
Collaborative Metric Learning with Memory Network for Multi-Relational
Recommender Systems

Xiao Zhou1 , Danyang Liu2 , Jianxun Lian3 and Xing Xie3
1Department of Computer Science and Technology, University of Cambridge, UK

2University of Science and Technology of China, Hefei, China
3Microsoft Research, Beijing, China

xz331@cam.ac.uk, ldy591@mail.ustc.edu.cn, {Jianxun.Lian, Xing.Xie}@microsoft.com

Abstract
The success of recommender systems in modern
online platforms is inseparable from the accurate
capture of users’ personal tastes. In everyday life,
large amounts of user feedback data are created
along with user-item online interactions in a variety
of ways, such as browsing, purchasing, and shar-
ing. These multiple types of user feedback provide
us with tremendous opportunities to detect individ-
uals’ fine-grained preferences. Different from most
existing recommender systems that rely on a single
type of feedback, we advocate incorporating multi-
ple types of user-item interactions for better recom-
mendations. Based on the observation that the un-
derlying spectrum of user preferences is reflected
in various types of interactions with items and can
be uncovered by latent relational learning in metric
space, we propose a unified neural learning frame-
work, named Multi-Relational Memory Network
(MRMN). It can not only model fine-grained user-
item relations but also enable us to discriminate
between feedback types in terms of the strength
and diversity of user preferences. Extensive exper-
iments show that the proposed MRMN model out-
performs competitive state-of-the-art algorithms in
a wide range of scenarios, including e-commerce,
local services, and job recommendations.

1 Introduction
With the ability to select the most relevant content from the
flood of information resources, recommender systems have
played an increasingly vital role in modern society by opti-
mising user experiences for individuals and promoting busi-
ness objectives for online platforms [Tang et al., 2016]. Keep-
ing pace with the growing requirements of customisation and
personalisation, recommender systems that are capable of
learning fine-grained individual preferences with a concise,
flexible, and efficient structure are eagerly expected.

Given that mining valuable information hidden in users’
historical interactions with items in multiple ways might hold
the key to better characterise users, we devise a recommen-
dation scheme that takes full advantage of various user feed-
back types in this paper. Before diving into the details, it is

Figure 1: An example of multiple types of user feedback.

necessary to clarify the meaning of ’multiple feedback types’,
which can be varied in different scenarios. As exemplified
in Figure 1, possible interaction types existing between users
and recommended items include clicking, skipping, and read-
ing for news recommendation; playing and skipping songs in
music recommendation scenario; and purchasing, rating, and
sharing for book recommendations.

Most existing item-to-user recommender systems typically
only employ one primary type of user-item interaction [Hu et
al., 2008], like clicking for online news recommendation and
purchasing for the e-commerce scenario. Apart from primary
feedback, online systems also allow users to leave additional
types of feedback as listed above. Unfortunately, the power of
using such extra feedback information to enhance recommen-
dation performance has been largely neglected. In this paper,
we leverage binary preference data in the implicit form and
build a unified recommendation model that makes full use of
multiple types of user-item interactions in various scenarios.
Generally, it offers the following key advantages: 1) Allevi-
ating data sparsity problem. Compared to explicit data like
numerical ratings, implicit feedback data are relatively cheap
and widely available since they are usually gathered by sys-
tems automatically. Through utilising rich implicit feedback
data, the sparsity issue can be effectively alleviated; 2) More
precise and comprehensive user preference profile. Incorpo-
rating multiple feedback types is essential for fine-grained de-
tection of individual preference diversity and strength. Take
the e-commerce scenario as an example, Toby likes Tesla’s
vehicles and always pays close attention to its latest models.
However, he has never bought a Tesla in real life as the price
is beyond his reach. In this case, if only purchasing feedback
is taken into account, Toby’s interest in Tesla can hardly be
captured. In another instance, when Luke considered buying
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a mobile phone, he browsed both iPhone 8 and iPhone XS be-
fore eventually buying the latter. By considering both brows-
ing and purchasing feedback types, we can infer that Luke
had a stronger preference for iPhone XS, relative to iPhone 8.

In this paper, we argue that jointly modeling multiple feed-
back types can help us reveal the underlying spectrum of user
preferences in different dimensions and thus lead to better
recommendation performance. More specifically, our ideas
are materialised in the form of a neural learning framework
that leverages the recent advancements of attention mecha-
nism, augmented memory networks as well as metric learn-
ing. Our main contributions can be summarised as follows:

• We propose an end-to-end neural network architecture,
named MRMN to address implicit collaborative filtering
with multiple types of user feedback data.
• External memory and attention mechanism are aug-

mented in MRMN, making it capable of learning adap-
tive relational vectors in metric place for each specific
user, item, and feedback type, and detecting fine-grained
user-item relations and multidimensional preferences.
• MRMN uncovers the underlying relationships between

feedback types and shows multi-task ability to predict
various types of user actions using one unified model.
• Comprehensive experiments on real-world datasets

demonstrate the effectiveness of MRMN against com-
petitive baselines in various recommendation scenarios.
• Qualitative analyses of the attention weights provide in-

sights into the learning process of relations and illustrate
the interpretability of MRMN in capturing higher order
complex interactions between users and items.

2 Related Work
The past two decades have witnessed tremendous advances
in the recommendation techniques from content-based filter-
ing [Pazzani and Billsus, 2007] to collaborative filtering [Ek-
strand et al., 2011], from explicit feedback [Koren, 2008] to
implicit feedback [He and McAuley, 2016], and from shallow
models to deep models [Lian et al., 2018]. While most rec-
ommender systems typically take one type of user-item inter-
action into account, we emphasise the critical importance of
incorporating multiple types of user feedback into the recom-
mendation. A review of existing literature on recommender
systems with multiple feedback types is provided below.

Based on LinkedIn recommendation products, [Tang et al.,
2016] presented a general investigation of possible ways to
incorporate multiple types of user feedback from an empirical
standpoint. To make a more specific discussion, other stud-
ies considering multiple feedback types in recommender sys-
tems can be mainly divided into three categories: sampling-
based, model-based, and loss-based approaches. For the first
group of methods focusing on sampling refinements, [Loni et
al., 2016] extended the sampling method of vanilla Bayesian
Personalized Ranking (BPR) [Rendle et al., 2009] to distin-
guish different strengths of user preferences reflected by var-
ious feedback types. Similarly, [Ding et al., 2018a] leveraged
view data in e-commerce recommendation and developed a
view-enhanced sampler for classical BPR. Another line of

works that sought to utilise multi-feedback interactions fo-
cused on model modification. For instance, [Liu et al., 2017]
developed the MFPR model that employed one type of ex-
plicit feedback (e.g., ratings) and several types of implicit
user feedback (e.g., viewing, clicking logs) as input. Based
on LSTM networks, [Li et al., 2018] designed an architecture
that enables us to learn the short-term motivation and long-
term preferences of users for the next purchase recommenda-
tion. By devising tailored loss function, [Ding et al., 2018b]
emphasised the importance of integrating view feedback in e-
commerce recommendation and added pairwise ranking rela-
tions between purchased, viewed, and non-interacted actions
instead of applying pointwise matrix factorization methods.

Through the literature review above, it can be found that
the existing approaches proposed to handle multi-feedback
recommendation tasks are relatively simple. There is a lack
of in-depth investigation of relationships between user feed-
back types. In most cases, the importance weights of multiple
feedback types were set manually. Moreover, current studies
generally built the model in one particular recommendation
scenario that a generic and adaptive architecture for multi-
relational recommendation is still missing.

3 Background
To fill the research gap discovered in the current literature,
we build a novel neural network framework that can learn
multi-relational vectors for each specific user, item, and feed-
back type adaptively and flexibly. Our work is highly inspired
by recent advances in metric learning and memory networks,
which are introduced in the following two subsections.

3.1 Metric Learning based Recommendation
Over the last decade, matrix factorization (MF), as one of the
most outstanding representative techniques of collaborative
filtering (CF), has gained rapid acceptance in the field of rec-
ommender systems. Essentially, the main purpose of MF-
based methods is to extract features of users and items by
mapping them to a latent vector space. By doing this, MF
can capture the existing user-item interactions approximately
and infer the missing values by inner product for further rec-
ommendation [Tay et al., 2018]. Even though it is able to
detect the most prominent features, we can hardly expect MF
to uncover more fine-grained user preferences and to generate
interpretable recommendations. From a fire-new perspective,
[Hsieh et al., 2017] applied metric learning techniques to CF,
and proposed collaborative metric learning (CML) algorithm.
The essential distinction between CML and MF is that CML
maps users and items in a metric space to minimise the dis-
tance between them if positive interactions exist. However,
for many-to-many collaborative ranking task, fitting all posi-
tive user-item pairs into the same point in vector space would
inevitably cause geometrical congestion and instability. To
overcome this limitation, [Tay et al., 2018] proposed Latent
Relational Metric Learning (LRML) to learn a latent relation
vector for each given user-item pair. The architecture of our
proposed model takes advantage of this metric-based learning
scheme and enables multi-relational modeling in metric space
for the collaborative ranking task, which obeys the crucial tri-
angle inequality to capture fine-grained user preferences.
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3.2 Memory Networks for Recommendation
The memory network was initially proposed in the context
of question answering [Weston et al., 2015]. Until recently,
it has been applied to recommender systems. [Huang et al.,
2017] extended end-to-end memory networks to recommend
hashtags for microblogs. [Chen et al., 2018] employed mem-
ory networks for e-commerce recommendations using histor-
ical purchase records of users. [Ebesu et al., 2018] proposed
a collaborative memory network, where memory slots were
used to store user preferences and encode items’ attributes.
[Zhou et al., 2019] proposed a topic-enhanced memory net-
work to optimise point-of-interest recommender systems.

The success of these recent applications highlight that the
memory network architecture is efficient and flexible enough
to perform joint task learning [Ebesu et al., 2018], making it
a suitable approach to our multi-relational learning task nat-
urally. To the best of our knowledge, no prior work has em-
ployed the memory network for collaborative metric learning
using multiple types of user feedback in recommender sys-
tems. Then, how to apply the memory mechanism properly
in our case becomes a key focus. In question answering, the
most classical application of memory networks, a short pas-
sage is provided along with a relevant question, the answer to
which can be generated automatically via memory blocks. If
we analogise our multi-relational recommendation task to a
question answering problem, the question we are asking now
becomes how likely a user would enjoy an item she has never
interacted with, based on the user-item relations learned from
the memory network module.

4 Proposed Model
We introduce a unified hybrid model called Multi-Relational
Memory Network (MRMN) for personalised recommenda-
tion with multiple user-item interactions in this section. The
overall architecture of MRMN model is presented in Figure 2.
Generally speaking, we fuse a memory component and neural
attention mechanism to learn multi-relational vectors for each
specific user-item pair in a non-linear fashion and produce the
ranking score of candidate items to the target user for recom-
mendation. In the following subsections, we will first give
the formulation of our prediction task before introducing the
structure of the proposed MRMN model in detail.

4.1 Problem Formulation
Our research targets at recommender systems that operate
multiple types of user feedback data in implicit form. As-
sume that we are given a set of users U and a set of items I ,
associating with each other through t types of implicit feed-
back (t > 2). For each feedback type τ in set T , the binary
relations between U and I are represented by an interaction
matrix Y τ , where an entry is set to 1 if the interaction exists
between the pair of user and item. Otherwise, it is set to 0,
meaning that the user has not interacted with the item yet.
The main task of the model is to derive a prediction score
for a given user-item pair, signalling the likelihood that the
user would be interested in the item based on her historical
interactions with items in multiple ways.

Hadamard
Product

m1 m2 m3 mN

𝒓𝟏 𝒓𝟐 𝒓𝒕
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Figure 2: The architecture of MRMN.

4.2 User and Item Embedding
For a training set consisting of triplets (user, item, τ ), the
identities of a user and an item, represented as two binary
sparse vectors via one-hot encoding, are employed as input
features initially. Then the two vectors are projected to low-
dimensional dense vectors to generate a pair of user and item
embeddings, denoted as (u, i). After that, Hadamard product
is applied to learn a joint user-item embedding v through:

v = u� i (1)

The dimension of the generated vector v ∈ Rd is the same
as u and i, which is d. Apart from the pair of user and item,
the input feedback type τ plays as a controller. Given that the
MRMN is devised as a partially shared structure for various
user feedback types, the observed interaction type τ for a cer-
tain user-item pair determines which part of the model would
be activated during the training scheme. This particular de-
sign makes the learned relation vector specific to each triplet
of a user, item, and interaction type, even though the embed-
dings of u and i are shared across various feedback types.

4.3 Key Addressing and Attention Layers
To discriminate the diverse interests of a user reflected via
various interaction types, neural attention mechanism is used
to read a memory matrix and generate multi-relational vectors
for different feedback types adaptively. The main idea of the
attention mechanism is to rescue the model from encoding
all information into each memory slot. We assume that the
multiple relations learnt from different feedback types for the
same user-item pair can not only be distinguished from each
other but also have inherent connections, characterised by the
attention module over augmented memory blocks.

Formally, a key matrix Kτ ∈ Rd×N is built for each feed-
back type τ , from which the attention vector of a particular
feedback type can be obtained. Let N represent the number
of key slots in Kτ , which is a user-specified hyperparameter.
For a given joint embedding vector v and an observed inter-
action type τ , the similarity between v and each key slot kτi
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in the matrix Kτ is calculated by dot product to obtain each
element of the attention vector ωτ for feedback τ by:

ωτi = vT kτi (2)

Then the generated attention weights in vector ωτ are con-
verted into a probability distribution over memory blocks us-
ing the softmax function to infer the importance of each mem-
ory slot’s contribution for a given feedback type τ .

4.4 Multi-relational Vectors Generation
Next the generated attention vector ωτ is utilised to learn a
weighted sum of a sequence of memory slices in the memory
matrix M ∈ RN×d. Here the size of each memory slice is d,
and the number of slices is N . The memory component is the
core of the system where complex user-item relationships re-
flected in multiple feedback types are built. It is worth noting
that different from the key addressing layer, where feedback
types learn their key vectors, respectively; while here, they
share the memory matrix. Each memory slice mi ∈ Rd in
M can be seen as a building block selected to form the rela-
tion vector for each feedback type according to its attention
vector. In other word, the latent relation vector for feedback
type τ denoted as rτ is a weighted representation of memory
matrix M , which can be generated as:

rτ =
N∑
i=1

ωτimi (3)

Through the architecture introduced above, a relation setR
consisting of multiple types of relation vectors for a specific
user-item pair forms.

4.5 Optimisation
Inspired by the multi-relational modeling technique of
TransE [Bordes et al., 2013] in knowledge base embedding,
we define the scoring function of MRMN as:

s(u, i, τ ) = ‖u+ rτ − i‖22 (4)

where ‖·‖2 denotes the L2-norm. The rτ employed to model
the user-item relationship by a translation operating ensures
the flexibility and superiority of MRMN in many-to-many
recommendation (a user may enjoy many items, and many
users can like an item) compared with the vanilla metric
learning approach of CML, an ill-posed algebraic system
mathematically which minimises the Euclidean distance be-
tween positive user-item pair via ‖u− i‖22.

We adopt the pairwise ranking loss for optimisation. Dif-
ferent from the pointwise loss [Hu et al., 2008] treating un-
observed entries as negative samples, the basic idea of pair-
wise learning [Rendle et al., 2009] is ranking observed en-
tries higher than those unobserved. We also tried to combine
point-wise loss and pair-wise loss in a unified framework, like
that in [Ding et al., 2018b]. However, it turned out to be about
30% worse than a margin-based approach. In this case, we do
not integrate the point-wise loss in this paper. For each posi-
tive triplet (u, i, τ ) representing u has an interaction of type τ
with i, a corrupted triplet (u, j, τ ) is sampled according to the

rule that u has never interacted with item j. Mathematically,
we define the objective function as:

L =
∑
τ

∑
(u,i,τ)∈η

∑
(u,j,τ)/∈η

φ(s(u, i, τ )+λτ−s(u, j, τ )) (5)

where η is the set of all positive triplets; λτ is the margin
separating the positive triplets and corrupted ones in terms of
feedback τ . The non-linear activation function φ(·) applied
here is the rectified linear unit (ReLU) function as we found
it performed best empirically. Additionally, since MRMN is
end-to-end differentiable, stochastic gradient descent (SGD)
is employed to minimise the objective function.

It is worth mentioning that by injecting discriminative λτ ,
we can encode the strength deviation corresponding to differ-
ent feedback types. Here a larger setting of margin value will
push the two points of positive sample and negative sample
farther away from each other, suggesting that this feedback
type is more reliable in depicting user preferences. We will
discuss more with experimental results in Subsection 5.5.

5 Experiments
5.1 Datasets
The real-world datasets with multiple user feedback types
used for experiments are Tmall1, Xing2, and Dianping3 corre-
sponding to e-commerce, job, and local services recommen-
dation scenarios, respectively. Interactions including book-
mark, reply, and response from a recruiter in Xing are re-
garded equally as positive feedback type to reduce sparsity.
For Dianping, ratings on aspects of overall, taste, environ-
ment, and service are converted into implicit form. The feed-
back termed as visited denotes a user posted a review on an
item without rating it. Users with less than 12 and items with
less than 16 interactions in Tmall and Dianping are filtered.
While for Xing, the threshold is set to 5 for both user and
item. Table 1 summarises the statistics of the filtered datasets.

Dataset Type #User #Item #Inter Density

Tmall

Purchase∗ 84k 36k 1.1m 0.04%
Cart 3.7k 5.4k 7.6k 0.01%

Collect 53k 34k 582k 0.02%
Click 84k 36k 9.2m 0.30%

Xing
Positive∗ 19k 9.6k 201k 0.11%

Click 18k 9.2k 272k 0.15%
Hide 2.0k 5.2k 33k 0.02%

Dianping

Overall∗ 129k 27k 2.2m 0.06%
Taste 60k 12k 214k 0.01%

Environment 53k 14k 169k 0.01%
Service 57k 15k 175k 0.01%
Visited 129k 27k 4.6m 0.13%

Table 1: Statistics of the datasets. k indicates thousand; m indicates
million; and Inter indicates interaction. ’*’ means primary feedback.

1https://www.tmall.com
2http://www.recsyschallenge.com/2017/
3http://www.dianping.com/
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Methods Tmall Xing Dianping

Type Name HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Primary

MF-BPR 0.1404 0.0693 0.6203 0.5653 0.5784 0.3321
CML 0.3213 0.1763 0.6611 0.6012 0.5965 0.3556

CML(ASP) 0.3472 0.2014 0.8556 0.7407 0.6067 0.3548
LRML 0.3248 0.1821 0.5858 0.5283 0.5910 0.3635

LRML(ASP) 0.4112 0.2430 0.8532 0.7364 0.5831 0.3585

Multiple

TCF 0.3065 0.1776 0.7017 0.6263 0.5273 0.3211
MFPR 0.4534 0.2783 0.7840 0.6946 0.5836 0.3579

MR-BPR 0.4416 0.2566 0.8548 0.7425 0.5975 0.3477
MC-BPR 0.3457 0.1931 0.7204 0.6405 0.5348 0.3302

VALS 0.3948 0.2486 0.7550 0.6842 0.5233 0.3329
MRMN 0.5063 0.3042 0.8604 0.7443 0.6132 0.3614

Table 2: Experimental results on the datasets. The best performance is in boldface. ASP means we treat all types of (positive) feedbacks as
primary feedback to dispel doubts on the data size inequality caused by involving more feedback types for a fair comparison.
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Figure 3: Performance of MRMN and selected baselines w.r.t. the number of iterations on Tmall and Xing.

5.2 Evaluation Methodology
We adopt the leave-one-out protocol for model evaluation.
Each user’s interactions with items are firstly sorted by the
timestamps ascendingly. Then the last two records are held
out as validation and test set, while the remaining serve as
training data. We randomly sample 100 items that the user
has not interacted with as negative samples. There is an ad-
ditional constraint for Dianping that negative samples are se-
lected randomly from places within 3 miles from the positive
one. For the two evaluation metrics, Hit Ratio at K (HR@K)
only considers whether the ground truth is ranked among the
top K items; while Normalised Discounted Cumulative Gain
at K (NDCG@K) is a position-aware ranking metric.

5.3 Baselines
According to whether considering additional types of user
feedback, baselines are split into two groups. Primary group
that only employ primary feedback include:
• MF-BPR [Rendle et al., 2009] It is the MF model using

a pairwise ranking loss for optimisation. This algorithm
is tailored to implicit feedback recommendations.
• CML [Hsieh et al., 2017] It is a metric learning ap-

proach minimising the Euclidean distance between the
user vector and item vector.
• LRML [Tay et al., 2018] This is a metric learning tech-

nique employing a memory network to learn the latent
relationship between the user and item.

Multiple group dealing with multiple feedback types include:
• TCF [Pan et al., 2010] This is a transfer learning ap-

proach that is capable of transferring knowledge from
auxiliary feedback to the primary feedback.
• MFPR [Liu et al., 2017] It is a method that integrates

multiple implicit feedback types in the SVD++ manner.
• MR-BPR [Singh and Gordon, 2008] BPR framework

is applied to collective matrix factorization to make it
capable of handling multiple types of implicit data.
• MC-BPR [Loni et al., 2016] This is a method that sam-

ples positive and negative items from multiple relations.

5.4 Experimental Results
The experimental results of MRMN along with the baselines
for HR@10 and NDCG@10 are shown in Table 2. As can be
observed, MRMN obtains the best performance across all the
datasets and metrics in general. In Figure 3, we also present
the recommendation performance of MRMN and six selected
baselines of each iteration on Tmall and Xing. Results on Di-
anping show the same trend and are omitted due to space lim-
itations. In the figure, with the increase of iteration times, the
performance of MRMN is gradually improved until conver-
gence is reached. The most effective updates occur in the first
30 iterations and 150 iterations for Tmall and Xing, respec-
tively. As the architecture of MRMN fuses memory module
and multi-relational metric learning, the following will pro-
vide a detailed breakdown of our experimental results.
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Single Feedback against Multiple Feedback Types
As it shows in Table 2, multi-feedback methods as a whole
provide clearly better performance than single-feedback ap-
proaches, especially on datasets of Tmall and Xing. This is
probably due to the fact that Tmall and Xing consist of bi-
nary implicit feedbacks in multiple types, while Dianping
reflects more about whether a user likes an item in various
aspects. Among multi-feedback algorithms, our proposed
MRMN performs best that it outperforms the best baseline by
about 5% on Tmall, and around 1% on the other two datasets
in terms of the HR metric. This phenomenon reveals the ef-
fectiveness of integrating multiple types of user feedback in
recommender systems.

Contribution of Relational Metric Learning
The models applying latent relational learning are MRMN
and LRML. Compared with CML, LRML learns a single
transition vector for each pair of user and item vectors, while
MRMN enables multi-relational learning to identify much
more complex interactions existing between them. As we
can see from Table 2 that LRML offers slightly better per-
formance than CML, and MRML further boosts the perfor-
mance significantly. This observation is particularly evident
on Tmall, where the improvement brought by multi-relational
metric learning is around 10% on both HR and NDCG. These
findings reveal that the application of multi-relational learn-
ing does enhance the recommendation performance since
MRML outperforms both of its single-relational counterpart
LRML and non-relational learning version CML.

Contribution of Memory Mechanism
The high performances provided by memory augmented net-
works of MRML and LRML also illustrate the effectiveness
of the memory mechanism in recommendation tasks. More-
over, we can detect a hint of memory mechanism’s superior-
ity in multi-relational recommendations as the MRMN model
performs strikingly better than LRML on almost all the met-
rics and datasets.

In a nutshell, the impressive performance of MRMN por-
trays the successful integration of the memory component and
attention mechanism over existing metric learning-based al-
gorithms and multi-feedback models. Additionally, it can be
expected to show better performance for a larger dataset with
more complex user-item interactions.

5.5 Hyper-parameter Investigation
The number of memory slots and key slots N in MRMN
is tuned amongst {5, 10, 20, 50}, and 10 works best in most
cases. The dimension of user and item embeddings d is tuned
amongst {20, 50, 75, 100} and set to 20 eventually. To ex-
plore which combination of λτ on different datasets can pro-
vide best performance, and to further investigate the relation-
ships between various types of feedback in a deep sense, we
run experiments with different λτ settings on our datasets and
list the results of Tmall in Table 3 as an example. In the ta-
ble, the first set of margin values is determined intuitively ac-
cording to feedback types’ importance levels reflected on how
likely a user enjoys an item. In the second experiment, the
same value is allocated to all the feedback types. In the last
row, we reverse the order in the first set, allocating a smaller
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Figure 4: Attention weights over memory slices for feedback types.

margin value to a more important feedback type. As the
performances of the three settings suggest, assigning higher
margin value to more ’important’ feedback gives better rec-
ommendations on Tmall. Similar patterns are also found on
Xing and Dianping. This discussion is not to affirm that set-
ting margin values by experience is always the best. Instead,
we show how the MRMN model can be applied to detect the
underlying relationships between multiple feedback types.

[λpurchase, λcart, λcollect, λclick] HR@10 NDCG@10
[0.2,0.15,0.1,0.05] 0.5063 0.3012

[0.1,0.1,0.1,0.1] 0.4648 0.2748
[0.05,0.1,0.15.0.2] 0.3885 0.2240

Table 3: Impacts of margin values on MRMN’s performance.

5.6 Relation Visualisation
The attention mechanism in MRMN enables us to visualise
the weighted importance of memory slices for multiple feed-
back types. As can be seen in Figure 4, three datasets present
different patterns, indicating that feedback types have differ-
ent selection rules across memory slices in multi-relational
vector learning. Furthermore, the attention weights of pop-
ular interaction types are more diverse compared with other
minority types. For instance, in Figure 4a, Purchase and Click
have more diverse attention weights compared with Cart and
Collect. Similar pattern also appears in Figures 4b and 4c.
This finding further proves the necessity of multi-relational
detection between each user-item pair that learning an overall
relation vector is not fine-grained enough.

6 Conclusion
We introduce a novel end-to-end architecture named MRMN,
for recommendation with multiple types of user feedback.
MRMN is augmented with external memory and neural atten-
tion mechanism to capture fine-grained user preference across
various interaction space. Comprehensive experiments under
multiple configurations demonstrate the proposed architec-
ture’s significant improvements over competitive baselines.
Qualitative analyses of the attention weights bring insights
into the multi-relational learning process and suggest the ex-
istence of complex relationships between a pair of user and
item, effectively captured by our MRMN model.
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