826 ˘ .1845 .2857 ˘ .1864 .2904 ˘ .1870 .2828 ˘ .1852
10

Ś

.1913 ˘ .1495 .1796 ˘ .1423 .1795 ˘ .1423 .1900 ˘ .1543 .1865 ˘ .1555 .1801 ˘ .1414
11 22.89 ˘ 7.037 14.58 ˘ 9.779 14.43 ˘ 9.821

Ś Ś Ś

14.48 ˘ 9.811
12 6.784 ˘ 1.263 6.800 ˘ 1.352

Ś Ś

7.033 ˘ 1.396 7.375 ˘ 1.088 6.604 ˘ 1.053
13 .8644 ˘ .2950 .9481 ˘ .2865

Ś Ś

.9020 ˘ .2859 .9216 ˘ .3018 .7014 ˘ .2541
14 .8543 ˘ .3544 .9056 ˘ .3610

Ś Ś

.9593 ˘ .3602 .9362 ˘ .3531 .8342 ˘ .3257
15 1.069 ˘ .5520 1.115 ˘ .5256 1.068 ˘ .5880 .9827 ˘ .5383

Ś

1.651 ˘ .5192 1.528 ˘ .8391

Table 3: Predictive performances (mean ˘ std.) on the 15 LDL data sets evaluated by Canberra distance Ó.
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Figure 1: CD diagrams of the comparing LDL algorithms on each evaluation metric.
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more well-founded ways, Friedman test [Friedman, 1940] is
further examined which is a favorable statistical test for com-
parisons of more than two algorithms over multiple data sets.
For each evaluation metric, Friedman test at 0.05 significance
level rejects the null hypothesis of “equal” performances a-
mong all seven comparing algorithms, and then we adopt Ne-
menyi test to further analyze which algorithms actually differ.
The performances of the two algorithms are significantly dif-
ferent if the corresponding average ranks over all the data sets
differ by at least one critical difference (CD = 2.3254).
To visually show the actual differences of predictive per-

formances among seven comparing LDL algorithms, the CD
diagrams [Demšar, 2006] on each evaluation metric are illus-
trated in Figure 1, where the average rank of each comparing
LDL algorithm is marked along the axis (higher ranks to the
left). In each metric, if a group of algorithms is not signif-
icantly different under Nemenyi test, we will connect them
with a thick line.
In summary, out of all 36 comparisons of predictive per-

formances (6 baseline algorithms ˆ 6 evaluation metrics),
our LSE-LDL achieves the statistically comparable predic-
tive performances in only 30.56% cases, and in all the oth-
er 69.44% cases, LSE-LDL achieves the statistically superior
predictive performances. Besides, no algorithms have outper-
formed LSE-LDL. The above statistics suggest the statistical
superior predictive performances of LSE-LDL as compared
to all the other state-of-the-art LDL algorithms.
In order to examine the effectiveness of LSE-LDL in re-

moving some irrelevant and redundant features, we also ana-
lyze the influence of the number of selected features for en-
coding the latent semantics. We run the testing phase of LSE-
LDL with different Q varying from 10% to 100% of the o-
riginal number of features (Stepsize: 10%). Due to space
limitation, we only present the predictive performances on S-
JAFFE with six evaluation metrics. As shown in Figure 2, it
is obvious that the performances w.r.t all six evaluation met-
rics tend to be stable when the percentage (PCT) of selected
features is more than 60%. It means that there are 40% irrele-
vant and redundant features in S-JAFFE tasks, and LSE-LDL
is effective in reducing storage requirements and computa-
tional overheads with superior predictive performances.

4 Related Work
Over the past several years, several algorithms designed for
LDL have been witnessed. Generally, the existing algorithms
can be grouped into the three main categories, including al-
gorithm adaptation approaches, problem transformation ap-
proaches, and specialized approaches. Algorithm adaptation
approaches directly modify some constraint conditions in tra-
ditional SLL/MLL algorithms to handle LDL tasks, such as
AA-kNN [Geng et al., 2010] and AA-BP [Geng et al., 2013].
Problem transformation approaches transform the LDL task
into some corresponding SLL tasks by weighted sampling on
training instances, and then handle such SLL tasks through
binary classifiers SVM or Naive Bayes, developing two rep-
resentative problem transformation approaches, i.e., PT-SVM
and PT-Bayes [Geng, 2016]. Specialized approaches focus
on learning a non-linear conditional probability mass func-
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Figure 2: Influence of Q with 6 metrics on S-JAFFE

tion by directly maximizing/minimizing the entropy/distance
between the true and predicted label distributions. As two
representative specialized approaches, both of SA-IIS and
SA-BFGS [Geng et al., 2013] construct a maximum entropy
model with employing Kullback-Leibler divergence as the
objective function, and then implement optimization by im-
proved iterative scaling (IIS) [Della Pietra et al., 1997] and
quasi-Newton method BFGS [Nocedal andWright, 2006], re-
spectively. The related survey [Geng, 2016] has shown that
specialized approaches are more effective than others in real-
world LDL tasks, thus, more recently, researchers are all ded-
icated to designing highly competitive specialized approach-
es with considering label correlations, such as LALOT [Zhao
and Zhou, 2018] and LDLLC [Jia et al., 2018].

5 Conclusion
In this paper, a novel algorithm called LSE-LDL is proposed,
and it can encode the latent semantics for LDL tasks in or-
der to alleviate the negative effects of irrelevant, redundant,
and noisy features. The experimental results on 15 real-world
LDL data sets validate the effectiveness of the proposed LSE-
LDL algorithm.
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