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Abstract
Given graph-structured data, how can we train a ro-
bust classifier in a semi-supervised setting that per-
forms well without neighborhood information? In
this work, we propose belief propagation networks
(BPN), a novel approach to train a deep neural net-
work in a hard inductive setting, where the test data
are given without neighborhood information. BPN
uses a differentiable classifier to compute the prior
distributions of nodes, and then diffuses the priors
through the graphical structure, independently from
the prior computation. This separable structure im-
proves the generalization performance of BPN for
isolated test instances, compared with previous ap-
proaches that jointly use the feature and neighbor-
hood without distinction. As a result, BPN outper-
forms state-of-the-art methods in four datasets with
an average margin of 2.4% points in accuracy.

1 Introduction
Given graph-structured data, how can we train a robust clas-
sifier in a semi-supervised setting that performs well without
neighborhood information? Semi-supervised learning aims to
utilize unlabeled data to improve the performance of a model.
When the data are explicitly structured a graph, a typical ap-
proach to address the problem is to correlate labeled and un-
labeled nodes by the graphical structure [Yang et al., 2016;
Kipf and Welling, 2017; Velickovic et al., 2018].
Especially, many recent works have studied inductive ap-

proaches to develop models that perform generally well with
unseen data [Hamilton et al., 2017]. Compared with trans-
ductive approaches that use the feature and neighborhood in-
formation of test data at the training time to improve the per-
formance, such models do not use any information of the test
data at the training time. As a result, they becomemore robust
to unseen data, and their performances at the training time are
easily reproduced when evaluated by unseen data.
However, recent works for inductive learning assume that

every instance has enough neighborhood when input to the
models, which is not true in many cases. For instance, when
classifying new users in a social network who have few rela-
tionships with the others, the performance of those models is
severely damaged, while being sensitive to further changes of

relationships that such users generate. At the same time, it is
difficult to interpret the trained relationship between features
and labels since the models depend both on the feature vector
and neighborhood of an instance: it is not clear which of the
information mainly contributes to the performance.
In this work, we solve the hard inductive graph-based clas-

sification [Yang et al., 2016], which is to learn a classifier that
works well with isolated test instances having no neighbor-
hood information. This is essentially different from the soft
inductive learning above, because it is not allowed to directly
use the neighborhood information in prediction: it can help
the training, but should be excluded from the final classifier.
This prevents recent inductive approaches such as graph at-
tention networks [Velickovic et al., 2018] from working well,
since they use the neighborhood as essential evidence.
We propose belief propagation networks (BPN), our novel

approach for training a deep neural network in a hard induc-
tive setting. Unlike previous approaches that use features and
neighborhood information together, BPN maximizes its gen-
eralization performance by separating its steps for using fea-
tures and neighborhood information. First, the classification
step uses an independent classifier to compute the prior dis-
tributions of nodes: it works with feature vectors and requires
no neighborhood. Then, the diffusion step propagates the pri-
ors based on the message propagation [Koller and Friedman,
2009], which is used for graphical inference, and computes
approximate beliefs of nodes based on the given graph.
BPN uses two kinds of loss functions on the computed be-

liefs. The first is a classification loss between the beliefs and
observed labels, which makes the classifier work well in la-
beled nodes. The second is an induction loss that minimizes
the difference between the priors and beliefs, which makes
the classifier robust to the non-existence of neighborhood.
BPN can be coupled with any classifier because of its sep-

arable structure. For instance, a convolutional neural network
(CNN) is preferred when the features represent images, or the
logistic regression is useful when the relationship between
features and labels should be interpreted. This makes BPN
a general structure which can be used with various types of
data and different objectives. BPN can also take a classifier
that has been already trained and fine-tune its parameters, in-
stead of training a new classifier from the beginning.
We conduct extensive experiments to demonstrate the su-

perior performance of BPN, which shows the highest classifi-
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(b) Backward propagation of BPN.

Figure 1: Overview of the BPN structure. A graph of four nodes is given as an input and node 2 is the only labeled node. (a) In the forward
propagation, BPN uses a classifier f to predict the priors of nodes and diffuses them to compute the beliefs. (b) In the backward propagation,
BPN uses two kinds of loss functions lc and ld to use all unlabeled and labeled nodes to train a robust classifier for a hard inductive setting.

cation accuracy on four datasets compared with the state-of-
the-art approaches for inductive learning. Due to its efficient
structure, training BPN is up to 150⇥ faster than training the
baselines. We also show that BPN makes us interpret the re-
lationship between features and labels, which is difficult with
other approaches for soft inductive learning.

2 Problem Definition and Related Works
We define the problem of hard inductive learning and review
previous works of BPN for graph-based learning.

2.1 Problem Definition
We are given an undirected graph G = (V, E) where V and E
represent the sets of nodes and edges, respectively. Each node
i represents a classification instance with a feature vector xi

and a label yi. All feature vectors are accessible in training,
but the labels have been observed for a small subset Vo ⇢ V
of the nodes. Then, we have a test set D that consists of only
feature vectors, without the graphical structure. The problem
of hard inductive semi-supervised classification is to train a
classifier f that predicts the label of each instance x 2 D.

2.2 Transductive Learning
Transductive learning assumes that the test data are included
in the graph G. Thus, a model uses their features and neigh-
borhood information at training time and does not general-
ize to unseen data. Many recent approaches have been pro-
posed for transductive learning [Atwood and Towsley, 2016;
Kipf and Welling, 2017; Li et al., 2018; Yoon et al., 2018;
Ng et al., 2018; Liao et al., 2018; 2019], but they are not ap-
plicable to a hard inductive setting where isolated and unseen
test data are given. Previous approaches for node embedding
[Grover and Leskovec, 2016; Perozzi et al., 2014] are also
transductive since they generate low-dimensional representa-
tions based on the whole structure of a graph.

2.3 Inductive Learning
On the other hand, inductive learning does not use any infor-
mation of test data at training [Belkin et al., 2006; Weston
et al., 2012]. Planetoid [Yang et al., 2016] is an embedding-
based approach that uses the feature vectors and labels to gen-
erate representations optimized for semi-supervised learning.

In its inductive variant, the embedding is a parametric func-
tion of a feature vector and requires no neighborhood infor-
mation in its prediction. To the best of our knowledge, Plan-
etoid is the only method for hard inductive learning among
recent neural network approaches, which generalizes well to
isolated test instances preserving a good performance.

Other recent works focus on soft inductive learning where
the test instances are given with neighborhood. GraphSAGE
[Hamilton et al., 2017] generates embeddings by sampling
and aggregating features from a local neighborhood. SEANO
[Liang et al., 2018] is also an embedding approach but spe-
cialized for semi-supervised classification. GAT [Velickovic
et al., 2018] is a neural network architecture that leverages
self-attentions to address the shortcomings of graph convolu-
tions. Compared with these approaches that jointly use fea-
tures and neighborhood without distinction, BPN uses a fully-
separable structure for using these information, improving its
generalization performance for hard inductive learning.

2.4 Loopy Belief Propagation
Loopy Belief Propagation (LBP) is an approximate inference
algorithm that computes the posterior distributions of random
variables in a graphical model [Koller and Friedman, 2009].
Due to its generality and scalability, previous works have used
LBP to solve node classification problems such as large-scale
malware detection [Chau et al., 2011; Tamersoy et al., 2014],
social network analysis [Akoglu, 2014; Jang et al., 2016], and
recommendation [Ha et al., 2012].

A recent approach [Yoo et al., 2017] has modeled LBP as a
numerical function and learned the potentials by direct back-
propagation from the calculated posteriors. Our work is in-
spired by their approach, and we use LBP to correlate nodes
of a graph using an independent classifier for computing the
node priors. This is effective for semi-supervised learning in
a large graph, where it is difficult to estimate the potentials by
a probabilistic way as in [Chen et al., 2015].

3 Proposed Method
We propose belief propagation networks (BPN), a novel ap-
proach for hard inductive semi-supervised learning. Figure 1
depicts the overall structure of BPN. In the forward propaga-
tion, BPN first computes the prior �i of every node i using a
classifier f . Then, it diffuses the priors following the graphi-
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cal structure to compute the beliefs b⇤; this step is based on
the message propagation of loopy belief propagation.
In the backward propagation of Figure 1, we use two types

of loss functions to learn the classifier: the classification loss
lc and induction loss ld. The classification loss lc minimizes
the classification error of b⇤

2 for node 2, whose label has been
observed as y2. At the same time, the induction loss ld treats
the beliefs as soft labels and uses the priors as predictions for
the other unobserved nodes. This improves the generalization
performance of f for isolated test instances.

3.1 Prediction
We describe the forward propagation of BPN in detail, which
consists of two steps: prior computation and diffusion.

Prior Computation
Each node i in the given graph G represents a target instance
with a feature vector xi. BPN uses an independent classifier
f to estimate the prior �i of every node i:

�i = f(xi, ✓), (1)
where ✓ is a set of learnable parameters in f . This prediction
is done independently from the other nodes inG, ignoring the
relationships between nodes. Our main objective is to train f
with a small number of observed labels so that it works well
with isolated test instances in a hard inductive setting.

Probabilistic Modeling
A pairwise Markov network [Koller and Friedman, 2009] is
a graphical model that represents random variables as nodes
and their pairwise relationships as edges. Since the model is
useful in describing properties of a real-world network, many
previous works [Chau et al., 2011; Akoglu, 2014] for node
classification have used it to model given networks.
We model the given graphG as a pairwise Markov network

and use an edge potential matrix  of size |S|⇥ |S|:
 = exp(diag(✏)), (2)

where S is the set of target states, diag(✏) is a diagonal matrix
whose elements are ✏, and exp is applied elementwise to the
matrix. This represents that adjacent nodes connected by an
edge have the same label with a probability p proportional to
exp(✏). For instance, if |S| = 3 and ✏ = 0.1, the probability
distribution of a node’ state is given as (0.32, 0.36, 0.32) if its
neighbor has been observed as having the second label.
We call ✏ propagation strength because a property of the

model is determined by the value of ✏:
• If ✏ > 0, the model induces connected nodes to have the
same label because its probability is larger than the one
of having different labels.

• If ✏ = 0, the nodes are considered uncorrelated and thus
no information is propagated through the diffusions.

• If ✏ < 0, the nodes are negatively correlated: if a node is
observed as having a certain label, then its neighbors are
induced to have different labels.

The case of ✏ > 0 is the most common because most real-
work networks satisfy the homophily property, which states
that nearby nodes are likely to have the same label. We corre-
late unlabeled and labeled nodes based on the assumption of
✏ > 0, and choose its value as a hyperparameter.

Message Propagation
BPN diffuses the initial priors ⌘ times following the edges of
G, maintaining two types of variables: messages and beliefs.
After the t-th diffusion, a messagemt

ij from node i to node j
represents local prediction of node j estimated by node i. A
belief bt

j is computed by aggregating the messages to node j
and represents the current prediction of node j. BPN returns
the beliefs {b⌘

j }j2V as a result of forward propagation.
We initialize all messages and beliefs before the diffusion

starts, after computing all priors:

m0
ij = 1/|S|, b0

j = �j = f(xj , ✓), (3)

where 1 represents a vector whose elements are all 1’s. The
messages are initialized as uniform distributions because the
nodes have not exchanged any information at this stage. The
beliefs are initialized with the predicted priors from f .
Then, the t-th messages and beliefs are computed as

mt
ij =

⇥
 (bt�1

i ↵mt�1
ji )

⇤
, (4)

bt
j = softmax(log �j +

P
i2Nj

logmt
ij), (5)

where  is the potential matrix, [·] represents a normalization
function that divides a vector by the sum of its elements, ↵
represents the elementwise division between two vectors, and
Nj represents the set of direct neighbors of node j.
The messagemt

ij propagates the beliefb
t�1
i of node i to its

neighbor j. Large propagation strength ✏ increases its skew-
ness, while ✏ = 0 gives a uniform distribution as a message.
The belief bt

j in Equation (5) aggregates the local information
around node j by adding the logarithms of its prior �j and all
incoming messages. As the aggregation is done at every dif-
fusion step, the belief bt

j represents a predicted distribution
for node j derived from its t-hop neighbors.
One important difference between BPN and previous ap-

proaches is that BPN aggregates a neighborhood’s predictions
with no learnable parameters. The result of diffusion is deter-
mined solely by the prediction of f . This is a main advantage
since we focus on hard inductive learning, where the parame-
ters relying on the neighborhood cannot be used at test time;
BPN learns the parameters only in the classifier f .

3.2 Parameter Estimation
We learn the parameters ✓ of the classifier f by the backprop-
agation from the final beliefs. We propose two types of loss
functions, classification loss lc and induction loss ld, for dif-
ferent objectives and combine them as a single loss function
l which we aim to minimize.

Classification Loss
The classification loss lc measures how well the observed la-
bels are predicted by the beliefs:

lc(✓) = �
X

i2Vo

log b⇤i (yi), (6)

where Vo is the set of nodes whose labels have been observed,
yi is the observed label of node i, and b⇤i (yi) is the predicted
belief of node i for yi.

This loss function involves only a few nodes in Vo whose
labels have been observed. If we use the priors, instead of the
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beliefs, as predicted probabilities, lc becomes a typical clas-
sification loss by f . Instead, we consider the ⌘-hop neighbor-
hoods of Vo by using the beliefs as our predictions. Most of
the nodes in G participate in lc if we use large ⌘.
However, using lc alone has two limitations. First, the per-

formance of BPN becomes too dependent on the value of ⌘. If
⌘ is too small, many nodes remain untouched and are not used
in training f . If ⌘ is too large, the training may be unstable
because of a long computational chain that causes problems
in gradient computations; the training will become slow, de-
creasing the efficiency and scalability of the algorithm. Sec-
ond, BPN learns the parameters ✓ of f expecting that the pri-
ors are propagated through the graphical structure. In other
words, BPN does not consider f as an independent classifier,
but as a component of its structure which computes the initial
beliefs. As a result, the performance of f does not generalize
to the test data which have no neighborhood information and
thus the diffusion has no effect. We describe how to address
these limitations in the next section.

Induction Loss
We propose the induction loss ld to complement the limita-
tions of the classification loss lc:

ld(✓) = �
X

i/2Vo

X

s2S
b⇤i (s)(log �i(s)� log b⇤i (s)), (7)

where S is the set of labels, and �i(s) is the prior of node i for
a label s. This is the KL divergence loss between the beliefs
and priors for all nodes whose labels are not given.
Minimizing ld makes the classifier f produce the priors of

unobserved nodes that are as closest as possible to their be-
liefs. In other words, we use the priors as predictions and the
beliefs as soft labels to induce f to mimic the diffusion.
The value of ld is close to zero at the first few epochs be-

cause the beliefs are distributed randomly. Then, the perfor-
mance of f improves by minimizing lc, and the predicted pri-
ors on Vo are propagated to their ⌘-hop neighborhoods. This
changes the beliefs of those nodes and increases the value of
ld. If f is learned to decrease ld by fitting the priors to beliefs
on those nodes, the new priors are propagated again to their
neighborhoods, further increasing ld on the new nodes. This
is repeated until all nodes are considered by ld.

Using ld overcomes the limitations of lc by the following
reasons. First, BPN becomes robust to the value of ⌘ since
even a small value of ⌘ is enough to correlate all nodes in G.
Small ⌘ further shortens the computational chain, increasing
the efficiency of gradient computation. Second, f works well
on test data that have no neighborhood information, since it
is trained to produce predictions that are close to the beliefs.
BPN thus considers f as an independent classifier whose pre-
dictions are directly usable without further diffusions.

Overall Loss Function
We incorporate the loss functions in Equations (6) and (7) and
propose the final cost function that BPN aims to minimize:

l(✓) = (1� �)lc(✓) + �ld(✓) + �||✓||22, (8)

where � adjusts the balance between the two loss functions,
and � is an L2 regularization parameter for ✓. Note that BPN

Algorithm 1 Belief Propagation Network (BPN)

Require: graph G = (V, E), feature vectors xi for all i 2 V ,
and labels yi for all i 2 Vo, where Vo ⇢ V

Require: classifier f : R|xi| ! R|S| with parameters ✓
Ensure: the trained classifier f for hard inductive learning
1: for [1, num epochs] do
2: b0

j  �j  f(xj , ✓) for all j 2 V
3: m0

ij  (1/|S|)1 for all (i, j) 2 E
4: for t in [1, ⌘] do
5: mt

ij  [ (bt�1
i ↵mt�1

ji )] for all (i, j) 2 E
6: bt

j  softmax(log �j +
P

i2Nj
logmt

ij) for all j
7: end for
8: lc  �

P
i2Vo

log b⌘i (yi)
9: ld  �

P
i/2Vo

P
s2S b⌘i (s)(log �i(s)� log b⌘i (s))

10: l (1� �)lc + �ld + �||✓||22,
11: ✓  update the parameters to minimize l
12: end for

has no learnable parameters in its diffusion part; our target is
the parameters ✓ of the classifier f . If � = 0, the induction
loss is not used and f may not generalize well. If � = 1, the
classification loss, which guides the induction loss in the first
epochs, is not used. We thus set � in (0, 1).

3.3 Algorithm
We summarize BPN in Algorithm 1, which takes a classifier
f as an input and trains it in a semi-supervised setting. BPN
uses f to compute the priors of nodes in line 2. Then, in lines
3 to 7, BPN diffuses the priors ⌘ times to compute the final
beliefs. In lines 8 to 11, BPN computes the loss l and updates
the parameters ✓ of f . This is repeated until f is trained prop-
erly, and the resulting f is evaluated by test data that are not
observed at training time and have no neighborhood.

Implementation
Most computations in BPN are carried out efficiently in a re-
cent deep learning framework. However, the computation of
a message mt

ij in Equation (4) involves a random access to
the reverse direction, which is difficult for most sparse repre-
sentations of adjacency matrices. The coordinate (COO) and
dictionary of keys (DOK) formats support constant-time ac-
cess to a random entry, but lose the spatial locality of edges,
which is crucial when computing the beliefs in Equation (5).
The compressed sparse row (CSR) and the compressed sparse
column (CSC) formats [Saad, 2003] preserve the locality, but
do not support constant access to the reverse edges.
Thus, based on the CSR format, we use an additional index

array R that stores the positions of reverse edges to support
constant access. As a result, the graph is represented as four
arraysM , I ,D, andR. Each undirected edge is stored by two
directed edges inM of length 2|E|. I[j] contains the position
of the first edge in M that is incident to node j, and D[j] has
the degree of node j. For each edge inM , we setR[j] to store
the position of the reverse edge of M [j] inM .
Our implementation addresses both requirements:
• Locality. If we want to compute the belief bj , all mes-
sages that go to node j are located in between M [I[j]]
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Method Pubmed Cora Citeseer Amazon
Planetoid 74.6 ± 0.5 66.2 ± 0.9 66.8 ± 1.0 70.1 ± 1.9
GCN-I 74.1 ± 0.2 67.8 ± 0.6 63.6 ± 0.5 76.5 ± 0.3
SEANO 75.7 ± 0.4 64.5 ± 1.2 66.3 ± 0.8 78.6 ± 0.6
GAT 76.5 ± 0.4 70.1 ± 1.0 66.7 ± 1.0 77.5 ± 0.4

BPN (ours) 78.3 ± 0.3 72.2 ± 0.5 70.1 ± 0.9 81.5 ± 1.3

Table 1: Classification accuracy of BPN and the baseline methods. We report
the average and standard deviation of ten runs with different random seeds.
BPN consistently shows the highest accuracy with low deviations.

Figure 2: Average training time of BPN and the baselines for
ten runs. BPN is up to 150⇥ faster than the recent methods.

Name Nodes Edges Attributes Labels
Pubmed1 19,717 44,324 500 3
Cora1 2,708 5,278 1,433 7
Citeseer1 3,327 4,552 3,703 6

Amazon 32,966 63,285 3,000 3

Table 2: Summary of datasets.

and M [I[j] +D[j]] continuously.
• Reverse indexing. If we want to find the reverse of the
message mij inM [k], it is located inM [R[k]].

4 Experiments
Our experiments show that BPN outperforms the state-of-the-
art methods for hard inductive learning.

4.1 Experimental Settings
We introduce our experimental settings including datasets, an
experimental setup, and baseline methods. Our experiments
are done in a workstation with Geforce GTX 1080 Ti.

Datasets
We use four datasets summarized in Table 2. The first three
datasets [Sen et al., 2008] were used to evaluate the previous
approaches [Velickovic et al., 2018]. The nodes represent sci-
entific publications classified by the research areas and have
feature vectors about their textual contents: TF-IDF weighted
vectors in Pubmed, and bag-of-words vectors in Citeseer and
Cora. The edges represent citations between the articles.
We also use an Amazon dataset based on [McAuley et al.,

2015; He and McAuley, 2016]. The original dataset contains
items of Amazon, each of which contains a text description,
a category, and a list of related items. We use the description
of each item as a bag-of-words feature vector after reducing
the number of words [Yang and Pedersen, 1997]. Then, we
create a network of the items by connecting related ones as
edges and classify the category of each item into Electronics,
Cell Phones and Accessories, or Automotive.

Experimental Setup
For each dataset, we use 20 nodes of each class for training,
1,000 nodes for testing, and 500 nodes for validation as done

1https://github.com/kimiyoung/planetoid

in [Kipf and Welling, 2017]. Since we aim to solve the hard
inductive problem, we remove the neighborhood information
of the test nodes to treat them as independent instances. We
run every method ten times and report the average and stan-
dard deviation of classification accuracy.
We use a feedforward neural network with one hidden layer

as a classifier f . Since it has a shallow structure, we use tanh
as the activation function and do not use a bias. The number
of hidden units is set to 32, and we use dropout [Srivastava et
al., 2014] of probability 0.5. Adam [Kingma and Ba, 2015] is
used as an optimizer for all datasets with different step sizes
determined by validation performances.
Given the classifier f , we choose the hyperparameters of

BPN based on the validation performance on Cora and use a
similar setting in Citeseer: ✏ = 0.05, � = 10�4, and � = 0.9
in Cora, and ✏ is changed to 0.01 in Citeseer. Since Pubmed
and Amazon have much less labels than in Cora and Citeseer,
we change the parameters to more efficient training: ✏ = 1.0
and � = 0.5. We lastly set � = 2 · 10�2 in PubMed based on
its small number of features. The number ⌘ of diffusion oper-
ations is set to one in all datasets, which is small but enough
to correlate all nodes by the induction loss ld.

Baselines
We compare BPN with four competitive baselines recently
proposed: Planetoid, GCN, GAT, and SEANO. The last two
methods are considered as the state-of-the-art methods for in-
ductive learning. We do not include GraphSAGE although it
is also an inductive approach, because it focuses on either su-
pervised or unsupervised learning: its performance on semi-
supervised learning has been worse than those from the other
baselines [Liang et al., 2018]. We include GCN-I, an induc-
tive variant of GCN, by removing all edges connected with
the test instances. We get public implementations of the base-
line methods and measure the accuracy and training time.

4.2 Classification Performance
We demonstrate that BPN outperforms the baselines by both
classification accuracy and training time. Table 1 shows that
BPN produces the highest accuracy with an average margin
of 2.4% points, which is a significant amount considering the
low standard deviations. Moreover, Figure 2 shows that BPN
is trained up to 150⇥ faster than the recent baselines, which
consider multi-hop neighbors of each instance with extensive
amounts of computations. These are due to the efficient struc-
ture of BPN that considers only a small number of neighbors
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Figure 3: Loss values when training BPN for Cora. BPN
increases the validation accuracy by first minimizing the
classification loss lc and then the induction loss ld.

(a) Propagation strength (b) Loss coefficient

Figure 4: Classification accuracy of BPN on Pubmed with two hyperparameters:
propagation strength ✏ and the loss coefficient �. The plots show similar patterns
that optimal values exist in the middle showing small standard deviations.

Cell Phones
1. Tablet
✓ Armband
✓ ZTE
✓ OTG
5. Headset

Electronics
✓ Subwoofer
✓ Bay
3. Word
4. Wires
✓ Pair

Automotive
✓ Motorcycle
✓ Ford
3. Fuel
✓ Hose
✓ BMW

Figure 5: The most important keywords for each class of Amazon,
which are derived from the learned classifier of BPN. Although the
checked words do not appear in the labeled nodes, they are learned
successfully by BPN and used to predict the test instances.

at each epoch but eventually correlates all labeled and unla-
beled nodes by minimizing two kinds of loss functions.

4.3 Interpretability
Since the prediction of the previous approaches relies both on
the feature and neighborhood information of an instance, it is
difficult to interpret the resulting models. On the other hand,
the learned classifier f from BPN uses only the features, and
it is possible to analyze the relationship between the features
and labels. One way to interpret f is to give a zero input and
differentiate the prediction with regard to the input. Then, the
gradient of each element represents its importance for classi-
fication. Figure 5 shows the top five keywords of the largest
importances for each class on Amazon, each of which corre-
sponds to an element of the bag-of-words vectors. Although
the checked words are not present in the labeled nodes, we
note that they are learned successfully by BPN and used to
predict the test instances by f as important evidence.

4.4 Effects of the Losses
BPN minimizes two kinds of loss functions to perform well
in a hard inductive setting. Figure 3 shows their values during
the training of BPN on Cora. At first, the classification loss
lc is at maximum, while the induction loss ld is the smallest
since most priors and beliefs are close to uniform distribu-
tions and thus similar to each other. BPN then minimizes lc
on the labeled nodes, changing the beliefs of their neighbor-
hoods by diffusion; this increases ld instead. After that, BPN
moves to the unlabeled nodes and updates its parameters to

produce priors that are as closest as possible to their beliefs,
minimizing ld in latter epochs. The validation accuracy keeps
increasing whether we focus on lc or ld.

4.5 Hyperparameter Study
We conduct various experiments on BPN to see the effect of
each hyperparameter on its performance. The results for two
hyperparameters ✏ and � are summarized in Figure 4. Larger
✏ leads to higher accuracy until a certain point, and then the
deviation sharply increases, decreasing the average accuracy.
This is because large ✏ propagates more information at each
diffusion, decreasing the stability. In terms of the loss coeffi-
cient, � = 0.5 gives the best balance between the two losses.
It is notable that larger deviations are observed when � > 0.5,
since in that case ld starts to be minimized before f is fully
optimized for the labeled nodes by minimizing lc.

5 Conclusion
In this work, we have proposed belief propagation networks
(BPN), a novel approach for hard inductive semi-supervised
learning. BPN takes a differentiable classifier as an input and
trains it efficiently by minimizing two types of loss functions,
improving both its classification performance and robustness
to the non-existence of neighborhood. As a result, the trained
classifier outperforms the state-of-the-art approaches in four
datasets for text classification. Moreover, the separable struc-
ture of BPN makes the classifier interpretable in terms of the
relationship between features and labels, which is difficult in
previous approaches for soft inductive learning. Future works
include designing an improved message passing operation for
heterogeneous or edge-attributed networks.
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