
KCNN: Kernel-wise Quantization to Remarkably Decrease Multiplications in
Convolutional Neural Network

Linghua Zeng , Zhangcheng Wang and Xinmei Tian∗

CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems,
University of Science and Technology of China, China

zenglh@mail.ustc.edu.cn, wzc1@mail.ustc.edu.cn, xinmei@ustc.edu.cn

Abstract

Convolutional neural networks (CNNs) have
demonstrated state-of-the-art performance in com-
puter vision tasks. However, the high computa-
tional power demand of running devices of re-
cent CNNs has hampered many of their applica-
tions. Recently, many methods have quantized
the floating-point weights and activations to fixed-
points or binary values to convert fractional arith-
metic to integer or bit-wise arithmetic. However,
since the distributions of values in CNNs are ex-
tremely complex, fixed-points or binary values lead
to numerical information loss and cause perfor-
mance degradation. On the other hand, convolution
is composed of multiplications and accumulation,
but the implementation of multiplications in hard-
ware is more costly comparing with accumulation.
We can preserve the rich information of floating-
point values on dedicated low power devices by
considerably decreasing the multiplications. In this
paper, we quantize the floating-point weights in
each kernel separately to multiple bit planes to re-
markably decrease multiplications. We obtain a
closed-form solution via an aggressive Lloyd al-
gorithm and the fine-tuning is adopted to optimize
the bit planes. Furthermore, we propose dual nor-
malization to solve the pathological curvature prob-
lem during fine-tuning. Our quantized networks
show negligible performance loss compared to their
floating-point counterparts.

1 Introduction
Recently, convolutional neural networks have demonstrated
state-of-the-art performance in many computer vision tasks
[Goodfellow et al., 2016]. Among them, the image classifi-
cation task is particularly significant and fundamental. Many
well-known network structures [Krizhevsky et al., 2012;
He et al., 2016] have been trained on an image classifica-
tion dataset [Russakovsky et al., 2015] and then adapted to
other tasks, such as object detection, image segmentation, and

∗Contact Author

video recognition [Zhang et al., 2018]. Although the classi-
fication accuracy of recent CNNs continues to improve, the
high computational power demand of CNNs has hampered
their adoption in a wide range of applications. They have be-
come too cumbersome to be implemented on mobile devices
with limited power budgets [Courbariaux et al., 2015] or as
part of web services that are sensitive to computational over-
head [Han et al., 2015]. In this work, we focus on decreasing
computational power demand of running devices of CNNs on
the image classification task. The accelerated network struc-
tures can be easily adapted to other tasks like object detection
and video recognition.

Convolution operation consists of equal numbers of mul-
tiplications and additions which compose the accumulations.
However, many previous methods [Tai et al., 2015; Lin et al.,
2017] ignored the different complexity between multiplica-
tions and additions. Multiplication is much harder to be im-
plemented on the hardware than addition [David et al., 2007;
Wolf, 2002]. For integer arithmetic, the multiplier needs
O(n2) transistors, while the adder needs O(n) transistors,
where n is the number of bits. For fractional arithmetic, the
situation is more complex but still a multiplier is considerably
more complex than an adder. Therefore, the majority of the
computational resources are consumed by multiplications.

In this paper, we only decrease the number of multiplica-
tions by quantizing the floating-point weights in each ker-
nel separately to multiple bit planes. Since we quantize the
weights in convolution operations to binary values (+1 and
-1), we eliminate the multiplications and only conduct accu-
mulation with sign reverse in convolution operations. BWN
[Courbariaux et al., 2015] and TWN [Zhu et al., 2016] have
similar motivation like us. However, they only use one bit
plane which makes their method suffer from huge accuracy
loss and be inefficient and impractical in industrial applica-
tions. Further more, it is generally accepted that the lower
complexity of accumulations makes it possible to improve the
accuracy at the cost of increasing accumulations. We quan-
tize weights to multiple bit planes inspired by ABC [Lin et
al., 2017]. But unlike ABC, we only conduct quantization on
weights, thus we still utilize fractional arithmetic which have
advantages in handling large fluctuations or complex distri-
butions of values. Following previous methods (e.g. BWN,
TWN, ABC), we scale the resulting features by the assigned
floating-point values after quantized convolution operations.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4234

This scaling operation requires far fewer multiplications than
the original convolution operation. In addition, we find that
the convolutions of different kernels in a convolutional layer
are independent and unique. Quantizing each kernel sep-
arately is more accurate than previous works and thus re-
sults in a promotion in accuracy. Besides, to make our al-
gorithm more elegant, we abandon the complex tricks which
are widely used in previous works. These tricks need man-
ually adjustment which require lots of experiments, such as
weight clipping and weight shifting.

We modify the original Lloyd quantizer [Lloyd, 1982] in
an aggressive manner to obtain a closed-form solution for
our quantization problem. We minimize the squared error be-
tween the original and quantized weights. Each binary value
is constrained to only two possible values (-1 and +1). The
binary weights of the i-th kernel in a convolutional layer are
all assigned a shared floating-point value. The solution for
the binary values is the sign of the original weight. The solu-
tion for the floating-point value is the average of the absolute
values of the original weights in the i-th kernel. The quan-
tized weight in one bit plane is the binary value multiplied by
the floating-point value. We subtract the quantized weight of
one bit plane from the original weight and quantize the result
again. This procedure creates one bit plane in one time and
the number of bit planes equals to the times it runs.

Finally, we fine-tune the quantized network to reduce the
accuracy loss. The original weights are kept and updated dur-
ing fine-tuning since most of the operators is differentiable.
We directly propagate the gradient of sign operator backward
following the previous methods [Hubara et al., 2016]. How-
ever, after quantization, the internal covariate shift problem
and pathological curvature problem become serious, espe-
cially when the networks going deeper. To overcome this
problem, we propose dual normalization that is inspired by
batch normalization [Ioffe and Szegedy, 2015] and weight
normalization [Salimans and Kingma, 2016]. We normalize
both the weights and activations along channel axis and ker-
nel axis respectively. The experiments show its efficiency.

Comparing with other quantization methods, our quantized
networks achieve higher accuracy than theirs with the same
number of bits, and the results are even close to those of
their floating-point counterparts. Although sometimes our
networks need more addition operations than the original net-
work, adders are cheaper than multipliers in hardware, which
guarantees promising application prospects for our method.
Still, our networks require far less storage than the original
networks. Contributions of this paper are summarized as fol-
lows:

(1) We propose a more accurate quantization algorithm that
quantizes each kernel separately to multiple bit planes.
We still utilize fractional arithmetic which has advantages
in handling complex distributions of values and simulta-
neously eases the high demand of running devices.

(2) We find a closed-form solution for our quantization prob-
lem by modifying the Lloyd quantizer. It is compatible
with fine-tuning which can further improve the perfor-
mance.

(3) Moreover, we propose dual normalization, which solves

the pathological curvature problem in our experiments. It
does not require manual adjustments and thus will facili-
tate the adaptation to other methods.

2 Related Work
Previous works, which accelerated CNNs, could be divided
into weights-based methods and quantization methods. They
decreased computational power demand by modifying the
convolutional layers.

Weights-based methods directly eliminate the weights in
convolutional layers [Han et al., 2015], such as matrix de-
composition [Kim et al., 2015], low-rank decomposition [Tai
et al., 2015], pruning [Han et al., 2015], and sparsification
[Ioannou et al., 2017; Figurnov et al., 2016]. EEC [Yang et
al., 2017] proposed an energy-aware pruning algorithm for
CNNs that directly used the energy consumption of a CNN
to guide the pruning process. NISP [Yu et al., 2018] ap-
plied feature ranking techniques to measure the importance
of each neuron in the final response layer, formulating net-
work pruning as a binary integer optimization problem, and
derived a closed-form solution to it for pruning neurons in
earlier layers. Recently, some methods directly trained the
computationally efficient CNNs with delicate structures, such
as and ShuffleNet [Zhang et al., 2018]. Weights-based meth-
ods achieve lower acceleration performance comparing with
quantization methods. However, they are compatible with
current devices, such as GPU, which guarantees excellent ap-
plication prospects for them. Besides, weights-based meth-
ods and quantization methods utilize different kinds of redun-
dancy [Zeng and Tian, 2018]. They are orthogonal with each
other.

Quantization methods [Dong et al., 2017] reduce the num-
ber of bits of weights and activations. They achieve great
theoretical acceleration comparing with weights-based meth-
ods. However, quantization methods make various modifica-
tions on the framework of CNNs which needs hardware sup-
port. Hubara et al. (BNN) [Hubara et al., 2016] used binary
weights and activations to compute the parameter gradients
to train the networks at training time. At running time, both
weights and activations were binary and CNNs were accel-
erated by replacing fractional arithmetics with bit-wise arith-
metics. Rastegar et al. (Xnor) [Rastegari et al., 2016] quan-
tized the filters and the inputs of the convolutional layers to
binary. Lin et al. (ABC) [Lin et al., 2017] approximated full-
precision weights with linear combinations of multiple binary
weight bases. Multiple binary activations were also employed
to alleviate information loss.

Gupta et al. [Gupta et al., 2015] showed that deep net-
works can be accelerated using low bit wide fixed-point
number representation. Lin et al. [Lin et al., 2016] pro-
posed a quantizer designed for fixed point implementations
of CNNs. Leng et al. [Leng et al., 2018] modeled this
problem as a discretely constrained optimization problem
and borrowed the idea from Alternating Direction Method
of Multipliers (ADMM). Wu et al. [Wu et al., 2018] devel-
oped a new method to discretize both training and inference,
where weights, activations, gradients and errors among layers
are shifted and linearly constrained to low-bitwidth integers.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4235

* ×Bit Plane +Bit PlaneBit Plane
Figure 1: The structure of the quantized convolution process. Each
Bit Plane has the structure shown in Equation 4. Here the ∗ rep-
resent binary convolution shown in Equation 2. The × represent
multiplications with broadcasting as shown in Equation 4.

They further replaced batch normalization by a constant scal-
ing layer and simplified other components that are arduous
for integer implementation.

Courbariaux et al. (BWN) [Courbariaux et al., 2015] ac-
celerated the CNNs by quantizing only the weights to elim-
inate the multiplications. Li et al. (TWN) [Li et al., 2016]
constrained ternary weights to +1, 0 and -1 and the Euclidean
distance between the full-precision weights and the ternary
weights was minimized, up to a scaling factor. However,
BWN and TWN suffered from huge accuracy loss. But we
still follow the scheme of BWN and TWN, since it uses frac-
tional arithmetic which is supported by current devices. This
scheme is able to be realized with software development and
further improved with the hardware support. Our method im-
prove the performance of this scheme which makes it efficient
and practical in industrial applications.

3 Convolutional Layer Quantization
In this section, we detail the structure of our bit planes
and show how we quantize convolution operations. In Sec-
tion 3.1, we propose our kernel-wise quantization structure
with bit planes. This structure is used for the deployment
on devices. In Section 3.2, we illustrate how we obtain the
bit planes from the floating-point weights. Based on the dis-
tilling theory [Hinton et al., 2015], we firstly train convolu-
tional networks and then quantize the trained networks. It is
widely adopted by previous works [Courbariaux et al., 2015;
Lin et al., 2017].

3.1 Kernel-wise Quantization
First, we discuss the case of one bit plane. Formally, the
convolution process takes a stack of feature maps as in-
put, which can be represented as a 3-D tensor denoted by
X ∈ Rcin×h×w, where h and w are the height and width,
respectively, of the feature maps and cin is the number of in-
put channels. The weights in a convolutional layer with cout
kernels are denoted by W ∈ Rcout×cin×d×d, where d is the
kernel size. The output of the convolution, Y ∈ Rcout×h×w,

is

Yk,i,j =

cin,d,d∑
v,m,n=1,1,1

Xv,i+m−p,j+n−pWk,v,m,n, (1)

In this equation, we assume, without loss of generality, that
the stride is one and that the padding size is p = (d− 1)/2.

At testing time, for one bit plane for quantized convolu-
tion, each weight Wk,v,m,n in Equation 1 is quantized to ei-
ther -1 or +1, denoted byBk,v,m,n ∈ {−1,+1}cout×cin×d×d.
These two values are significantly advantageous from a hard-
ware perspective. With this quantization, the multiplication in
Equation 1 can be replaced with the sign operation. The sign
of the activation Xv,i+m−p,j+n−p in Equation 1 is reversed
when the weightBk,v,m,n is -1 and remains unchanged when
the weight is 1. The computational cost of the sign function
is extremely low. Consequently, the convolution process de-
generates to a process of accumulation:

Yk,i,j =

cin,d,d∑
v,m,n=1,1,1

f(Xv,i+m−p,j+n−p,Bk,v,m,n) (2)

The definition of f(x, y) is

f(x, y) =

{
x, y = 1
−x, y = −1 (3)

However, directly quantizing the weights to one bit plane
will considerably reduce the accuracy of the network [Hubara
et al., 2016; Courbariaux et al., 2015]. To overcome this
problem, an intuitive solution is to utilize more bit planes
to achieve more accurate quantization [Lin et al., 2017].
Besides, in previous quantization works, the kernels of a
single convolutional layer have been quantized as a whole.
However, the convolution of each kernel is independent and
unique. Quantizing all kernels in a convolutional layer as
a whole is not an suitable approach. Instead, we quantize
each kernel separately. The real-valued weight Wk,v,m,n

is estimated using a linear combination of t bit planes
B1,B2, . . . ,Bt ∈ {−1,+1}cout×cin×d×d and a floating-
point vector α ∈ Rt×cout :

Yk,i,j =

t∑
s=1

αs
k

cin,d,d∑
v,m,n=1,1,1

f(Xv,i+m−p,j+n−p,B
s
k,v,m,n)

=
t∑

s=1

αs
kY

s
k,i,j

(4)
The structure of the quantized convolutional layer that re-

places the original convolutional layer according to Equa-
tion 4 is shown in Figure 1. We will present how to obtain
B1,B2, . . . ,Bt and α in Section 3.2.

Since we use multiple bit planes, our method need nearly
t times addition operations than the original convolution op-
eration. However, multiplication is much harder to be im-
plemented on devices than addition is. Here, we analyze the
case of one addition and one multiplication, without loss of
generality. The carry adder needs k1n transistors, where k1 is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4236

a coefficient and n is the number of bits in the original con-
volution. The array multiplier needs k2n2 + k3n transistors.
Usually, k2 > k1, and k3 > k1. In the floating-point case, the
number of transistors required is complicated to analyze, but
the order of magnitude will remain consistent. The original
convolution operation needs approximately k2n2+(k1+k3)n
transistors. The quantized convolution and scaling operations
need approximately εk2n2 + ((t + ε)k1 + εk3)n. Since ε is
very small and t � n, t � k2 usually holds, the quantized
convolution and scaling operations need far fewer transistors
than the original convolution operation does.

3.2 Solution to the Lloyd Algorithm
In computer science and electrical engineering, Lloyd’s algo-
rithm, also known as Voronoi iteration or relaxation, is used
to find evenly spaced sets of points in subsets of Euclidean
spaces and partitions of these subsets into well-shaped and
uniformly sized convex cells [Lloyd, 1982]. In our algorithm,
we want to find B1,B2, . . . ,Bt and α in Equation 4. We
solve the following optimization problem:

min
α,B1,...,t

J =

cout,cin,d,d∑
o,v,m,n=1,1,1,1

(Wo,v,m,n −
t∑

s=1

αs
oB

s
o,v,m,n)

2

s.t. Bs
o,v,m,n ∈ {−1,+1}cout×cin×d×d

(5)

However, this problem is very hard to be solved. In-
spired by differential pulse-code modulation (DPCM) [Cut-
ler, 1952], we find the sub-optimal solution by sequentially
solving the following problem:

min
α,Bs

J =

cout,cin,d,d∑
o,v,m,n=1,1,1,1

(W s−1
o,v,m,n −αs

oB
s
o,v,m,n)

2 (6)

where s = 1, . . . , t and

W s
k,l,i,j =

{
W s−1

k,l,i,j −αs
kB

s
i,j,k,l s > 0

Wk,l,i,j s = 0
(7)

According to the solution of Lloyd’s algorithm, a local
minimum solution can be obtained for Equation 6. For a fixed
αs, we can obtain the numerical solution for Bs by comput-
ing the Voronoi diagram of the -1 and +1 sites:

Bs
k,l,i,j = sign(W s−1

k,l,i,j) (8)

The definition of sign(x) is

sign(x) =

{
+1 x ≥ 0
−1 x < 0

(9)

Here, weights of zero are quantized to +1. In practice, there
are only a minute number of zero weights, which have a neg-
ligible influence on the final results of the whole network.
Moreover, we adopt fine-tuning in our algorithm, which fur-
ther reduces the number of zero weights.

However, we note that the solution forBs is not related to
αs, which means that the solution forBs remains consistent
throughout all iterations. Thus, Equation 6 becomes

min
α,Bs

J =

cout,cin,d,d∑
o,v,m,n=1,1,1,1

(|W s−1
o,v,m,n| −αs

o)
2 (10)

It is quite easy to find the solution:

αs
k =

1

cin × h× w

cin,d,d∑
v,m,n=1,1,1,1

|W s−1
k,v,m,n| (11)

Now, we obtain the sub-optimal solution for Equation 5.
We conduct the quantization in an aggressive manner. Since it
is a sub-optimal solution, we conduct fine-tuning after quan-
tization which considerably reducing negative influences for
unable to find the optimal solution.

4 Bit Plane Optimization
In this section, we introduce the techniques used in our fine-
tuning stage. In Section 4.1, we introduce the dual normal-
ization and analyze the possible reasons why it works. In
Section 4.2, we describe the details for our quantized convo-
lutional layer during fine-tuning.

4.1 Dual Normalization
In an effort to improve the convergence of the optimization
procedure, we adopt dual normalization. It contains two sepa-
rable procedures, batch normalization and weight normaliza-
tion. The batch normalization is same as original batch nor-
malization [Ioffe and Szegedy, 2015] which normalizes the
v axis of X in Equation 1. The weight normalization skips
the learnable parameters in batch normalization. Specifically,
weight normalization normalizes the weights on the v axis of
W in Equation 1. The corresponding axes of X and W are
normalized, termed dual normalization.

We want to solve internal covariate shift problem and
pathological curvature problem simultaneously. The distri-
bution of each layer’s inputs changes during training as the
parameters of the previous layers change. It slows down
training by requiring lower learning rates and careful param-
eter initialization, and makes it notoriously difficult to train
models with saturated nonlinearities. It is called internal co-
variate shift problem. Normalizing the activations guaran-
tees each layer’s inputs have a fixed distribution, thus accel-
erates the convergence. The gradient descent algorithm is
strongly influenced by the curvature of the objective. If the
Hessian matrix of the objective at the optimum point has a
low condition number, then gradient descent will get bogged
down [Sutskever et al., 2013]. This phenomenon is called
the pathological curvature problem. There may be multiple
equivalent ways of parameterizing the same model, and some
of them are much easier to optimize than others [Salimans
and Kingma, 2016]. From the intuitive perspective, weight
normalization forces each input channel to be used in the con-
volution which makes the set of normalized weights easier to
be optimized than others.

4.2 Forward and Backward Propagation in
Fine-tuning

Here, we discuss the case of one convolutional layer. The al-
gorithm is shown in Algorithm 1. We fine-tune the quantized
convolution on the training data. In the fine-tuning process,
the real-valued weightsW of the original convolutional layer
are preserved. The quantized weightsB1,B2, . . . ,Bt andα

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4237

W mean

- square mean

abssign mean

X

Weight Normalization Bit-1

/

×

abssign mean

Bit-2

×

+ Y

- -

* ×

* ×

Figure 2: This figure lists the operators used in the fine-tuning. Here we show the 2-bit situation. We can use Tensorflow to implement it.
Here the W represents the original weights of the convolutional layer. The X is the input feature maps and Y is the output of quantized
convolution. The mean operator computes the average of input along one axis, which is the cin axis in the block of Weight Normalization
as marked in the graph and cout axis in the block of each Bit of the rest part in the graph. The square operator computes the square for each
value of the input. The sign operator is shown in Equation 9. The abs operator computes the absolute value for each value of input. The ∗
operator is shown in Equation 2. The +, −, × and / represent addition, subtract, multiplication and division with broadcasting respectively.

Algorithm 1 Forward Quantization of One Convolutional
Layer

Input: The input features from the last layer, X; The real-
valued weights of the original convolutional layer, W ;
The number of bits used for quantization, t;

Output: The output of the quantized convolution, Y
1: (optional) Normalize the activationsX along kernel axis;
2: (optional) Normalize the weightsW along channel axis;
3: W 0 =W ;
4: for i = [1, t] do
5: ComputeBi withW i−1 according to Equation 8;
6: Compute αi withW i−1 according to Equation 11;
7: ComputeW i according to Equation 7;
8: end for
9: Y = 0;

10: for i = [1, t] do
11: Compute Y i with X , Bi and αi according to Equa-

tion 4;
12: Y = Y + Y i;
13: end for
14: return Y ;

are not kept since they are generated by W . The operator
graph of fine-tuning is shown in Figure 2. We aim to update
theW with SGD [Goodfellow et al., 2016] method.

However, all operators are differentiable except for sign
operator. The derivation of the sign function is zero almost
everywhere, making it apparently incompatible with back-
ward propagation. Following Hubara et al. [Hubara et al.,
2016], we directly propagate the gradient without any mod-
ification. This is equivalent to using the following gradient:

∂sign(x)

∂x
= 1 (12)

This technique was first proposed by Hinton et al. [Hinton
et al., 2012] and has been utilized in numerous subsequent
works [Hubara et al., 2016; Lin et al., 2017].

After deployment, B1,B2, . . . ,Bt and α remain consis-
tent. The quantization procedure is already complete before
forward propagation is performed. In particularly, only Steps
9 to 14 in Algorithm 1 are performed, and the operators ∗ and
× of the lower part of Figure 2 are active.

5 Experiments
To validate the effectiveness of our algorithm, we conducted
experiments on ImageNet [Russakovsky et al., 2015] dataset.
The AlexNet [Krizhevsky et al., 2012] structure is mostly
used by weights-based methods. On the other hand, the
ResNet-18 [He et al., 2016] structure is mostly used by quan-
tization methods. So we utilize two network structures to
validate the effectiveness of our proposed method. The ex-
periments were implemented with TensorFlow [Abadi et al.,
2016] at version 1.3.

5.1 Implementation Details
The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [Russakovsky et al., 2015] evaluates algorithms
for object detection and image classification at a large scale.
The training set, which is a subset of ImageNet, contains 1.2
million images which can be divided into 1000 categories.
The validation set contains 50000 images. The data prepro-
cessing generally follows the implementation of Tensorflow
[Abadi et al., 2016]:

(1) Converting the data type of image from uint8 to float32.

(2) Each pixel is divided by 128 and subtracted 1.

(3) Resizing each image to 256× 256.

(4) Randomly cropping a 227× 227 patch.

(5) Flipping each patch with a probability of 0.5.

But the data processing on ResNet-18 [He et al., 2016] uses
multiple scales additionally. We thus randomly choose size
224, 256, 288, 320 and 352 to resize the image before crop-
ping a 224× 224 patch.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4238

AlexNet contains 14.29MB floating-point weights belong-
ing to convolutional layers. It costs 1.08G floating-point mul-
tiplications and additions for convolution. Equally, ResNet-
18 contains 42.60MB floating-point weights and requires
1.81G floating-point multiplications and additions for convo-
lution.

We firstly fine-tuned the pre-trained models from the model
zoo before quantization. For AlexNet we fine-tuned the net-
work for 40 epochs. The learning rate was initially set to
0.01, and decayed by a factor of 1/10 up to the 20th epoch
and by another factor of 1/10 up to the 30th epoch. The L2-
norm regularization with a factor of 5e−4 was adopted was
adopted. The batch size was set to 256 in these experiments.
For ResNet-18, the settings were similar except that the L2-
norm regularization was adopted with a factor of 1e−4. We
noticed that the networks had to be fine-tuned successively for
several times to get the accuracy as reported by the authors.

During the fine-tuning process in Section 4.2, the momen-
tum was set to 0.9. We fine-tuned the network for 20 epochs.
The learning rate was initially set to 0.001 and decayed by
a factor of 1/10 up to the 10th epoch and by another factor
of 1/10 up to the 15th epoch. L2-norm regularization with a
factor of 1e−4 was adopted. The batch size was set to 256 in
these experiments.

5.2 Comparing with Previous Methods
The experimental results are shown in Table 1 and Table 2.
Here, we adopt the same evaluation criteria as previous works
[Figurnov et al., 2016; Courbariaux et al., 2015]. The column
titled “Bits” reports the number of bits used for quantizing
weights. The column titled “Top-1 Bef.” reports the top-1 ac-
curacy before compression, as described in previous works.
The column titled “Top-1 Aft.” presents the top-1 accuracy
after compression. The column titled “Top-1 ↓” presents the
top-1 accuracy loss after compression. The analogous results
for the top-5 accuracy are reported similarly. The column
titled “Mult.↓” shows the reduction in the number of multi-
plications. The column titled “Add.↓” similarly reports the
addition reduction. The column titled “Weight↓” shows the
reduction in the number of weights.

AlexNet
The experimental results for AlexNet are shown in Table 1.
Comparing with the traditional weights-based methods, such
as Pruning [Han et al., 2015], Sparsification [Figurnov et
al., 2016], Decomposition [Kim et al., 2015] and Low-rank
[Tai et al., 2015], our method which is labeled as KCNN
achieves far higher multiplication reduction and somewhat
higher weight reduction with a lower or comparable accuracy
loss. It shows our advantages in decreasing multiplications.
Although our method requires more additions, it still incurs
a lower computational cost because floating-point multipli-
cations are much harder to be implemented on devices than
additions, as shown in Section 3.1. Comparing with recent
weights-based methods, which are EEC [Yang et al., 2017]
and NISP [Yu et al., 2018], we still have these advantages
when more bits are used.

The weights-based methods are orthogonal with our
method. So we choose to combine Low-rank method [Tai

et al., 2015] with our method because it achieves the highest
compression rate with little accuracy loss. From the results
which are labeled as KCNN + Low-rank, we find that after
combining two methods, the Mult.↓ and accuracy slightly de-
crease but the Add.↓ and weight↓ considerably increase. Our
method achieves extremely high Mult.↓ and Weight↓, and lit-
tle Add.↓ with little accuracy loss. We also find that our
method achieves better results than BWN [Courbariaux et al.,
2015] at one bit, because we quantize each kernel separately.
It is also the same reason that we achieve better results than
ABC [Lin et al., 2017].

ResNet-18
The experimental results for ResNet-18 are shown in Table 2.
Quantization methods achieve nearly the same multiplication,
addition and weight reductions with the same number of bits
for weights. We find that the results of ABC [Lin et al., 2017]
and our KCNN are better than Xnor [Rastegari et al., 2016]
and TWN [Li et al., 2016] with one or two bits, while the
results of ABC and our KCNN are close. So we specially
analyze these two methods.

With one bit, we achieve only an accuracy loss comparable
to that of ABC [Lin et al., 2017]. We believe that there are
two reasons related to this phenomenon:

(1) With one bit plane, our algorithm is equivalent to multi-
plying each output feature map by a factor of αi. How-
ever, the batch normalization whitens each output feature
map, which offsets our efforts. With two and three bits,
our method begins to show its advantages.

(2) To make our algorithm more elegant, we abandon the
complex tricks which are widely used in previous works.
These tricks need manually adjustment which require lots
of experiments, such as weight clipping and weight shift-
ing. It causes performance degradations when weight bits
are not enough.

We achieve an accuracy higher than that of ABC when more
bits are used. With five bits, our method achieves a negligible
accuracy loss that is better than that of ABC. In summary, our
method achieves better results than the previous methods do.

5.3 Ablation Study
In this section, we analyze the influence of kernel-wise quan-
tization and dual normalization on AlexNet and ResNet-18.
The results are shown in Figure 3.

The results with kernel-wise quantization are better than
those without. Quantizing each kernel separately is more ac-
curate than quantizing the whole layer together, because each
kernel of each bit plane owned an individual α parameter.
At one bit, kernel-wise quantization significantly improve the
performance. With more bits used, the gain gradually de-
creases, since the information in multiple bit planes becomes
richer and more α parameters bring less information gain.
But our method still outperforms other methods.

Then we analyze the influence of dual normalization. In
general, the results with dual normalization are better than
those without. The fluctuations of the results without dual
normalization are more intense. We believe that the patholog-
ical curvature problem is more salient when dual normaliza-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4239

Algorithm Bits Top-1 Bef. Top-1 Aft. Top-1 ↓ Top-5 Bef. Top-5 Aft. Top-5 ↓ Mult.↓ Add.↓ Weight↓

Pruning
[Han et al., 2015]

- 57.2% 57.2% 0.0% 80.3% 80.3% 0.0% 3× 3× 3×

Sparsification
[Figurnov et al., 2016]

- - - -
80.4%

70.5% 9.9% 4.4× 4.4× -
- - - - 74.3% 6.1% 3.5× 3.5× -
- - - - 78.1% 2.3% 2.1× 2.1× -

Low-rank
[Tai et al., 2015]

- - - - 80.0% 79.6% 0.4% 5.27× 5.27× 5.00×

Decomposition
[Kim et al., 2015]

- - - - 80.0% 78.3% 1.7% 2.67× 2.67× 5.46×

EEC
[Yang et al., 2017]

- - - - 80.0% 79.5% 0.5% 6.66× 6.66× 11×

NISP
[Yu et al., 2018]

- - - - 80.0% 80.0% 0.0% 2.5× 2.5× 2.1×

BWN∗

[Courbariaux et al., 2015]
1 56.6% 29.9% 26.7% 80.0% 52.7% 37.3% 1656× 1.0× 30.6×

ABC∗

[Lin et al., 2017]

2

56.6%

52.4% 4.2%

80.0%

76.3% 3.7% 828× 0.49× 15.81×
3 54.0% 2.6% 77.7% 2.3% 552× 0.32× 10.54×
4 53.5% 3.1% 77.2% 2.8% 414× 0.24× 7.90×
5 55.9% 0.7% 79.2% 0.8% 331× 0.19× 6.32×

KCNN

1

56.6%

40.4% 16.2%

80.0%

65.3% 14.7% 1656× 1.0× 30.6×
2 53.7% 2.9% 77.2% 2.8% 828× 0.49× 15.81×
3 55.2% 1.4% 78.6% 1.4% 552× 0.32× 10.54×
4 56.4% 0.2% 79.6% 0.4% 414× 0.24× 7.90×
5 56.4% 0.2% 79.5% 0.5% 331× 0.19× 6.32×

KCNN + Low-rank

1

56.6%

37.9% 18.7%

80.0%

62.2% 17.8% 1434× 5.27× 149.6×
2 51.8% 4.8% 75.7% 4.3% 717× 2.62× 74.8×
3 53.6% 3.0% 77.1% 2.9% 478× 1.74× 49.8×
4 55.6% 1.0% 78.8% 1.2% 358× 1.30× 37.4×
5 56.2% 0.4% 79.5% 0.5% 286× 1.03× 29.9×

Table 1: The comparison between our proposed KCNN and previous methods on AlexNet.
∗The BWN and ABC are realized by us.

Algorithm Bits Top-1 Bef. Top-1 Aft. Top-1 ↓ Top-5 Bef. Top-5 Aft. Top-5 ↓ Mult.↓ Add.↓ Weight↓

BWN
[Courbariaux et al., 2015]

1 69.3% 60.8% 8.5% 89.2% 83.0% 6.2% 730× 1× 31.5×

TWN
[Li et al., 2016]

2 - 61.8% - - 84.2% - 730× 1× 31.5×

ABC
[Lin et al., 2017]

1

69.3%

62.8% 6.5%

89.2%

84.4% 4.8% 730× 1× 31.5×
2 63.7% 5.6% 85.2% 4.0% 365× 0.49× 15.7×
3 66.2% 3.1% 86.7% 2.5% 243× 0.32× 10.5×
5 68.3% 1.0% 87.9% 1.3% 146× 0.19× 6.3×

KCNN

1

69.2%

61.7% 7.5%

89.0%

84.2% 4.8% 730× 1× 31.5×
2 66.5% 2.7% 87.4% 1.6% 365× 0.49× 15.7×
3 67.6% 1.6% 88.1% 0.9% 243× 0.32× 10.5×
4 68.3% 0.9% 88.5% 0.5% 182× 0.24× 7.8×
5 68.7% 0.5% 88.7% 0.3% 146× 0.19× 6.3×

Table 2: The comparison between our proposed KCNN and previous methods on ResNet-18.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4240

1 2 3 4 5

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64
T

o
p

-1
 A

cc
u

ra
cy

Bits

 Top-1 KW× DN×

 Top-1 KW× DN√

 Top-1 KW√ DN×

 Top-1 KW√ DN√

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

 Top-5 KW× DN×

 Top-5 KW× DN√

 Top-5 KW√ DN×

 Top-5 KW√ DN√

T
o

p
-5

 A
cc

u
ra

cy

(a) AlexNet

1 2 3 4 5

52

54

56

58

60

62

64

66

68

70

72

74

T
o

p
-1

 A
cc

u
ra

cy

Bits

 Top-1 KW× DN×

 Top-1 KW× DN√

 Top-1 KW√ DN×

 Top-1 KW√ DN√

76

78

80

82

84

86

88

90

 Top-5 KW× DN×

 Top-5 KW× DN√

 Top-5 KW√ DN×

 Top-5 KW√ DN√

T
o

p
-5

 A
cc

u
ra

cy

(b) ResNet-18

Figure 3: The influence of kernel-wise quantization dual normalization in our proposed KCNN on AlexNet and ResNet-18. Here the KW
and DN represent kernel-wise quantization and dual normalization respectively. The

√
and × represent with and without respectively.

tion is not used. This problem prevents the optimization pro-
cedure from reaching a good local minimum and makes the
algorithm highly rely on initialization. The dual normaliza-
tion procedure can considerably compensate for the effect of
the pathological curvature problem and thus facilitate the con-
vergence process. The gain with dual normalization is more
significant on ResNet-18 than AlexNet, because the ResNet-
18 is deeper in which the pathological curvature problem is
more salient.

6 Conclusion
In this paper, we reduce the number of multiplications in
CNNs by quantizing the floating-point weights in the covo-
lutional layer to multiple bit planes with binary weights (+1
and -1) and corresponding floating-point scale values. We
quantize each kernel separately with aggressive Lloyd’s al-
gorithm. Fine-tuning is adopted to optimize the weights after
quantization. To facilitate convergence during fine-tuning, we
propose a dual normalization procedure, which considerably
improves the convergence performance. Our designed net-
works show only negligible performance loss compared with
their floating-point counterparts. Comparisons with previ-
ous weights-based algorithms show that our proposed method
achieves better results than previous state-of-the-art methods
in terms of multiplication reduction. Our method also per-
forms better than other quantization methods with the same
number of weight bits. After combined with weights-based
methods, our method is able to reduce the multiplications
without causing additions increasing.

Acknowledgments
This work was supported by NSFC projects 61872329 and
61572451.

References
[Abadi et al., 2016] Martı́n Abadi, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[Courbariaux et al., 2015] Matthieu Courbariaux, Yoshua
Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propaga-
tions. In Advances in neural information processing sys-
tems, pages 3123–3131, 2015.

[Cutler, 1952] Cassius C Cutler. Differential quantization
of communication signals, July 29 1952. US Patent
2,605,361.

[David et al., 2007] Jean Pierre David, Kassem Kalach, and
Nicolas Tittley. Hardware complexity of modular multi-
plication and exponentiation. IEEE Transactions on Com-
puters, 56(10):1308–1319, 2007.

[Dong et al., 2017] Yinpeng Dong, Renkun Ni, Jianguo Li,
Yurong Chen, Jun Zhu, and Hang Su. Learning accurate
low-bit deep neural networks with stochastic quantization.
arXiv preprint arXiv:1708.01001, 2017.

[Figurnov et al., 2016] Mikhail Figurnov, Aizhan Ibraimova,
Dmitry P Vetrov, and Pushmeet Kohli. Perforatedcnns:
Acceleration through elimination of redundant convolu-
tions. In Advances in neural information processing sys-
tems, pages 947–955, 2016.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep learning. MIT press, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4241

[Gupta et al., 2015] Suyog Gupta, Ankur Agrawal, Kailash
Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International Con-
ference on Machine Learning, pages 1737–1746, 2015.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural informa-
tion processing systems, pages 1135–1143, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hinton et al., 2012] Geoffrey Hinton, Nitsh Srivastava, and
Kevin Swersky. Neural networks for machine learning.
Coursera, video lectures, 264, 2012.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Hubara et al., 2016] Itay Hubara, Matthieu Courbariaux,
Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks. In Advances in neural information
processing systems, pages 4107–4115, 2016.

[Ioannou et al., 2017] Yani Ioannou, Duncan Robertson,
Roberto Cipolla, and Antonio Criminisi. Deep roots: Im-
proving cnn efficiency with hierarchical filter groups. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1231–1240, 2017.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
International Conference on Machine Learning, pages
448–456, 2015.

[Kim et al., 2015] Yong-Deok Kim, Eunhyeok Park,
Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.
Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Leng et al., 2018] Cong Leng, Zesheng Dou, Hao Li,
Shenghuo Zhu, and Rong Jin. Extremely low bit neural
network: Squeeze the last bit out with admm. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[Li et al., 2016] Fengfu Li, Bo Zhang, and Bin Liu. Ternary
weight networks. arXiv preprint arXiv:1605.04711, 2016.

[Lin et al., 2016] Darryl Lin, Sachin Talathi, and Sreekanth
Annapureddy. Fixed point quantization of deep convolu-
tional networks. In International Conference on Machine
Learning, pages 2849–2858, 2016.

[Lin et al., 2017] Xiaofan Lin, Cong Zhao, and Wei Pan.
Towards accurate binary convolutional neural network.
In Advances in Neural Information Processing Systems,
pages 344–352, 2017.

[Lloyd, 1982] Stuart Lloyd. Least squares quantization
in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural net-
works. In European Conference on Computer Vision,
pages 525–542. Springer, 2016.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[Salimans and Kingma, 2016] Tim Salimans and Diederik P
Kingma. Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks. In Ad-
vances in Neural Information Processing Systems, pages
901–909, 2016.

[Sutskever et al., 2013] Ilya Sutskever, James Martens,
George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In
International conference on machine learning, pages
1139–1147, 2013.

[Tai et al., 2015] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang
Wang, et al. Convolutional neural networks with low-rank
regularization. arXiv preprint arXiv:1511.06067, 2015.

[Wolf, 2002] Wayne Wolf. Modern VLSI design: system-on-
chip design. Pearson Education, 2002.

[Wu et al., 2018] Shuang Wu, Guoqi Li, Feng Chen, and
Luping Shi. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680, 2018.

[Yang et al., 2017] Tien-Ju Yang, Yu-Hsin Chen, and Vivi-
enne Sze. Designing energy-efficient convolutional neu-
ral networks using energy-aware pruning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[Yu et al., 2018] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-
Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning net-
works using neuron importance score propagation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9194–9203, 2018.

[Zeng and Tian, 2018] Linghua Zeng and Xinmei Tian. Ac-
celerating convolutional neural networks by removing in-
terspatial and interkernel redundancies. IEEE transactions
on cybernetics, 2018.

[Zhang et al., 2018] Xiangyu Zhang, Xinyu Zhou, Mengx-
iao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6848–6856, 2018.

[Zhu et al., 2016] Chenzhuo Zhu, Song Han, Huizi Mao, and
William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4242

