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Abstract
Feature selection is an efficient dimensionality re-
duction technique for artificial intelligence and ma-
chine learning. Many feature selection methods
learn the data structure to select the most discrim-
inative features for distinguishing different classes.
However, the data is sometimes distributed in mul-
tiple parties and sharing the original data is difficult
due to the privacy requirement. As a result, the data
in one party may be lack of useful information to
learn the most discriminative features. In this pa-
per, we propose a novel distributed method which
allows collaborative feature selection for multiple
parties without revealing their original data. In the
proposed method, each party finds the intermediate
representations from the original data, and shares
the intermediate representations for collaborative
feature selection. Based on the shared intermedi-
ate representations, the original data from multi-
ple parties are transformed to the same low dimen-
sional space. The feature ranking of the original
data is learned by imposing row sparsity on the
transformation matrix simultaneously. Experimen-
tal results on real-world datasets demonstrate the
effectiveness of the proposed method.

1 Introduction
The dimensionality of data is often very high in many real-
world applications [Jain and Zongker, 1997], making great
challenges such as the curse of dimensionality, high compu-
tation and storage cost. There are mainly two distinct ways
for dimensionality reduction to tackle these difficulties: fea-
ture extraction and feature selection. Feature extraction pro-
vides data transformation to form a low dimensional space,
while feature selection aims to extract the amount of impor-
tant features to represent the original data [Guyon and Elis-
seeff, 1997; Imakura et al., 2019]. In the applications that
need to retain the original representations of data variables,
e.g, learning the risk factors of cancer, feature selection is
preferred.

The feature selection methods can be classified into three
main types: filter [He et al., 2006], wrapper [Maldonado
and Weber, 2009], and embedded methods [Hou et al., 2011;

Nie et al., 2010; Ye et al., 2016b]. The filter methods are
usually computationally simple, but ignore the interactions
among features, which may lead to undesired classification
result. The wrapper methods detect the possible interactions
among features by searching the feature subsets in a learn-
ing model, which provide better results than the filter meth-
ods [Saeys et al., 2008]. However, the wrapper methods are
usually computationally expensive. The embedded methods
consider the interactions among features while having lower
computational complexity than the wrapper methods, which
incorporate feature selection as a part of data training process
to search for the optimal subset of features [Ye et al., 2016a].

Similar to most machine learning techniques, in the gen-
eral setting of feature selection, a large number of data should
be available to train a model for good generalization ability.
However, in some applications, the data is distributed in mul-
tiple parties. The data in one party may be lack of some useful
information to learn the most discriminative features. Thus,
sharing data with multiple parties for collaborative feature se-
lection can help to learn more useful information and solve
the problem of information deficiency in one party. For ex-
ample, consider learning the risk factors of cancer in the hos-
pital. The risk factors learned in one hospital are limited to
the data it holds. If several hospitals share their data for col-
laborate feature selection, a wealth of information contained
in the shared data could mutually benefit all hospitals to learn
the most important risk factors.

However, data sharing may be difficult in some organi-
zations due to the limitations such as privacy requirement.
Thus, an emerging challenge for feature selection is how to
learn the data from multiple parties without revealing their
original data. Although the current researches mainly focus
on classification or clustering for privacy-aware distributed
data setting [Chaudhuri et al., 2011], some studies have been
devoted to feature selection by considering the privacy pre-
serving. Due to the simplicity of filter methods, most re-
searchers consider privacy-aware feature selection based on
the filter methods. Banerjee and Chakravarty [Banerjee and
Chakravarty, 2011] propose a distributed filter based fea-
ture selection method by using the virtual dimension reduc-
tion technique with a secure sum protocol, which allows
privacy-aware feature selection for multiple parties. Yang and
Li [Yang and Li, 2014] design a private filter based feature
selection method by adding noise as output perturbation ac-
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cording to the sensitivity analysis, but in centralized archi-
tecture. Sheikhalishahi and Martinelli [Sheikhalishahi and
Fabio, 2017] consider the trade-off between feature utility
and privacy score to remove the irrelevant features, and col-
laborative data classification is performed on the data with the
remaining features from multiple parties. Including the filter
methods, wrapper based feature selection methods also have
been proposed by combining with the anonymization tech-
niques [Jafer et al., 2014]. However, these methods are in
centralized architecture and have heavy computational cost.

In this paper, we propose a novel distributed method for
embedded feature selection, which allows collaborative fea-
ture selection for multiple parties without revealing their orig-
inal data. Existing studies have addressed privacy preserving
for the filter and wrapper feature selection methods, to the
best of our knowledge, there is no existing study addresses
privacy preserving for the embedded feature selection meth-
ods. The contributions of the proposed method are summa-
rized as follows.

• Different from the above related works, the proposed
method does not rely on any security protocols. The
proposed method performs collaborative feature selec-
tion based on the intermediate representations. Instead
of the original data, each party shares the intermediate
representations for feature learning.

• Embedded feature selection is performed in each party
by learning the intermediate representations from multi-
ple parties, which can solve the information deficiency
in the local party.

• The proposed method is flexible and extendable, since
many embedded feature selection methods can be incor-
porated to perform distributed collaborative feature se-
lection with privacy preserving.

• Experimental results show that the proposed method can
help a single party to select the important features and
improve the classification result through collaborative
feature selection.

2 Related Methods
2.1 Embedded Feature Selection
We introduce a framework of unsupervised embedded fea-
ture selection methods [Hou et al., 2011] and incorporate it
for collaborative feature selection, while the supervised case
also can be incorporated in our method. Consider that n orig-
inal data X = [x1, ..., xn] ∈ Rm×n are embedded in a low
dimensional space by a transformation matrix W ∈ Rm×q ,
where m and q are the dimensionalities of the original and
embedded data. Let Y = [y1, ..., yn] ∈ Rq×n denote the
embedded data matrix of X , where yi is corresponding to xi.
By preserving the local data structure ofX in Y , the objective
function is formulated as

min
W,Y
‖Y −WTX‖2F + α‖W‖2,1 + βtr(Y LY T ), (1)

where α and β are two balanced parameters; the term ‖W‖2,1
is calculated as ‖W‖2,1 =

∑n
i=1

√∑m
j=1 w

2
i,j , which is to

ensure that W is sparse in rows; tr(Y TLY ) is a promoting
regularization term to preserve the local data structure in Y .

Many methods can be used to preserve the local data struc-
ture, such as LPP [He and Niyogi, 2004] and LLE [Roweis
and Saul, 2000]. We use LPP to preserve the data similarity
of X in Y .

min
Y

∑n

i,j=1
‖yi − yj‖22sij , (2)

where sij is the pairwise similarity between xi and xj . Based
on the k-nearest neighbor graph, sij is calculated as

sij =

{
exp(−‖xi−xj‖2

2σ2 ), xi and xj are connected,
0, otherwise.

(3)

Let L = D − S be the Laplacian matrix, where S is the
similarity matrix with sij as its entries,D is the n×n diagonal
matrix with Dii =

∑n
j=1 sij on the diagonal. Then, equation

(2) can be equivalently expressed as

min
Y

Tr(Y LY T ). (4)

The optimization problem in equation (1) is solved by updat-
ing Y and W alternatively until the objective function con-
verges [Hou et al., 2011]. Let wi denote the ith row of W .
wi corresponds to the weight of the ith feature, thus, the spar-
sity constraint on rows makes W suitable for feature selec-
tion. The feature weights are ranked according to ‖wi‖2 in
descending order and the top rank features are selected.

2.2 Intermediate Representation
Intermediate representation has been proposed as an effective
method for collaborative classification [Imakura and Saku-
rai, 2019]. Consider g parties and let Xi be the original data
in party i. Party i calculates the intermediate representation
of Xi as X̃i = BiXi ∈ Rp×n by a transformation matrix
Bi ∈ Rp×m. Xi, Bi and X̃i are not revealed to other parties.
To perform collaborative classification, X̃i (i = 1, .., g) from
multiple parties are transformed to the same low dimensional
space, where X̂i = MiX̃i ∈ Rq×n, and Mi ∈ Rq×p is the
transformation matrix in party i which satisfies

MiBiX ≈MjBjX, i 6= j. (5)

That is, for an original data X , after the two transformations
by MiBi and MjBj in parties i and j, the same data prop-
erties are retained, i.e., the two transformations of X tend to
the same data point in the low dimensional space. Thus, clas-
sification can be performed on X̂i (i = 1, .., g) in the low
dimensional space.

Without sharing Bi, to find Mi that satisfies equation (5),
some sharable data called anchor data are introduced. The
anchor data can be the public data or dummy data constructed
based on the training data. Let Xa = [xa1 , ..., x

a
r ] ∈ Rm×r

denote the anchor data and X̃a
i = BiX

a is the intermediate
representation of Xa in party i. X̃a

i (i = 1, .., g) are shared
to calculateMi. Set the target Za ∈ Rq×r that satisfies Za ≈
X̂a
i (i = 1, .., g). Za can be solved by

min
M1,...,Mg,Za

g∑
i=1

‖Za −MiX̃
a
i ‖2F . (6)
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Directly solving equation (6) is difficult. An alternative way
is to solve its minimal perturbation problem based on the sin-
gular value decomposition (SVD)[Ito and Murota, 2016]. Let

[(X̃a
1 )T , ..., (X̃a

g )T ] = [U1, U2]

[
Σ1

Σ2

][
V T11 · · · V Tg1

V T12 · · · V Tg2

]
(7)

be SVD of the matrix combing X̃a
i . Then, Za can be set as

Za = UT1 . (8)

Based on equation (6), Mi can be computed by solving
minMi

‖Za −MiX̃
a
i ‖2F , that is

Mi = Za(X̃a
i )†. (9)

3 Distributed Collaborative Feature Selection
In this section, we propose a distributed method for collabo-
rative feature selection. We first show the steps and formu-
lations of the proposed method and then provide an effective
algorithm to solve the problem.

3.1 Steps and Formulations
In the embedded feature selection, the original data X is
transformed to the low dimensional data Y by a transforma-
tion matrix W . Y is obtained by preserving the local data
structure of X and the learned transformation matrix W is
used to rank the features. IfX is lack of some useful informa-
tion, W can not learn the most discriminative features. In the
proposed method, we consider the collaborative feature selec-
tion from multiple parties to solve the information deficiency
in one party, meanwhile we consider privacy preserving that
each party does not reveal the original data.

Inspired by [Imakura and Sakurai, 2019], we consider
transforming the original data from multiple parties by two
transformation matrices (e.g., Bi and Mi in party i) to the
same low dimensional space, where the condition of equation
(5) is satisfied. This can be realized by the following steps.

1) Set the anchor data Xa ∈ Rm×r and share them for all
parties.

2) Apply LPP [He and Niyogi, 2004] to calculate the trans-
formation matrixBi based onXi in party i. The intermediate
representations of Xi and Xa are calculated as X̃i = BiXi

and X̃a
i = BiX

a, respectively.
3) The intermediate representations of the anchor data from

multiple parties, i.e., X̃a
1 , ..., X̃

a
g , are shared to calculate the

transformed low dimensional data Za, as shown in equation
(8). The transformation matrix Mi can be calculated as equa-
tion (9).

4) The transformations of the original data from multiple
parties in the same low dimensional space can be calculated
as Zi = MiX̃i = MiBiXi (i = 1, .., g).

Different from [Imakura and Sakurai, 2019] that aims to
perform classification on Zi (i = 1, .., g) from multiple par-
ties, for the purpose of feature selection, we consider learning
the transformation matrix MiBi to rank the features in each
party. Since Bi is distributed in each party without sharing,

in each party we consider updating Bi to minimize the fol-
lowing objective function for feature selection.

min
Bi

‖Zi −MiBiXi‖2F + α‖(MiBi)
T ‖2,1+

βtr(MiBiXiL(MiBiXi)
T ),

(10)

where α and β are two balanced parameters. Note that the Bi
in step 2) can be seen as the initialization to generate the ini-
tial Zi in step 4). After Bi being updated, Zi can be updated
based on X̃a

i = BiX
a according to equations (7) and (8). Let

Wi = (MiBi)
T , equation (10) can be rewritten as

min
Wi

‖Zi −WT
i Xi‖2F + α‖Wi‖2,1 + βtr(WT

i XiLX
T
i Wi).

(11)
The term ‖Wi‖2,1 is to ensure that Wi is sparse in rows and
the feature weights in party i are learned based on Wi.

Note that L in the term tr(WT
i XiLX

T
i Wi) is calculated as

that introduced in Section 2.1. We replace Y by WT
i Xi since

the low dimensional data Zi is not a variable in the objective
function, while Zi can be updated based on Bi. Zi is calcu-
lated based on X̃a

i (i = 1, .., g), which are the intermediate
representation of the anchor data from multiple parties. Thus,
some properties of the original data from multiple parties can
be preserved by the transform to Zi. In addition, we also con-
sider preserving the local data structure of Xi by adding the
term tr(WT

i XiLX
T
i Wi). In contrast to our method, the local

feature selection in equation (1) only considers preserving the
local data structure of Xi.

3.2 Solutions
We show the process of how to solve the objective function
in equation (11).

Denote Θ(Wi) = ‖Zi − WT
i Xi‖2F + α‖Wi‖2,1 +

βtr(WT
i XiLX

T
i Wi).

∂Θ(Wi)

∂Wi
= 2XiX

T
i Wi − 2XiZ

t
i + 2αHiWi + 2β(XiLX

T
i )Wi,

(12)
whereHi ∈ Rm×m is a diagonal matrix with the ith diagonal
element as

Hii =
1

2‖wi‖2
. (13)

wi is the ith row of W . By setting ∂Θ(Wi)
∂Wi

= 0, we have

Wi = (XiX
T
i + αHi + β(XiLX

T
i ))−1XiZ

T
i . (14)

Since Wi = (MiBi)
T , we obtain

Bi = M−1
i WT

i . (15)

After Bi being updated, the intermediate representations
X̃a
i = BiX

a can be updated. Mi can be updated based on
X̃a
i . Thus, Zi can be updated. Then,Bi can be updated again.

We consider alternatively updatingWi and Zi to optimize the
objective function. Algorithm 1 shows the procedure of col-
laborative feature selection distributed in party i. Algorithm
1 will stop when the objective function tends to a constant or
the change is very small.
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Algorithm 1 Distributed collaborative feature selection
Input: Original data matrix Xi; Anchor data matrixXa

Parameter: Balance parameters α, β; Neighborhood size k;
Dimensionalities of embedding p, q; Selected feature number
d
Output: d selected features

1: Set t = 0 and Calculate L;
2: Initialize Bti by LPP; Calculate (X̃a

i )t = BtiX
a;

3: Collect (X̃a
1 )t, ..., (X̃a

g )t from multipler parties; Calcu-
late (Za)t as in equation (8); CalculateM t

i as in equation
(9);

4: Calculate Zti = M t
iB

t
iXi;

5: Initialize Ht = Im ;
6: repeat
7: Calculate W t

i as in equation (14);
8: Calculate Bt+1

i = (M t
i )
−1(W t

i )T ;
9: Calculate (X̃a

i )t+1 = Bt+1
i Xa;

10: Collect (X̃a
1 )t+1, ..., (X̃a

g )t+1 from other parties;
11: Calculate (Za)t+1 as in equation (8);
12: Calculate M t+1

i as equation (9);
13: Calculate Zt+1

i = M t+1
i Bt+1

i Xi

14: Calculate Ht+1
i according to equation (13);

15: t = t+ 1;
16: until convergence
17: Sort each feature according to ‖wi‖2 in descending order

and select the top d ranked ones.

4 Discussions
4.1 Convergence Analysis
We solve the proposed method in an alternative way. Then,
we show its converge behavior. From steps 8 and 13 in
Algorithm 1, Zt+1

i is calculated based on W t
i . For the

sake of convenience, we denote Zti = f(W t−1
i ). De-

note Θ(W t
i ) = ‖f(W t−1

i ) − (W t
i )TXi‖2F + α‖W t

i ‖2,1 +
βtr((W t

i )TXiLX
T
i W

t
i ). We can show that the objective

function in equation (11) will monotonically decrease in each
iteration if Θ(W t+1

i ) ≤ Θ(W t
i ).

Firstly, when f(W t−1
i ) is fixed, we can prove that

‖f(W t−1
i )− (W t+1

i )TXi‖2F + α‖W t+1
i ‖2,1

+βtr((W t+1
i )TXiLX

T
i W

t+1
i )

≤ ‖f(W t−1
i )− (W t

i )TXi‖2F + α‖W t
i ‖2,1

+βtr((W t
i )TXiLX

T
i W

t
i ).

(16)

We omit the detailed proof process of equation (16). A similar
proof process can be found in [Hou et al., 2011]. On the
other hand, since ‖f(W t

i )− (W t+1
i )TXi‖2F ≤ ‖f(W t−1

i )−
(W t+1

i )TXi‖2F , the following inequality holds.
‖f(W t

i )− (W t+1
i )TXi‖2F + α‖W t+1

i ‖2,1
+βtr((W t+1

i )TXiLX
T
i W

t+1
i )

≤ ‖f(W t−1
i )− (W t+1

i )TXi‖2F + α‖W t+1
i ‖2,1

+βtr((W t+1
i )TXiLX

T
i W

t+1
i ).

(17)

From the inequalities (16) and (17), we have Θ(W t+1
i ) ≤

Θ(W t
i ). The objective function has lower bounds, such as

zero, thus the above iteration will converge. Empirical results
show that the convergence is fast and only several iterations
(less than 10 iterations in the experiments) are needed to con-
verge.

4.2 Relations with Other Methods
Firstly, considering the privacy preserving and distributed
collaboration, the proposed method is related to the meth-
ods in [Banerjee and Chakravarty, 2011] and [Sheikhalishahi
and Fabio, 2017]. Both the two methods apply secure sum
protocol [Sheikh et al., 2010] to obtain the sum of the data
from multiple parties, and both the two methods focus on fil-
ter feature selection. The proposed method introduces a set of
anchor data and each party shares the intermediate represen-
tations of the anchor data for collaborative feature selection
without revealing their original data. Moreover, the proposed
method focuses on embedded feature selection.

Secondly, the proposed method has a close relationship
with the general embedded feature selection methods, such
as the methods in [Hou et al., 2011; Cai et al., 2010;
Ye and Sakurai, 2018]. The embedded feature selection meth-
ods consider local data structure preserving to find an embed-
ded low dimensional data. In addition to preserving the local
data structure, the proposed method utilizes the intermedi-
ate representations of the anchor data from multiple parties
to find the low dimensional data. Furthermore, the proposed
method can achieve privacy preserving and distributed col-
laboration.

Note that for privacy preserving, the proposed method only
shares the intermediate representations of the anchor data
from multiple parties. In the case that without privacy re-
quirement while the data from multiple parties are difficult
to collect for centralized analysis due to the huge data size,
the proposed method is also applicable. A part of the original
data collected from multiple parties can be used as the anchor
data, and the process of feature selection is distributed in each
party based on the shared intermediate representations of the
anchor data.

4.3 Privacy Analysis
The proposed method does not use privacy-preserving tech-
niques like cryptography or differential privacy that have a
strong guarantee for privacy. Since differential privacy is con-
sidered to be too strong for some applications, some weak-
ened versions of privacy have been proposed [Hall et al.,
2012]. Similarly, in our method, the term “privacy is pre-
served” can be defined as the case when the original data
in each party cannot be (approximately) obtained by others.
Here, we do not consider the privacy of the statistical datasets.
According to the proposed method, the original data Xi in
party i can be approximated only if one can obtain both the
intermediate representation of Xi and the transformation ma-
trix Bi. However, the intermediate representation of Xi and
the transformation matrixBi are not revealed to other parties.
As shown in our algorithm, the intermediate representation of
Xi is only distributed in party i, thus, the original dataset Xi
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(a) 784 features (original)) (b) 100 features by LFS (c) 100 features by DCFS (d) 200 features by LFS

(e) 200 features by DCFS (f) 784 features (original) (g) 200 features by LFS (h) 200 features by DCFS

Figure 1: Testing digitals with selected features in MNIST-d1 ((a), (b), (c), (d), (e)) and MNIST-d2 ((f), (g), (h))

cannot be (approximately) obtained by others. We will con-
sider further analyzing the privacy in a more formal way for
our method in future work.

5 Experimental Results
In this section, the proposed method is evaluated on several
datasets. A dataset is divided into some parts. The data in
one part is referred to as the data in one party. The proposed
method is performed in each party for distributed collabora-
tive feature selection. We apply k Nearest Neighbors (NN)
classifier (k = 1) to test the performance of the proposed
method. In each party, feature selection is performed on the
training data to learn the features. The training data with the
selected features are used to train the classifier and the test
data with the selected features are used to test the result. Two
widely used evaluation metrics, i.e., accuracy (ACC) and nor-
malized mutual information (NMI) [Strehl and Ghosh, 2002],
are used to evaluate the classification results.

We compare the proposed method, i.e., distributed collab-
orative feature selection (DCFS), with local feature selection
(LFS) in each party using the method in Section 2.1. We also
compare the case of collecting all data from each party for
feature selection (AFS), and the baseline case using all the
features (i.e., without feature selection) for classification. In
the experiments, we generate 500 anchor data based on the
original data in each party. The features of the anchor data
are generated as random values between the maximum and
minimum values of the corresponding features in the training
data. Since the anchor data in each party is generated based
on its original data, the anchor data gathered from all parties
are related to the original data in all parties. The number of
selected features is ranged from 1 to 300. α and β are tuned

over {10−3, 10−2, 10−11, 101, 102, 103}. The neighborhood
size is set as k = 5. Dimensionalities of embedding are set as
p = 10 and q = 5. We report the best result of all the methods
by using different parameters. All experiments are performed
using MATLAB2018a on Mac OS X 10.13.6 (18C54) with
core i7 CPU and 16GB ram.

5.1 Handwritten Digit Data
We first use the handwritten digit data (i.e., MNIST) [LeCun
et al., 1998] to generate two datasets for performance evalu-
ation. MNIST consists of 5000 samples with 784 features.
The two generated datasets are denoted as MNIST-d1 and
MNIST-d2, respectively. MNIST-d1 contains the digitals 0,
1, 2, 3 and is divided into two parts. Party 1 consists of 270
samples of 1 and 10 samples of 0, 2, 3, respectively. Party
2 consists of 30 samples of 1 and 90 samples of 0, 2, 3, re-
spectively. MNIST-d2 contains the digitals 4, 5, 6, 7, 8, 9 and
is divided into six parts. Each part consists of about 90% of
one digital and 10% of other digitals, e.g., party 1 consists of
275 samples of 4 and 5 samples of 5, 6, 7, 8, 9, respectively.
We use five test data to test the performance of feature se-
lection in MNIST-d1 and MNIST-d2, respectively. Each test
data has 600 samples and all classes are equal in size. The
mean results with standard deviation are reported.

Figure 1 shows some of the testing digitals with the se-
lected features by using LFS and DCFS, respectively. We can
see that, compared with LFS, the features selected by DCFS
can better capture the data structure to represent the original
data. In Figures 1 (b) and (d), the digital 0 is difficult to be
recognized. In Figure 1 (g), 4 and 5 are difficult to be recog-
nized.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4146



(a) MNIST-d1

Party Method ACC NMI

Party 1 LFS 81.31.0 63.57.6

AFS 87.21.2 72.05.4

Baseline 84.71.0 66.43.2

DCFS 86.11.9 67.62.7
Party 2 LFS 96.71.0 90.72.8

AFS 97.25.3 92.72.7

Baseline 95.81.4 87.43.3

DCFS 97.25.8 91.41.8

(b) MNIST-d2

Party Method ACC NMI

Party 1 LFS 48.91.4 33.54.0

AFS 55.41.3 37.51.7

Baseline 51.20.9 36.82.2

DCFS 52.80.9 37.43.1
Party 2 LFS 58.42.1 40.32.7

AFS 60.10.6 42.42.5

Baseline 58.61.4 41.22.3
DCFS 58.92.5 41.02.2

Party 3 LFS 56.11.5 36.73.8

AFS 57.52.2 38.02.7

Baseline 55.91.2 37.21.7

DCFS 56.70.9 37.92.3
Average of LFS 48.81.9 30.72.7

parties 4, 5, 6 AFS 50.12.0 31.62.6

Baseline 48.61.8 30.52.2

DCFS 49.82.2 31.32.6

Table 1: Classification results on handwritten digit data

The classification results in each party on MNIST-d1 and
MNIST-d2 are shown in Table 1. In each party, the best and
the second best results are highlighted in bold-face type and
underlined, respectively. For MNIST-d2, we show the results
in three parties and the average result of the other three par-
ties. We can see that feature selection can improve the results
of classification. Collecting all data for centralized analysis
obtain the best results in most cases. LFS performs worse
than baseline in some parties due to the lack of information.
The proposed method solves the information deficiency in the
local party, thus performs better than LFS and also baseline
on most parties.

5.2 Gene Expression Data
We use four gene expression datasets for perfor-
mance evaluation. The datasets are Colon, TOX-171,
Lung, and Lymphoma, which are downloaded from
http://featureselection.asu.edu/datasets.php. We summarize
the properties of the datasets in Table 2. Colon and TOX-171
are randomly divided into two parts with equal size, while
Lung and Lymphoma are randomly divided into three parts
with roughly equal size. For each dataset, 80% and 20% of
the data are set as the training and test data in each party, We
perform data divisions five times on each dataset and report

Dataset # of samples # of features # of clusters

Colon 62 2000 2
TOX-171 171 5748 4

Lung 203 3312 5
Lymphoma 96 4026 9

Table 2: Properties of datasets

(a) ACC

(b) NMI

Figure 2: Classification results on Colon vs. number of features

the mean results with standard deviation.
The classification results on the four gene expression

datasets are shown in Table 3. The performance improve-
ments by the three feature selection methods on gene expres-
sion datasets are more significant than that on MNIST. The
proposed method performances better than local feature se-
lection in each party. In party 1 on TOX-171, NMI of DCFS
is better than AFS. That is because AFS focuses on preserv-
ing the local data structure in multiple parties. The proposed
method can be seen as a trade-off between preserving the lo-
cal data structure in a single party and in multiple parties. In
some case, the trade-off can obtain better result.

Figure 2 shows the classification results on colon by vary-
ing the number of selected features. It is clear that DCFS
performs better than LFS in terms of both ACC and NMI.

The classification results on Colon with different α and β
are shown in Figure 3. As seen from Figure 3, when two
parameters are changed within a certain range, the perfor-
mance also changes within a certain range. The performance
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(a) Colon

Party Method ACC NMI

Party 1 LFS 81.71.1 35.81.8

AFS 85.03.7 42.71.2

Baseline 65.06.9 6.57.0

DCFS 83.38.3 40.81.2
Party 2 LFS 83.35.9 42.68.5

AFS 88.39.5 57.51.7

Baseline 76.79.1 31.10.0

DCFS 85.06.9 45.31.6

(b) TOX-171

Party Method ACC NMI

Party 1 LFS 58.43.3 39.63.4

AFS 63.53.2 43.72.2
Baseline 48.64.7 24.89.8

DCFS 63.13.2 46.14.3

Party 2 LFS 58.23.6 37.26.3

AFS 62.42.6 45.13.0

Baseline 47.83.3 25.85.3

DCFS 62.03.8 44.14.0

(c) Lung

Party Method ACC NMI

Party 1 LFS 96.03.1 86.44.2

AFS 97.52.2 88.72.2

Baseline 93.43.8 79.26.5

DCFS 97.02.5 87.24.3
Party 2 LFS 93.03.4 79.14.9

AFS 96.43.7 84.05.0

Baseline 93.54.3 79.84.8

DCFS 95.03.6 82.34.7
Party 3 LFS 94.54.2 82.75.3

AFS 96.24.0 83.85.2

Baseline 93.84.3 79.15.1

DCFS 95.63.8 83.24.5

(d) Lymphoma

Party Method ACC NMI

Party 1 LFS 79.44.3 81.04.2

AFS 83.54.2 81.74.2

Baseline 76.64.7 77.56.2

DCFS 82.23.9 81.44.5
Party 2 LFS 79.13.8 80.65.3

AFS 82.23.5 82.34.0

Baseline 75.34.3 77.95.6

DCFS 81.13.6 81.94.1
Party 3 LFS 78.23.8 80.75.1

AFS 82.42.6 83.53.8

Baseline 72.84.3 75.75.3

DCFS 82.13.7 82.54.2

Table 3: Classification results on gene expression data

(a) ACC

(b) NMI

Figure 3: Classification results on Colon vs. parameters α and β

in terms of ACC is more stable than that in terms of NMI.

6 Conclusion
In this paper, we proposed a novel distributed method for
collaborative feature selection method by considering privacy
preserving. The proposed method learns the intermediate rep-
resentations of the anchor data from multiple parties. Em-
bedded feature selection is performed in each party based on
the intermediate representations, which can solve the infor-
mation deficiency in the local party. We derive an effective
algorithm to solve the optimization problem and present the
convergence analysis. Experimental results show that the pro-
posed method can improve the performance of feature selec-
tion in the local party. In the future work, we will use some
statistical methods and investigate the practical techniques to
improve the setting of anchor data for higher performance.
We also consider to extend the proposed method for the su-
pervised case and accelerate the algorithm.
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