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Abstract
Automated segmentation of liver tumors in
contrast-enhanced abdominal computed tomogra-
phy (CT) scans is essential in assisting medical
professionals to evaluate tumor development and
make fast therapeutic schedule. Although deep
convolutional neural networks (DCNNs) have con-
tributed many breakthroughs in image segmenta-
tion, this task remains challenging, since 2D DC-
NNs are incapable of exploring the inter-slice in-
formation and 3D DCNNs are too complex to be
trained with the available small dataset. In this pa-
per, we propose the light-weight hybrid convolu-
tional network (LW-HCN) to segment the liver and
its tumors in CT volumes. Instead of combining a
2D and a 3D networks for coarse-to-fine segmen-
tation, LW-HCN has a encoder-decoder structure,
in which 2D convolutions used at the bottom of the
encoder decreases the complexity and 3D convolu-
tions used in other layers explore both spatial and
temporal information. To further reduce the com-
plexity, we design the depthwise and spatiotempo-
ral separate (DSTS) factorization for 3D convolu-
tions, which not only reduces parameters dramati-
cally but also improves the performance. We eval-
uated the proposed LW-HCN model against sev-
eral recent methods on the LiTS and 3D-IRCADb
datasets and achieved, respectively, the Dice per
case of 73.0% and 94.1% for tumor segmentation,
setting a new state of the art.

1 Introduction
The liver is a common site of tumor development, which
causes massive deaths every year [Akinyemiju et al.,
2017]. Liver tumor segmentation, a fundamental step in
the computer-aided diagnosis, aims to segment tumors in
contrast-enhanced abdominal computed tomography (CT)
volumes. A reliable liver tumor segmentation system is able
to assist doctors in the accurate evaluation of primary or sec-
ondary tumor development and fast therapeutic schedule. Au-
tomated segmentation of tumors in the liver is, however, chal-
lenging due to three issues: (1) the low contrast between tu-
mors and liver or other organs in CT volumes, (2) the hetero-

geneity of liver tumors in shape, size, number, and location,
and (3) inadequate training data with pixel-level annotation.

Recently, deep convolutional neural networks (DCNNs)
have led to significant breakthroughs in image segmentation
[Long et al., 2015]. Following this trend, many attempts have
been made to extend these successes to liver tumor segmen-
tation [Li et al., 2018a]. Generally, the DCNNs designed for
image segmentation can be divided into two categories: 2D
and 3D networks. 2D DCNNs have achieved good perfor-
mance in many 2D scenarios of medical image segmentation
[Yu et al., 2017], as they have done in natural image segmen-
tation [Chen et al., 2018b]. However, these 2D networks can
only be applied to 2D slices without exploring the inter-slice
correlations, and hence are not good segmentation tools for
volumetric liver tumors. Let us make an analogy between an
abdominal CT volume and a video. A volumetric liver tumor
segmentation algorithm must be able to explore both the spa-
tial (i.e. intra-slice) and temporal (i.e. inter-slice) information
simultaneously. To address this issue, 3D DCNNs have been
constructed, which, unfortunately, have an excessive number
of parameters and extremely high complexity. Therefore, it
is difficult to train a 3D DCNN with limited training data
and hardware resources. Besides, 3D DCNNs requires much
more time in the inference than 2D DCNNs, which is against
the fast clinical diagnosis.

To balance between the model complexity and segmenta-
tion accuracy, hybrid models, which replace some 3D convo-
lutions in 3D DCNNs with 2D convolutions, have been pro-
posed and have shown their effectiveness in video classifica-
tion [Xie et al., 2018; Tran et al., 2018]. Although partly
reducing the complexity, this kind of hybrid models still have
a mass number of parameters caused by the rest of 3D con-
volutions and still require large scale datasets for training. A
popular solution that leads to a significantly enhanced perfor-
mance in video analysis is transfer learning, i.e. pre-training
a network on large scale datasets, like Sports-1M and Kinet-
ics, and fine-tuning it on small datasets. However, due to the
cost related to abdominal CT data acquisition and annotation,
there is no large scale dataset for liver tumor segmentation.
The data limitation definitely hinders the success of 3D DC-
NNs and hybrid models. Hence, reducing the computational
complexity and number of parameters is indispensable when
training a DCNN for liver tumor segmentation.

In this paper, we propose the light-weight hybrid con-
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volutional network (LW-HCN) to segment liver tumors in
contrast-enhanced abdominal CT volumes. The LW-HCN
model has a 3D encoder-decoder structure but with only 3.6
million parameters. To achieve this, we replace the 3D con-
volutions at the bottom of the encoder with low-cost 2D con-
volutions, concatenate the obtained 2D feature maps into a
3D feature map, feed it to 3D convolutions to capture high-
level semantic information in both spatial and temporal di-
mensions, and then use a simple 3D decoder to recover the
spatial and temporal information for the output. Comparing
with other hybrid models, our model is unique in two aspects.
First, we jointly use 2D and 3D convolutions in the same net-
work, instead of using a 2D network for coarse segmenta-
tion and a 3D network for refinement. Second, we design
the depthwise and spatiotemporal separate (DSTS) factoriza-
tion for 3D convolutions, which drastically reduces model pa-
rameters and the computational cost while improving perfor-
mance. We evaluated the LW-HCN model against the state-
of-the-art methods on the LiTS dataset and the 3D-IRCADb
dataset. The main contributions are summarized as follows:
• We propose the LW-HCN model that jointly uses both

2D and 3D convolutions for effective and efficient seg-
mentation of liver tumors in CT volumes.
• We design the DSTS factorization for 3D convolutions,

which not only reduces model parameters drastically but
also improves the performance.
• The proposed LW-HCN model has merely 3.6 million

parameters (only 15.3 MB) but achieved the state-of-the-
art performance on the LiTS and 3D-IRCADb datasets.

2 Related Work
2.1 2D DCNN Models
DCNN models based on 2D convolutions have achieved
the state-of-the-art performance on many image segmenta-
tion benchmarks. The significant performance improvement
is mainly attributed to many newly designed architectures,
including the spatial pyramid pooling [Zhao et al., 2017;
Chen et al., 2018a] for exploiting the multi-scale informa-
tion, the atrous convolution [Yu and Koltun, 2016] for ex-
panding the receptive field, and the skip connection [Ron-
neberger et al., 2015] for capturing the detailed information
by reusing low-level but high-resolution feature maps. In-
spired by these breakthroughs, research efforts have been de-
voted to the leverage of 2D convolutional networks for liver
tumor segmentation. [Vorontsov et al., 2018] connect two
UNet-like fully convolutional networks in tandem and train
them end-to-end for the joint segmentation of the liver and tu-
mors. [Han, 2017] proposes a 2D residual UNet model which
takes a stack of adjacent slices as input and produces the seg-
mentation map corresponding to the center slice. A common
weakness of these 2D models is the lack of capturing the tem-
poral information of liver tumors, which may degrade the per-
formance in volumetric segmentations.

2.2 3D DCNN Models
3D convolutions are able to simultaneously explore the tem-
poral and spatial information, and hence are extremely use-
ful in 3D scenarios. [Tran et al., 2015] adopt a 3D DCNN

(C3D) for the spatiotemporal feature learning in video clas-
sification. [Carreira and Zisserman, 2017] propose an 3D in-
ception model which inflates the filters and pooling kernels of
2D Inception V1 model into 3D convolutions and bootstraps
parameters by repeating the weights of 2D filters along the
temporal dimension. To reduce the parameters of 3D convo-
lutions, [Qiu et al., 2017] split the standard 3D convolution
into a spatial-wise convolution and a temporal-wise convolu-
tion. This kind of decomposition strategy has been used in
a variety of works, including the S3D [Xie et al., 2018] and
R(2+1)D [Tran et al., 2018] models.

Based on the strong spatiotemporal feature learning abil-
ity of 3D convolutions, [Dou et al., 2017] present a 3D
fully convolutional network to generate high-quality score
maps for automated liver segmentation. [Li et al., 2018b]
introduce a multi-scale context mechanism in 3D networks
to harness multi-scale contextual information for interverte-
bral discs segmentation. As expected, 3D convolutions show
a better ability to capture both spatial and temporal infor-
mation. However, 3D DCNNs have more parameters and
need more computation than their 2D counterparts. It means
that, for a 3D DCNN, achieving a good performance relies
extremely on powerful computation devices and large scale
datasets. Unfortunately, the insufficiency of training samples
limits the success of 3D DCNNs in the liver tumor segmenta-
tion, which is a small-sample learning problem.

2.3 Hybrid Architectures
Recently, hybrid architectures, which jointly use 2D and 3D
convolutions to reduce the model complexity, have been pro-
posed and successfully applied to video classification. [Tran
et al., 2018] propose to use 3D convolutions in either the bot-
tom or top layers and 2D convolutions in other layers. [Xie et
al., 2018] replace 3D convolutions at the bottom of the model
which contributes to the best performance in both speed and
accuracy. Similarly, both hybrid models factorize a standard
3D convolution into a spatial convolution followed by a tem-
poral convolution, and thus extremely reduces the parameters
of 3D convolutions. Different from these methods, our LW-
HCN model drastically reduces the computational complex-
ity by applying the depthwise operation to both 2D and 3D
convolutions. Besides, we introduce an efficient 3D convo-
lution factorization to separate the temporal feature learning
from the spatial feature learning in a parallel mode.

For the liver tumor segmentation, [Li et al., 2018a] pro-
pose a hybrid densely connected UNet model which is com-
posed of a 2D segmentation network and a 3D segmentation
network. The 2D network is used to extract image-level fea-
tures and perform segmentation on a slice-by-slice basis. The
pixel-wise probabilities produced by the 2D network are then
concatenated with the original 3D volume and fed into the
3D network for a refinement. Different from it, we only use
one network which consists of both 2D and 3D convolutions
and effectively reduce the model complexity by factorizing
the high-cost 3D convolutions.

3 Approach
Fig. 1 illustrates the overview of our LW-HCN model. In
this section we first elaborate the proposed DSTS factoriza-
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Figure 1: Diagram of the proposed LW-HCN model.

tion for 3D convolutions which capture both spatial and tem-
poral information with low computation complexity. Then,
we develop a novel LW-HCN model with an encoder-decoder
structure, which is composed of 2D depthwise convolutions
in the bottom and 3D DSTS convolutions in the rest. Be-
sides, we also apply several parallel 3D atrous DSTS convo-
lutions with different rates (called depthwise and spatiotem-
poral atrous spatial pyramid pooling, DST-ASPP) at the end
of the encoder to capture multi-scale information.

3.1 DSTS Factorization for 3D Convolutions
Depthwise Convolution for 3D: The depthwise convolution,
usually followed by a pointwise convolution, reduces the
computation and parameters by performing convolutions for
each input channel independently. 2D depthwise convolution
has been successfully used in [Chollet, 2017]. In this work,
we extend the depthwise convolution to 3D.

Let us consider a 3D convolution layer that takes a TF ×
WF ×HF ×M feature map F as input and produces a TG ×
WG ×HG ×N feature map G as output, where T∗, W∗, H∗
are temporal dimension, spatial width, and spatial height of
3D feature maps, respectively, and M and N are the number
of input and output channels, respectively. We parameterize
a standard 3D convolution layer through a X × Y × Z ×
M ×N convolution kernel KS , where X , Y , Z are temporal
and spatial dimension of the kernel. The output of this 3D
convolution layer can be computed as

SC(KS ,F, r)t,w,h,n=

X,Y,Z,M∑
x,y,z,m

KS
x,y,z,m,n·Ft+xr,w+yr,h+zr,m

(1)
where r represents the r-dilated convolution operation. As
for a 3D depthwise convolution layer with a X×Y ×Z×M
kernel KD, the mathematical formulation is as follow:

DC(KD,F, r)t,w,h,m =

X,Y,Z∑
x,y,z

KD
x,y,z,m · Ft+xr,w+yr,h+zr,m

(2)
After that, we apply a 3D pointwise convolution with 1× 1×
1 ×M × N kernel KP to combine the output of depthwise
convolution and project it into a new channel space as follows

PC(KP ,F)t,w,h,n =
M∑
m

KP
m,n · Ft,w,h,m (3)

The depthwise convolution is a powerful operation to re-
duce convolution parameters and computational complexity.
Let’s consider a 3×3×3 convolution operation with the input
channel c and output channel c. A standard 3× 3× 3 convo-
lution contains 27c2 parameters and a depthwise convolution
only has 27c parameters which is decreased by a factor of c.

Spatiotemporal Separate Convolution: 3D convolutions
have more parameters and require more computations than
2D convolutions. To get a light-weight model, a straightfor-
ward solution is to factorize a standard 3D convolution into
two separate convolutions, i.e., a 1×Y×Z spatial convolution
and a X × 1 × 1 temporal convolution, which are defined as
the spatiotemporal separate (STS) convolution. The spatial
convolution focus on the spatial feature learning, while the
temporal convolution focus on the temporal feature learning.
We introduce two kinds of STS convolution modules, i.e., a
sequential STS module and a parallel STS module, which are
defined as follows:

STSCsequ({K},F, r) = SC(KS1, SC(KS2,F, r), r) (4)

STSCpa({K},F, r) = SC(KS1,F, r)∪SC(KS2,F, r) (5)

where KS1 represents the kernel of the 1 × Y × Z spatial
convolution, KS2 represents the kernel of the X × 1× 1 tem-
poral convolution, and ∪ denotes the concatenation of fea-
ture maps. Both STS modules separate temporal and spatial
convolutions, and hence reduce the parameters of a standard
3× 3× 3 convolution from 27c2 to 12c2.

In the sequential STS module, the spatial and temporal
convolutions are performed in sequence, i.e. using the output
of spatial convolution as the input of temporal convolution.
In the parallel STS module, these two convolutions are per-
formed in parallel in two branches, and their outputs are then
concatenated. Compared with the sequential module, the par-
allel one better separates the temporal feature learning from
spatial feature learning. Considering the anisotropic spatial
resolution of abdominal CT volumes, we adopt the parallel
STS module for 3D liver tumor segmentation, which shows
better performance than the sequential module in Section 4.3.

3D DSTS Convolution: To further reduce the computa-
tional complexity and model parameters, we propose the 3D
DSTS convolution. As shown in Fig. 2, we divide the output
channels of the previous layer into a spatial branch and a tem-
poral branch, which focus on the spatial and temporal feature
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Figure 2: Diagram of the 3D DSTS convolution module.

learning, respectively. In each branch, the spatial / temporal
convolution is carried out in each channel. After the separate
feature learning, the outputs of spatial and temporal branches
are concatenated and fed to a pointwise convolution for fea-
ture integration. The formulation of 3D DSTS convolution is
DSTSC({K},F, r) =

PC(KP , DC(KD1,F, r) ∪DC(KD2,F, r))
(6)

where KP is the kernel of pointwise convolution, KD1 and
KD2 are kernels of spatial and temporal convolutions, respec-
tively. We replace all 3D convolutions with the DSTS convo-
lutions, which dramatically reduces the number of parameters
from 27c2 to c2 + 12c for each convolution operation.

3.2 Hybrid Convolutional Network
Dimension Transformation Layer: To bridge the 2D and 3D
convolutions, we introduce a transformation layer Z, which is
used to transform 2D feature maps into 3D maps. In Fig. 1,
we first use 2D convolutions to extract feature maps from 2D
slices in the same CT volume, and then concatenate them into
a 3D feature map along the temporal dimension.

DST-ASPP: The size of liver tumors varies greatly, ranging
from as small as dozens of voxels to extremely big ones. To
effectively capture the multi-scale information, we propose
the following 3D DST-ASPP module and apply it to the top
output of the encoder
A = PC(KP2, PC(KP1,F) ∪ {

Q⋃
q

DSTSC({Kq},F, rq)})

(7)
where

⋃
represents the concatenation of feature maps, and

Q is the number of DSTS convolution modules. Inspired
by the 2D ASPP used in [Chen et al., 2018b], we perform
a 1 × 1 × 1 convolution, and three DSTS convolutions with
the atrous rates 2, 4, 6 in the spatial dimension. The obtained
feature maps are concatenated and passed through a point-
wise convolution layer. Different from [Chen et al., 2018b],
we perform a 3D module and replace all standard 3D con-
volutions with the DSTS convolutions which separate tempo-
ral convolutions from spatial ones and drastically reduce the
computational complexity.

Encoder-Decoder Architecture: The proposed LW-HCN
model has an encoder-decoder architecture. The encoder part
contains a series of 2D convolutions and 3D convolutions.
We adopt 2D depthwise convolutions at the bottom of the
encoder to gradually reduce the feature maps resolution by
a factor of 8, and then transform the 2D feature maps into
3D ones through the transformation layer Z. Next, we ap-
ply the 3D DSTS convolutions to capture spatial and tempo-
ral semantic information. At the end of encoder, we apply

the 3D DST-ASPP to capture multi-scale information. Af-
ter that, a dropout layer with a rate of 0.5 is added to avoid
overfitting. In the decoder, the bilinear upsampling is used
to recover the resolution of feature maps in spatial dimen-
sion. The upsampled feature maps are concatenated with the
low-level but high-resolution features, which are transformed
from the outputs of the bottom 2D convolutions, and passed
through 3D DSTS convolutions for feature refinements. Fi-
nally, the 3D predictions are transformed to 2D results which
correspond to the input.

Loss Function: The 3D liver tumor segmentation suffers
from the extreme class-imbalance. The proportion of tumors
accounts for only one hundredth, even one thousandth of non-
tumor regions in each CT volume. To address this issue, we
jointly use the multi-class Dice loss, which is less sensitive to
class imbalance, and the cross entropy (CE) loss. The com-
bined loss can be calculated as follows

L = 1− 1

C

C∑
c=1

2
∑V

i=1 p
c
iy

c
i∑V

i=1(p
c
i + yci ) + ε

− 1

V

V∑
i

C∑
c

yci log p
c
i

(8)
where C denotes the number of categories, V denotes the
number of voxels, pci represents the predicted probability of
voxel i belonging to the class c, yci represents the ground truth
label of voxel i, and ε is a smooth factor.

4 Experiments
4.1 Dataset
We evaluated the LW-HCN model on the LiTS dataset and
3D-IRCADb dataset. The LiTS dataset is composed of 201
contrast-enhanced abdominal CT volumes provided by var-
ious clinical sites around the world, including 131 volumes
for training and 70 volumes for testing. The pixel-wise seg-
mentation ground truths of the liver and tumors in training
set are publicly available, but the ground truths for test cases
are withheld for online validation. The 3D-IRCADb dataset
offers 20 venous phase enhanced CT volumes acquired from
various European hospitals with different CT scanners. These
CT volumes are composed of dozens to about one thousand
slices of size 512 × 512. Different from natural images, the
voxel value in a CT volume is the Hounsfield Unit (HU) value
with a range from −1000 (air at standard pressure and tem-
perature) to more than +3000 (dense bone). To remove irrel-
evant information, we truncate the HU values of all volumes
to the range [−200,+250] as done in [Li et al., 2018a], and
then normalized them linearly to [−1,+1].

Following the evaluation procedures of the LiTS chal-
lenge1, we evaluated the segmentation performance with a
global Dice score (Dice global), i.e., combining all data sets
into one, and an average of Dice per volume score (Dice per
case). Dice per case is the only golden indicator, according to
which all methods are ranked. We also adopted the root mean
square error (RMSE) to assess the tumor burden.

4.2 Implementation Details
Our model is implemented with Keras and optimized with the
Adam algorithm [Kingma and Ba, 2015] on a NVIDIA Tesla

1https://competitions.codalab.org/competitions/17094#learn the details
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Factorization #Params
(×106)

Size
(MB)

Time
(ms)

Dice per case
(tumor/liver,%)

standard 3D 38.6 154.7 708.1 65.4/97.1
STS(sequ) 19.4 78.1 566.1 66.0/97.0
STS(pa) 20.8 84.1 597.5 67.3/97.0
DSTS 3.6 15.3 404.8 69.7/97.4

Table 1: Segmentation results of the different factorizations for 3D
convolutions of the LW-HCN model on the LiTS validation set.

Models Tumor Liver
LW-HCN+Ldice 65.7 96.4
LW-HCN+ASPP+Ldice 66.8 96.9
LW-HCN+ASPP+Skip+Ldice 68.5 97.3
LW-HCN+ASPP+Skip+Ldice+Lce 69.7 97.4

Table 2: Results (Dice per case, %) with different model setting
on the LiTS validation set. ASPP: Adding 3D DST-ASPP. Skip:
Adopting UNet-like skip connections between 2D and 3D features.

P100 GPU. The parameters of 2D convolutions are initialized
using the DeepLabV3+ model [Chen et al., 2018b] which
is pre-trained on the MS-COCO and PASCAL VOC datasets
and fine-tuned on the LiTS dataset, while the 3D convolu-
tional layers are trained from scratch. The initial learning
rate is set to 0.001 and decayed according to the poly sched-
ule lr = lr × (1 − iterations/total iterations)0.9. We
select 5 volumes from the LiTS training data to form a vali-
dation set, which is used to monitor the performance of our
model. During training, we densely sample 12 × 256 × 256
sub-volumes from each CT scan as the input of the model. To
save the GPU memory, we adopt the gradient-checkpointing
algorithm [Chen et al., 2016] to enlarge the batch size to 6.
Based on the fully convolutional architecture, our LW-HCN
model can accept an input with an arbitrary size in the test
stage. We extract the sub-volumes from each test CT volume
every 10 slices. Each sub-volume consists of 20 sequential
slices with a full size of 512 × 512. The final prediction
for a whole volume is generated by combing and averaging
the scores of these sub-volumes. In our experiments, it takes
about 24 hours to train the LW-HCN model and costs only 10
to 80 seconds to segment each test volume, depending on the
number of slices. To evaluate the generalization ability of the
LW-HCN model, we apply directly the model trained on the
LiTS Challenge dataset to the 3D-IRCADb dataset.

4.3 Ablation Study
Depthwise and Spatiotemporal Factorization: We compared
the proposed LW-HCN model that uses DSTS convolutions to
its variants that uses either the sequential or parallel STS con-
volutions and the baseline that uses standard 3D convolutions
on 5 validation volumes (V1-V5). Tab. 1 gives the number
of parameters, size, inference time (based on a single input
with 12 slices of spatial size 512 × 512), and the segmenta-
tion accuracy of each model. The baseline model has 38.6
million parameters, a size of 154.7 MB, and inference time
of about 700 ms, and achieved a Dice per case of 65.4% and
97.1% for tumor and liver segmentation, respectively. Com-
paring with the baseline, both variant models have less pa-
rameters, a smaller size, and less inference time, but a higher
accuracy in tumor segmentation. Furthermore, it shows that
the parallel STS results in more accurate tumor segmentation

than the sequential STS, though it has slightly more param-
eters, larger size, and higher inference time. With the pro-
posed DSTS convolutions, our LW-HCN model has only 3.6
million parameters and 15.3 MB in size, which are almost
one tenth of those of the baseline model. However, compar-
ing with both the baseline and other two factorizations, it not
only improves the accuracy of liver segmentation slightly, but
also improves the accuracy of tumor segmentation (i.e. from
67.3% to 69.7%) and reduces the inference time substantially.

Tab. 2 gives the Dice per case obtained by applying our
LW-HCN model with different settings to the LiTS valida-
tion set. Three conclusions can be drawn from this table.
DST-ASPP: Motivated by the effectiveness of spatial pyramid
pooling, we introduce a 3D DST-ASPP to capture the multi-
scale information in CT volumes, which brings 1.1% and
0.5% increase of the Dice per case for tumor and liver seg-
mentation, respectively. 2D-3D skip connections: We adopt
the 2D-3D skip connections to transform the low-level but
high-resolution 2D features to 3D features and feed them into
the high-level decoder, which leads to 1.7% and 0.4% im-
provements of the Dice per case for tumor and liver segmen-
tation, respectively. Loss function: To optimize the LW-HCN
model efficiently, we replace the Dice loss with our combined
loss, which further improves Dice per case by 1.2% and 0.1%
for tumor and liver segmentation, respectively.

4.4 Comparative Experiments
Tab. 3 shows the performance of the proposed LW-HCN
model and state-of-the-art 2D, 3D and hybrid models on the
LiTS test set. Fig. 3 shows a typical 2D slice extracted from
each of five validation volumes, ground truth, segmentation
results obtained by DeeplabV3+ [Chen et al., 2018b], I3D
[Carreira and Zisserman, 2017], and our LW-HCN model, re-
spectively, and the corresponding 3D visualization. It shows
that our LW-HCN model performs better than other models in
the segmentation of small tumors (see 1st and 2nd volumes)
and smoothing the surface of big tumors, due to an improved
ability to learn both spatial and temporal features.

Comparing with 2D Models: Due to the lack of the ability
to learn temporal features, 2D models, including ResUNet,
TwoFCNs [Vorontsov et al., 2018], DeeplabV3+, 2.5D Re-
sUNet [Han, 2017], and UNet+SP [Chlebus et al., 2018],
under-perform the LW-HCN model, which shows a strong
ability to learn both spatial and temporal features. Partic-
ularly, the highest Dice per case for tumor segmentation
achieved by 2D models is 67.6%, far lower than 73.0% Dice
per case achieved by the LW-HCN model.

Comparing with 3D Models: The 3D DenseUNet, which
has about 40 million parameters, is trained from scratch. To
adapt the I3D model to liver tumor segmentation, we adopt
the decoder used in our LW-HCN model and employ the
weights pre-trained on video datasets to initialize its encoder.
We compare the performance of I3D with and without using
pre-trained weights. It shows that the 3D DenseUNet and
I3D models trained from scratch perform even worse than
2D models. The low performance can be mainly attributed
to limited training data. Although achieves a remarkable im-
provement of 4.2% Dice per case in tumor segmentation over
the model without pre-train, the pre-trained I3D still much
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Models Tumor Segmentation Liver Segmentation Tumor Burden
Dice per case Dice global Dice per case Dice global RMSE

2D ResUNet 65.8 80.5 95.1 95.9 0.016
2D TwoFCNs [Vorontsov et al., 2018] 66.1 78.3 95.1 95.1 0.023
2D DeeplabV3+ [Chen et al., 2018b] 66.6 80.4 95.7 96.1 0.016
2D 2.5DResUNet [Han, 2017] 67.0 - - - -
2D UNet+SP [Chlebus et al., 2018] 67.6 79.6 96.0 96.5 0.020
3D DenseUNet 59.4 78.8 93.6 92.9 -
3D I3D [Carreira and Zisserman, 2017] 62.4 77.6 95.7 96 0.025
3D I3D (pre-trained) 66.6 79.9 95.6 96.2 0.023
2D+3D-UNet [Chlebus et al., 2017] 65.0 - - - -
H-DenseUNet [Li et al., 2018a] 72.2 82.4 96.1 96.5 0.015
LW-HCN 73.0 82.0 96.5 96.8 0.015

Table 3: Comparison of other liver tumor segmentation methods on the LiTS test set.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: Comparison of segmentation results. The first 5 columns
show the 2D results of 5 validation volumes, and the last 4 columns
are the corresponding 3D visualization. (a) Original slices; (b, f) 2D
and 3D ground truth; (c, g) Deeplabv3+; (d, h) I3D; (e, i) LW-HCN.

under-performs the proposed LW-HCN model.
Comparing with Hybrid Models: The 2D+3D-UNet [Chle-

bus et al., 2017] and H-DenseUNet [Li et al., 2018a] use a
similar hybrid framework, under which a 2D network is first
employed to generate 2D segmentation masks and a 3D net-
work is then used for refinement. H-DenseUNet improves the
Dice per case of tumor to 72.2%, which is by far the highest
score in the literature. However, H-DenseUNet contains up to
80 million parameters (40 million for 2D DenseUNet and 40
million for 3D DenseUNet) and has high computational com-
plexity. In contrast, LW-HCN has only 3.6 million parameters
but achieves remarkable advantages over other methods, ev-
idenced by the highest Dice per case 73.0% and 96.5% for
tumor and liver segmentations, respectively, and the lowest
RMSE 0.015 for tumor burden estimation.

4.5 Results on the 3D-IRCADb Dataset
Tab. 4 gives the Dice per case for liver and tumor seg-
mentation obtained by the proposed LW-HCN model and
other state-of-the-art methods on the 3D-IRCADb dataset.
It reveals that LW-HCN achieves the most accurate tumors
segmentation and second-most accurate segmentation of the
liver. Fig. 4 visualizes the segmentation results obtained by
LW-HCN on 8 randomly selected slices and the correspond-
ing ground truth. It shows that the results we achieved are
fairly close to the ground truth. Since LW-HCN is trained
on the LiTS dataset without a fine-tune on the 3D-IRCADb
dataset, the impressive results shown in Tab. 4 and Fig. 4

Ground truth Ours

Ground 

truth

Ours

Figure 4: Segmentation visualization of the LW-HCN model on the
3D-IRCADb dataset. Each pair of images shows the ground truth
(up) and our segmentation results (down).

Methods Tumor Dice
per case (%)

Liver Dice
per case (%)

[Foruzan and Chen, 2016] 82.0 -
[Wu et al., 2017] ∗ 83.0 -

[Moghbel et al., 2016] † 75.0 91.1
[Li et al., 2018a] † 93.7 98.2
LW-HCN (Ours) † 94.1 98.1

Table 4: Quantitative comparison of our LW-HCN model and other
state of the arts on the 3D-IRCADb dataset. Note that ’∗’ denotes
the semi-automatic methods, and ’†’ denotes using additional data.

demonstrate the strong generalization ability of our model.

5 Conclusion
In this paper, we propose the LW-HCN model to address the
challenge of high computational complexity and low segmen-
tation accuracy of 3D networks for the liver tumor segmen-
tation. We use 2D convolutions at the bottom of the network
to reduce the complexity and use 3D convolutions in the rest
to capture the high-level semantic information in both spa-
tial and temporal dimensions. To further reduce the com-
plexity, we propose the DSTS factorization for 3D convolu-
tions, which performs convolutions over each channel while
separating the spatial and temporal convolutions in parallel.
Our results on the LiTS and 3D-IRCADb datasets show that
the LW-HCN model achieves the state-of-the-art performance
with only 3.6 million parameters and 15.3 MB in size.
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