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Abstract
On E-commerce platforms, understanding the rela-
tionships (e.g., substitute and complement) among
products from user’s explicit feedback, such as
users’ online transactions, is of great importance
to boost extra sales. However, the significance
of such relationships is usually neglected by ex-
isting recommender systems. In this paper, we
propose a semi-supervised deep embedding model,
namely, Substitute Products Embedding Model
(SPEM), which models the substitutable relation-
ship between products by preserving the second-
order proximity, negative first-order proximity and
semantic similarity in a product co-purchasing
graph based on user’s purchasing behaviours. With
SPEM, the learned representations of two substi-
tutable products align closely in the latent embed-
ding space. Extensive experiments on seven real-
world datasets are conducted, and the results verify
that our model outperforms state-of-the-art base-
lines.

1 Introduction
In the era of information overload, recommender systems
play a pivotal role in helping users find the products they
are interested in [Koren and Bell, 2015; Yin et al., 2016;
Chen et al., 2019]. Aiming to model the user’s personal
preferences, traditional recommender systems heavily rely
on the availability of long-term user-item interactions and
consistent user identifications for preference learning. Con-
sequently, being able to infer users’ intention with infor-
mation mainly in the current browsing session, session-
based recommendation [Li et al., 2017; Wu and Yan, 2017;
Guo et al., 2019] based on implicit feedback (e.g., click, pur-
chase) has become a rather practical research direction.

However, a critical drawback of existing session-based
recommender systems is that they ignore the different re-
lationships among products when providing recommenda-
tions in different intention contexts [Zheng et al., 2009;
McAuley et al., 2015; Rakesh et al., 2019]. There are two

∗The authors equally contribute to this work. †indicates the cor-
responding author.

main product relationships, namely substitute and comple-
ment. Substitutable products are interchangeable and com-
petitive, e.g., Sony cameras and Canon cameras, while com-
plementary products are likely to be purchased together, e.g.,
Zeiss camera lenses are the complements for a Sony cam-
era [Mas-Colell et al., 1995]. More importantly, these two
types of products have varied importance in different user in-
tention contexts. Let us consider a scenario where a user is
choosing a printer to buy. Apparently, before a purchase is
observed in the current session, the recommender systems
should recommend substitute products of the items visited
by this user. This is because the current intention of the
user is mainly to purchase a specific type of product (i.e.,
printer in this case), and these substitute products can offer
substantial options for the user, thus increasing the chance
of a successful purchase. Meanwhile, after the purchase of
a printer is finalized, it would be more realistic to recom-
mend complements like printing papers and ink cartridges
instead of similar printers to stimulate further purchase in-
tention. Hence, investigating the substitutable and comple-
mentary relationships can create a game-changer in session-
based recommendation as it enables the recommendation of
products that closely fit the context of each user’s purchase
intention [Wu and Yan, 2017]. Since complementary prod-
ucts naturally share frequent co-occurrence (e.g., purchased
in the same order), many well-established methods like fre-
quent pattern mining [Aggarwal et al., 2014] and item-based
recommendation [Sarwar et al., 2001] can identify such com-
plementary relationship in a straightforward way. As a re-
sult, in this paper, we only focus on inferring substitutable
products because it is a relatively harder task compared with
mining complementary relationship.

Despite the significant benefit, the study of substi-
tutable product relationships remains largely unexplored.
The most relevant models in existing literatures are Scep-
tre [McAuley et al., 2015] and Linked Variational Autoen-
coder (LVA) [Rakesh et al., 2019]. The problem of mining
product relationships is first introduced in [McAuley et al.,
2015], and the proposed Sceptre infers substitutable products
by extracting the textual features of products from the re-
views and descriptions with the Latent Dirichlete Allocation
(LDA) [Blei et al., 2003]. LVA is a recent attempt that links
two Variational Autoencoders (VAE) [Kingma and Welling,
2013] conditioned on the observed links among items. How-
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ever, both methods suffer from two major limitations. Firstly,
they only consider the review texts, and the valuable informa-
tion within users’ historical purchase behaviours is neglected.
In addition, while it is impractical to assume the constant
availability of high-quality and sufficient reviews, the LDA
in Sceptre is known to underperform on short texts [Jo and
Oh, 2011; Titov and McDonald, 2008], which are common
in user reviews. Secondly, they extract text features from the
whole reviews which require large memory spaces for learned
features, making these models inefficient on large datasets.

To this end, we propose a novel model named Substitutable
Product Embedding Model (SPEM), which is able to scale
to very large product co-purchasing graph. In SPEM, we
first propose an innovative product graph named Product Co-
purchase (PC) graph, which is constructed based on user be-
haviours. Specifically, in the PC graph, an edge between two
product nodes indicates that customers have purchased both
products frequently. The core idea of SPEM is to learn the
vector embeddings of all products from the PC graph, then
the proximity (i.e., substitutable relationship) between any
two products can be inferred via common metrics like Eu-
clidean distance. From the perspective of previous graph-
based approaches [Hsieh et al., 2017; Wang et al., 2016;
Chen et al., 2018], if there is a link between two products in
the PC graph, then the learned embeddings of these two prod-
ucts will tend to have high proximity. However, this is not
true for substitutable product inference, because in reality, the
co-purchased products are more likely to be complementary
rather than substitutable. Intuitively, two substitutable prod-
ucts tend to have similar complementary products, and two
complementary products must not have substitutable relation-
ship. Formally, these properties are referred to as second-
order proximity and negative first-order proximity respec-
tively. For example, Dell and HP computers tend to have the
same complementary products like the Logitech keyboards,
while Dell computers and Logitech keyboards will never be
the substitutes for each other. In addition, substitutable prod-
ucts should share the same categorical hierarchy, thus provid-
ing similar functions. In short, a representative embedding of
a substitute should possess high semantic similarity to the
embedding of the original product.

Technically, SPEM is a semi-supervised model that is able
to preserve the three aforementioned properties of substi-
tutable products in the embedding space. Motivated by the
recent advances in network embedding [Wang et al., 2016],
SPEM learns a low-dimensional embedding for each product
node via the unsupervised deep autoencoder, which preserves
the second-order proximity within the PC graph. Meanwhile,
a supervised pairwise constraint further exploits the substi-
tutable and complementary properties to penalize the first-
order proximity. In addition, we also devise a tree-based sim-
ilarity function for SPEM to preserve the semantic similarity
among substitutable products.

In summary, the main contributions of this paper are:
• We propose SPEM, a deep network embedding model

that infers the substitutable relationship among products.
The method is capable of mapping different products
from the PC graph to a highly non-linear latent feature
space without using any review data.

• We develop a novel semi-supervised deep model which
can simultaneously optimize the second-order proxim-
ity, semantic similarity and prevent first-order proxim-
ity. Hence, the learned representations capture the cru-
cial substitutable properties.
• We extensively evaluate the effectiveness of SPEM on

seven real-life datasets from Amazon. The results show
the superiority of our proposed model in inferring sub-
stitutable products against state-of-the-art baselines.

2 Preliminaries
We define the concepts used throughout this paper and then
formulate the substitutable product embedding problem.
Definition 1 (Product Co-purchase Graph) The PC graph is
defined as G = (V,E), where V = {v1, ..., vn} is a set of
n products. E = {ei,j}ni,j=1 represents all possible edges
between product vertices vi, vj ∈ V . Given two products
vi, vj ∈ V , if more than t costumers have purchased both
products, then the edge eij = 1, otherwise, we set eij to 0.
Definition 2 (First-Order Proximity) In the PC graph, for
any pair of products vi and vj , if eij > 0, there exists the
positive first-order proximity between vi and vj . If eij = 0,
then the first-order proximity between them is 0.
Definition 3 (Second-Order Proximity) For vi ∈ V , letNi =
{wi1, wi2, ..., win} denote the first-order proximity between
vi and all other vertices. The second-order proximity between
any two products vi and vj is defined as the similarity be-
tween Ni and Nj . Intuitively, the more neighbour nodes vi
and vj have in common, the higher their second-order prox-
imity will be. If vi and vj do not share any neighbours, their
second-order proximity is 0.
Definition 4 (Substitutable Products) Substitutable products
are usually interchangeable and competitors of each other.
In the PC graph, two substitutable products vi and vj are ex-
pected to have a high second-order proximity, negative first-
order proximity and high semantic similarity.
Problem 1 (Substitutable Product Embedding) Given a PC
graph G = (V,E), the target of embedding a substitutable
product is to map each product vertex vi ∈ V into a low-
dimensional space Rs, i.e., g : vi 7→ yi ∈ Rs, where the
embedding dimension s � n. The mapping function aims to
preserve the second-order proximity and the semantic simi-
larity, as well as negative first-order proximity in space Rs.

3 Substitutable Product Embedding Model
In this section, we present the technical details of SPEM, a
semi-supervised deep model for substitutable product embed-
ding. The architecture of SPEM is illustrated in Figure 1.
SPEM consists of three main components: (1) an unsuper-
vised deep autoencoder; (2) a supervised pairwise con-
straint; and (3) a tree-based semantic similarity function.
Based on the intuition that two substitutes tend to have many
same or similar complementary products, the first component
aims to preserve such second-order proximity while learn-
ing product embeddings. In addition, two substitutable prod-
ucts must not have complementary relationship, hence we de-
velop the second module to maintain the negative first-order
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Figure 1: The overview of SPEM

proximity among substitutes. Furthermore, as two substitutes
should provide the same or similar functions, thus having
high semantic similarity, the third component emphasizes the
affinity between the categorical hierarchy of two substitutes.

3.1 Preserving Second-Order Proximity with
Unsupervised Deep Autoencoder

To preserve the second-order proximity, we propose an unsu-
pervised deep neural network based on the autoencoder (AE)
as the main building block of SPEM. Given a PC graph G =
(V,E), we can obtain its adjacency matrix A = {0, 1}n×n,
where each entry aij ∈ A is set to 1 if there exists a link be-
tween vi and vj , and 0 otherwise. We extend the standard AE
to preserve the second-order proximity in the product embed-
dings via the adjacency matrix A. Being widely adopted to
learn vector representations of the inputs, AE is an unsuper-
vised deep model with two major parts, i.e., the encoder and
decoder. The encoder contains multiple non-linear functions
which map raw inputs into a low-dimensional latent space.
The decoder contains multiple non-linear functions, which
are trained to reconstruct the inputs from the learned latent
space to the reconstruction space. Then, for an arbitrary prod-
uct vi, given its input feature xi, the latent representation in
the k-th layer is updated by the encoder as follows:

y
(1)
i =σ(W(1)xi + b(1)),

y
(k)
i =σ(W(k)y

(k−1)
i + b(k)), k = 2, . . . ,K

(1)

where y
(k)
i is the latent vector learned in the k-th layer, σ

is the Sigmoid function, W(k) and b(k) are respectively the
trainable weight matrix and bias for the k-th layer. After-
wards, taking the final low-dimensional embedding y

(K)
i as

the input, the decoder derives the output x̂i by reversing the
calculation process of encoder. The goal of the autoencoder
is to minimize the reconstruction error of the outputs and the
inputs in order to learn representative embeddings y(k)

i of the
inputs. The loss function LAE for AE can be formulated as:

LAE =

n∑
i=1

‖x̂i − xi‖22 + Lreg

Lreg =
1

2

K∑
k=1

(∥∥∥W(k)
∥∥∥2
F
+
∥∥∥Ŵ(k)

∥∥∥2
F

) (2)

where Lreg is the L2-norm regularization to prevent overfit-
ting. By minimizing the reconstruction loss LAE , the output

x̂i tries to recover the information of the input data in the la-
tent space. In such case, for each product, instead of using its
one-hot encoding as the input, we propose to fully leverage
the information within the adjacency matrix A. Specifically,
we set xi = ai where ai denotes the i-th row of A. Since
xi carries the neighborhood information of product vi, the
reconstruction loss will force the model to reconstruct such
information in x̂i from the latent vector y(K)

i . As a result,
y
(K)
i will be capable of preserving the second-order proxim-

ity in the latent space. Besides, due to the sparsity of the PC
graph, i.e., the number of zero elements in A is far more than
that of non-zero elements, we devise an additional penalty on
the reconstruction loss to lay more emphasis on the accurate
reconstruction of non-zero elements in x̂i. Hence, we refor-
mulate the loss function in Eq. (2) as Lsp for preserving the
second-order proximity:

Lsp =
n∑

i=1

‖(x̂i − xi)� ci‖22 + Lreg (3)

where � denotes the Hadamard product, ci = {cij}nj=1 con-
tains the penalty weights. If aij = 1, cij = τ , else cij = 1
Note τ > 1 is the penalty coefficient to be tuned. By mini-
mizing Lsp, substitutable vertices with similar neighborhood
structures will be mapped closely via the learned embedding
vector y(K)

i , thus enabling the AE to accurately reconstruct
the input adjacency matrix A. Hence, the second-order prox-
imity will be retained by the product embedding y

(K)
i .

3.2 Supervised Learning on Negative First-Order
Proximity

While the current product embedding y
(K)
i of product vi only

incorporates the second-order proximity among substitutable
products, now we introduce a supervised pairwise constraint
to exploit the negative first-order proximity in the PC graph.
Intuitively, in the latent space, for product vi, given its sub-
stitute vj and complement vt, a reasonable substitute product
embedding approach should ensure that vi is always closer
to vj than vt in the latent space. With the availability of the
ground truth (see Section 4.1) for both substitutable and com-
plementary products, we formulate the following pairwise
constraint to preserve the negative first-order proximity:
d(y

(K)
i ,y

(K)
j ) < d(y

(K)
i ,y

(K)
t ), ∀vi ∈ V, ∀vj ∈ V sub

i , ∀vt ∈ V com
i (4)
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Figure 2: Part of the product tree collected from Amazon Beauty
products (the complete tree is too large to show here).

where V sub
i and V com

i are the set of labelled substitutes and
complements for vertex vi, respectively.

To pose the pairwise constraint in Eq. (4) on the learn-
ing process of embedding y

(K)
i , we adopt an energy-based

learning approach [LeCun et al., 2006] to quantify the
distance between vi and its substitutes or complements.
Mathematically, we employ the Euclidean distance to com-
pute the pairwise energy between vi and vj , denoted by

d(y
(K)
i ,y

(K)
j ) =

∥∥∥y(K)
i −y(K)

j

∥∥∥
2
. Then, the loss function

for supervised learning on negative first-order proximity can
be defined as follows:

Lfp =
∑

i,j,t∈L

(∥∥∥y(K)
i − y

(K)
j

∥∥∥2
2
+ exp(−

∥∥∥y(K)
i − y

(K)
t

∥∥∥
2
)

)
(5)

where L is the set of valid triplets defined in Eq. (4).
In short, Lfp penalizes the pairwise energy (i.e., distance),
which forces the energy of substitutable product pairs to be
lower than that of complementary product pairs. Equiva-
lently, the model discourages any first-order proximity be-
tween two substitutes in the latent space, thus maintaining
the negative first-order proximity for substitutable products.

3.3 Tree-Based Semantic Similarity Modelling
To further capture the semantic similarity between substi-
tutes, we construct a category tree from the data. An example
of the category tree built upon the Amazon Beauty dataset is
shown in Figure 2. Specifically, each node in the tree repre-
sents a category tag in the hierarchy. Therefore, based on the
strategy in [Li et al., 2003] which have been proven effective
on measuring tree-based semantic similarity, the semantics
of two different products can be compared according to their
exact positions in the category tree.

For the comparison between vertices vi and vj , we com-
bine the length lij of the shortest path between them with the
depth dij of their lowest common ancestor in a non-linear
way. On that basis, we propose a loss function to model the
semantic similarity between the embeddings y

(K)
i and y

(K)
j

of two substitutes, which incurs a penalty when two substi-
tutable products under the similar category are mapped far
from each other in the embedding space:

Lss =
∑
i∈V

∑
j∈V sub

i

sim(vi, vj)
∥∥∥y(K)

i − y
(K)
j

∥∥∥
2

sim(vi, vj) = exp(−θlij) ∗
exp(µdij)− exp(−µdij)
exp(µdij) + exp(−µdij)

(6)

where θ and µ control the strength of lij and dij , respectively.

3.4 Objective Function of SPEM
Finally, to simultaneously encode the second-order proxim-
ity, negative first-order proximity and semantic similarity
when learning embeddings for substitutable products from
the PC graph, the loss function of SPEM is defined as the
combination of Eq. (3), Eq. (5) and Eq. (6):

L = αLsp + βLfp + γLss (7)

where α, β and γ are hyper-parameters that control the
weights of different components.

4 Experiments
In this section, we evaluate the SPEM by competing against
state-of-the-art baselines on real datasets from Amazon.

4.1 Datasets
We use seven publicly available Amazon product review
datasets collected by [McAuley et al., 2015], and the statis-
tics of the datasets are listed in Table 1. For each category,
we construct a PC graph with the following procedure. An
edge between two products is established if they have been
co-purchased by at least t common users, where the value of
t is determined by the user-item interaction density of each
dataset. In particular, we set t to 3 for Beauty, Baby and
Video Games, and 5 for the remaining datasets. Follow-
ing [McAuley et al., 2015], we label the substitutable and
complementary product pairs. Specifically, [McAuley et al.,
2015] defines four types of relationships between product X
and Y: (1) users viewed X also viewed Y; (2) users viewed
X eventually bought Y; (3) users bought X also bought Y;
(4) users bought X also bought Y simultaneously. According
to [McAuley et al., 2015], we refer to (1) and (2) as substitute
relationship while (3) and (4) as complement relationship.

We randomly choose 85% of the labelled substitutable
product pairs as the training set, and use the remaining pairs
as the test set. For each substitute product pair (X, Y) in
the training dataset, we randomly choose a node Z from X’s
neighboring nodes, and then add the triplet (X, Y, Z) to L as
the supervised information in the loss function Lfp.

4.2 Comparison Methods
We compare SPEM with the following four baseline methods
in substitutable product inference.

Category-Tree (CT): Category-Tree is built using the cat-
egory attributes in the datasets. Hence, we can easily compute
the semantic similarity between two products. Note that CT
only depends on semantic similarity to discover substitutes.

CML [Hsieh et al., 2017]: CML learns a joint metric space
to encode item-item relationships by pulling the related pairs
closer and pushing the irrelevant pairs further apart in the la-
tent space.

Sceptre [McAuley et al., 2015]: Sceptre combines topic
modelling and supervised link prediction to predict substi-
tutable relationships among products from their textual re-
views and descriptions.

LVA [Rakesh et al., 2019]: LVA links two variational au-
toencoders conditioned on the observed links among items. It
is the state-of-the-art model for discovering substitutes.
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Category #Users #Items #Reviews

Apps for Android 1.32M 61K 2.63M
Beauty 1.21M 259K 2.02M
Baby 532K 64K 915K
Cell Phone and Accessories 2.26M 347k 3.45M
Electronics 4.25M 498K 11.4M
Kindle Store 1.41M 431K 3.21M
Video Games 827K 51K 1.32M

Table 1: Dataset statistics for selected categories on Amazon.

Category α β γ dimensions in each layer

Apps for Android 0.6 0.04 1 48537-1000-250
Beauty 0.6 0.07 0.7 10427-1000-100
Baby 0.1 0.15 0.1 9595-1000-100
Cell Phone and Accessories 0.6 0.1 1 17918-1000-100
Electronics 0.6 0.1 1 55122-1000-100
Kindle Store 0.6 0.1 1 47985-1000-100
Video Games 0.6 0.09 0.1 12013-1000-100

Table 2: Parameter settings in different categories

To further investigate the significance of each model com-
ponent, we design three variants of SPEM as follows:

SPEM-SS: SPEM-SS removes the supervised component
from the full SPEM.

SPEM-FS: SPEM-FS removes the second-order proximity
from the full SPEM.

SPEM-SF: SPEM-SF does not consider the effects of the
semantic similarity.

4.3 Evaluation Protocol

Given a pair of products, we require all comparison meth-
ods to infer whether there exists substitutable relationship be-
tween them. To measure the inference accuracy, we adopt
Hits@k that is widely used to evaluate rank-based meth-
ods [Yin et al., 2017; Yin et al., 2018; Wang et al., 2018]. For
each substitute product pair (vi, vj) in the test set, we take
the following steps for evaluation. (1) We randomly sample
ζ products with which product vi is irrelevant. Note that in
our experiments, ζ is set to 500. (2) We compute the distance
between vi and ζ products in latent space. (3) We sort these
ζ + 1 products in ascending order. Let Ij denote the position
of vj in the ranked list. (4) If Ij ≤ k, we get a hit, otherwise,
we get a miss. The hit may vary with the change of k and
ζ, thus k and ζ should be fixed for all comparison methods
to ensure fairness. Hits@k is then defined by the average of
total hits over the whole test set. We vary the value of k by
{10, 20, 30, 50, 100}.

4.4 Parameter Settings

We adopt a three-layer network for both the encoder and de-
coder of SPEM, i.e., K = 3, and the hidden dimension of
each layer is reported in Table 2. The hyper-parameters of α,
β and γ are also listed in Table 2. Note that these parameters
are tuned to obtain the best performance in our model. For θ
and µ in Lss, the optimal values are θ = 0.2 and µ = 0.6,
following [Li et al., 2003]. To train SPEM, we set τ , batch
size and learning rate as 5, 16 and 0.01 following [Wang et
al., 2016].

Category Method k@10 k@20 k@30 k@50 k@100
CT 0.73 0.75 0.77 0.80 0.83

Apps for Android LVA 0.51 0.57 0.63 0.71 0.79
CML 0.64 0.69 0.73 0.75 0.77

Sceptre 0.29 0.39 0.39 0.41 0.47
SPEM 0.84 0.85 0.85 0.85 0.86

CT 0.92 0.93 0.93 0.94 0.94
Beauty LVA 0.53 0.57 0.63 0.70 0.74

CML 0.88 0.94 0.96 0.96 0.97
Sceptre 0.33 0.50 0.64 0.68 0.75
SPEM 0.96 0.96 0.97 0.97 0.97

CT - - - - -
Baby LVA 0.47 0.53 0.58 0.63 0.70

CML 0.72 0.80 0.85 0.86 0.89
Sceptre 0.25 0.35 0.44 0.59 0.80
SPEM 0.89 0.90 0.90 0.91 0.92

CT 0.43 0.45 0.46 0.49 0.55
Cell Phones LVA 0.32 0.37 0.44 0.47 0.54

and Accessories CML 0.42 0.45 0.47 0.49 0.52
Sceptre 0.18 0.25 0.34 0.41 0.51
SPEM 0.56 0.58 0.60 0.62 0.66

CT 0.14 0.15 0.17 0.21 0.32
Electronics LVA 0.62 0.70 0.74 0.78 0.82

CML 0.65 0.68 0.70 0.71 0.72
Sceptre 0.57 0.64 0.70 0.75 0.80
SPEM 0.77 0.78 0.79 0.80 0.83

CT 0.13 0.16 0.18 0.21 0.24
Kindle Store LVA 0.46 0.49 0.51 0.55 0.59

CML 0.28 0.31 0.35 0.37 0.42
Sceptre 0.41 045 0.48 0.53 0.57
SPEM 0.48 0.50 0.51 0.55 0.60

CT 0.18 0.20 0.22 0.26 0.33
Video Games LVA 0.55 0.62 0.74 0.83 0.89

CML 0.62 0.67 0.70 0.72 0.74
Sceptre 0.42 0.60 0.71 0.80 0.87
SPEM 0.91 0.91 0.92 0.93 0.93

Table 3: Hits@k of all comparison methods on seven datasets (the
hierarchy data of Baby is not available). We bold the highest result
in each dataset.

4.5 Experimental Results
In this section, we report the comparison results of our SPEM
model, the baselines and four variants of SPEM.

Substitute Products Prediction
The evaluation results of Hits@k on all datasets of the com-
parison methods are presented in Table 3. From the results,
we make the following observations. (1) SPEM outperforms
all other methods across different product categories. It also
illustrates that the Hits@k of our method is consistently
the highest with increasing k, which demonstrates that our
model is capable of inferring substitutable relationship be-
tween two vertices. Particularly, our model has significant
improvements over baselines on the three categories Beauty,
Baby and Video Games (over 85%). (2) There is no win-
ner among baselines across all categories. SPEM and CML
achieve much higher prediction accuracy than LVA and Scep-
tre, indicating the benefits of behaviour-based methods over
review-based methods. Besides, LVA outperforms Sceptre.
The reason is that VAE mitigates the problems associated
with LDA. For instance, LDA cannot work well on short text
which lacks contextual information. (3) CT drops behind
other three methods in Electronics, Kindle Store and Video
Games, while it is better in Apps for Android and Beauty.
It shows that the performance of CT heavily depends on the
categories of products. Meanwhile, it indicates the benefit of
exploiting the second-order proximity and negative first-order
proximity.
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Method k@10 k@20 k@30 k@50 k@100
SPEM-SS 0.78 0.81 0.82 0.83 0.85
SPEM-FS 0.74 0.78 0.79 0.82 0.84
SPEM-SF 0.80 0.83 0.83 0.84 0.85

SPEM 0.84 0.85 0.85 0.85 0.86

Table 4: Hits@k for ablation studies on Apps for Android. The best
results are bold.
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Figure 3: Sensitivity w.r.t. dimension and β

Ablation Study
We further compare SPEM with its three variants and only re-
port the comparison results on the Apps for Android category
in Table 4 due to the space limit. From the table, We have the
following observations: (1) SPEM significantly outperforms
the three variants on different categories, indicating the ben-
efits brought by each component, respectively. For example,
the results gap between SPEM and SPEM-FS validates the
benefit of second-order proximity; (2) We find that the contri-
bution of each component to improving prediction accuracy
is varied. The second-order proximity is the most important
component. The reason is that the high second-order proxim-
ity describing common neighborhood nodes implies that two
products can be replaced in the PC graph, which is a stronger
indicator of substitute products than other two components.

4.6 Parameter Sensitivity
We investigate the parameter sensitivity of SPEM, including
the number of embedding dimensions and the value of hyper-
parameter β, which controls the degree between supervised
and unsupervised learning. We report Hits@k on the cate-
gory of Apps for Android.

Figure 3a reports the results of accuracy (Hits@k) w.r.t.
different embedding dimensions. We can observe that the ac-
curacy is in a fluctuating growth trend initially and raises to a
peak. Then, the accuracy declines slightly and becomes stable
when the number of dimensions continuously increases. The
reason is that the latent vectors are capable of capturing most
of the useful information. Overlarge dimension can increase
noises and consume more computing resources, and has neg-
ative effect on the results. Overall, an appropriate number of
the latent dimension is important to learn the nodes represen-
tation, but SPEM is not sensitive when it is larger than 250.

Figure 3b shows how the value of β affects the prediction
accuracy. Obviously the optimal value for β is 4, where the
model has the best performance when working with other op-
timal parameters listed in Section 4.4.

5 Related Work
Product relationship inference. The most closely related
works are Sceptre and LVA, which extract features from re-
views. However, heavily relying on the product reviews is
a serious drawback, especially when reviews are insufficient.
Moreover, LDA is known to have poor performance on short
texts. While VAE training often results in a degenerate lo-
cal optimum known as “posterior collapse” where the model
learns to ignore the latent variable and the approximate pos-
terior mimics the prior [He et al., 2019], which is serious in
text modelling. Instead of using reviews, PC graph was con-
structed based on user behaviours to mine the substitutable
relationship among products.

Network embedding (NE). NE solves the problem of
nodes representation in low-dimension space. Deep-
Walk [Perozzi et al., 2014] is empirically effective by com-
bination of random walk and skip-gram. LINE [Tang et al.,
2015] designs two loss functions to preserve the first-order
and second-order proximity. [Wang et al., 2016] proposes a
semi-supervised deep model, which has multiple layers of
non-linear functions to capture the network structure. Despite
the success of these NE approaches, they are all proposed to
preserve the first-order or the second-order proximity. SPEM
is the first graph embedding model that explores to preserve
the second-order proximity and negative first-order proximity
based on the characteristics of substitutable relationship.

Semantic similarity. Semantic similarity measurement
plays an important role in information retrieval and natural
language processing [Li et al., 2003]. In hierarchy, [Rada et
al., 1989] proves that the minimum number of edges from
one node to another is a metric to measure the conceptual
distance. [Jiang and Conrath, 1997] extends the work to uti-
lize weighted links to compute the similarity between nodes.
However, these methods fail to handle the large and general
semantic nets. To this end, [Li et al., 2003] proposes a simi-
larity measure that considers shortest path length and depth of
the ancestor in the hierarchy, achieving better performance.

6 Conclusions
In this paper, we proposed a novel model, namely SPEM,
to discover the embedding of substitutable products. We first
proposed a semi-supervised deep Autoencoder to preserve the
second-order proximity, then we used a supervised pairwise
constraint including substitutable and complementary infor-
mation to maintain the negative first-order proximity. A tree-
based semantic similarity function is also employed to pre-
serve the functional affinity between substitutes. Moreover,
we conducted extensive experiments to evaluate the perfor-
mance of SPEM in real-world datasets , which demonstrate
significant improvements over state-of-the-art baselines.
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