
Persistence Bag-of-Words for Topological Data Analysis
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Abstract
Persistent homology (PH) is a rigorous mathemati-
cal theory that provides a robust descriptor of data
in the form of persistence diagrams (PDs). PDs
exhibit, however, complex structure and are diffi-
cult to integrate in today’s machine learning work-
flows. This paper introduces persistence bag-of-
words: a novel and stable vectorized representa-
tion of PDs that enables the seamless integration
with machine learning. Comprehensive experi-
ments show that the new representation achieves
state-of-the-art performance and beyond in much
less time than alternative approaches.

1 Introduction
Topological data analysis (TDA) provides a powerful frame-
work for the structural analysis of high-dimensional data. A
main tool of TDA is Persistent Homology (PH) [Edelsbrun-
ner and Harer, 2010], which currently gains increasing im-
portance in data science [Ferri, 2017]. It has been applied to
a number of disciplines including, biology [Gameiro et al.,
2014], material science [Lee et al., 2017], analysis of finan-
cial markets [Gidea and Katz, 2018]. Persistence homology
is also used as a novel measure of GANs (Generative Ad-
versarial Networks) performance [Khrulkov and Oseledets,
2018], and as a complexity measure for neural network archi-
tectures [Rieck et al., 2018]. PH can be efficiently computed
using various currently available tools [Bauer et al., 2017;
Dey et al., 2019; Maria et al., 2014]. A basic introduction to
PH is given in the supplementary material (SM in the follow-
ing)1.

The common output representation of PH are persistence
diagrams (PDs) which are multisets of points in R2. Due to
their variable size, PDs are not easy to integrate within com-
mon data analysis, statistics and machine learning workflows.
To alleviate this problem, a number of kernel functions and

1Supplementary material: http://www.ii.uj.edu.pl/∼zielinsb/
papers/2019 ijcai supplement.pdf

vectorization methods for PDs have been introduced. Kernel-
based approaches have a strong theoretical background but
in practice they often become inefficient when the number of
training samples is large. As the entire kernel matrix must
usually be computed explicitly (like in case of SVMs), this
leads to roughly quadratic complexity in computation time
and memory with respect to the size of the training set. Fur-
thermore, such approaches are limited to kernelized methods,
such as SVM and kernel PCA. Vectorized representations in
contrast are compatible with a much wider range of meth-
ods and do not suffer from complexity constraints of kernels.
Since they require a spatial quantization of the PD they might
suffer from a loss in precision compared to kernels, especially
since PDs are sparsely and unevenly populated structures.

In this work, we present a novel spatially adaptive and thus
more accurate representation of PDs, which aims at com-
bining the large representational power of kernel-based ap-
proaches with the general applicability of vectorized repre-
sentations. To this end, we extend the popular bag-of-words
(BoW) encoding (originating from text and image retrieval)
to TDA to cope with the inherent sparsity of PDs [McCallum
and Nigam, 1998; Sivic and Zisserman, 2003]. The proposed
adaptation of BoW gives a universally applicable fixed-sized
feature vector of low-dimension. It is, under mild conditions,
stable with respect to a standard metric in PDs. Experiments
demonstrate that our new representation achieves state-of-
the-art performance and even outperforms numerous compet-
itive methods while requiring orders of magnitude less time
and being more compact. Due to the run-time efficiency of
our approach it may in future enable the application of TDA
for larger-scale data than possible today.

The paper is structured as follows. Section 2 reviews re-
lated approaches. In Section 3 we introduce persistence bag-
of-words and prove its stability. Sections 5 and 6 present ex-
perimental setup, results and discussion. Please consider the
SMa for additional information.

2 Background and Related Work
Different kernel based and vectorized representations have
been introduced to make PDs compatible with statistical anal-
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ysis and machine learning methods. The goal of kernel-
based approaches on PDs is to define dissimilarity measures
(also known as kernel functions) used to compare PDs and
thereby make them compatible with kernel-based machine
learning methods like Support Vector Machines (SVMs) and
kernel Principal Component Analysis (kPCA). Li et al. [Li et
al., 2014] use the traditional bag-of-features (BoF) approach
combining various distances between 0-dimensional PDs to
generate kernels. On a number of datasets (SHREC 2010,
TOSCA, hand gestures, Outex) they show that topological in-
formation is complementary to the information of traditional
BoF. Reininghaus et al. [Reininghaus et al., 2015] turns PDs
into a continuous distribution by appropriate placing of Gaus-
sian distributions and use the scalar product of the distribu-
tions to define a kernel function. Carrière et al. [Carrière et
al., 2017] propose a kernel based on sliced Wasserstein ap-
proximation of the Wasserstein distance. Le and Yamada [Le
and Yamada, 2018] proposed a Persistence Fisher (PF) ker-
nel for PDs. It has a number of desirable theoretical prop-
erties such as stability, infinite divisibility, and linear time
complexity in the number of points in the PDs. Lacombe
et al. [Lacombe et al., 2018] reformulated the computation of
diagram metrics as an optimal transport problem. This ap-
proach allows for efficient parallelization and scalable com-
putations of a PD’s barycenters. Another representation of
PDs are Persistence Landscapes, PL [Bubenik, 2015]. PL is
a transformation of PD into a sequence of piece-wise linear
functions. Lp distance between those functions or their scalar
products can be used to define kernels.

Vectorized representations of PDs can be used directly
as an input to most machine learning methods. Adams
et al. [Adams et al., 2017], propose the persistence im-
age (PI) building upon earlier work [Donatini et al., 1998;
Ferri et al., 1998]. PI first fits a distribution to the PD and
then samples it at regular intervals to obtain a vectorized rep-
resentation. Anirudh et al. [Anirudh et al., 2016] propose an
approach based on Riemannian manifold (RM). It transforms
PD into a Gaussian kernel being a Riemannian manifold with
Fisher-Rao metric and subsequently into a vector space which
is reduced by PCA to a fixed-size representation.

Recently, a third type of approach has been introduced. It
aims at learning areas/points in the PD which are of particular
importance for a given task in a supervised manner [Hofer et
al., 2017]. Despite promising properties this approach can be
used only in cases where supervisory information (labels) are
available, requires a large training set and long training time.
Additionally, it requires specifically adapted architectures for
different data sets and data types [Hofer et al., 2017].

3 Persistence Bag of Words
In this section, we adopt the Bag-of-Words (BoW)
model [McCallum and Nigam, 1998; Sivic and Zisserman,
2003], introduced in text and image retrieval, for the quan-
tization of PDs. The idea behind BoW is to quantize vari-
able length input data into a fixed-size representation by a so
called codebook. The codebook is generated from the input
data in an unsupervised manner by clustering. The basic as-
sumption behind BoW is that the clusters (i.e. codewords)

capture the intrinsic structure of the data and thereby repre-
sent a suitable vocabulary for the quantization of the data.
Given a codebook C, every input point P (in a potentially
high-dimensional space) is encoded by assigning points from
P to the nearest codeword from C. In traditional BoW this
encoding leads to a codeword histogram where each code-
word from C is a bin and counts how many points from P are
closest to it.

For BoW approaches, three important hyperparameters
need to be set: (1) the clustering algorithm used to generate
the codebook, (2) the size of the codebook, i.e., the number of
clusters, and (3) the type of proximity encoding which is used
to obtain the final descriptors, i.e. hard or soft assignment.
We employ k-means and Gaussian Mixture Models (GMM)
for clustering. The size of each codebook is optimized to
maximize performance. In the following sections, we will
describe two ways of generating codeword histograms based
on the proximity of points from P to codewords in C.

The overall approach is visualized in Fig. 1. The input con-
sists of a set of PDs extracted from all instances of a given
dataset and transformed into birth-persistence coordinates us-
ing (b, d)→ (b, d−b) transformation for each point in the PD.
Next, all PDs are consolidated into one diagram which may
then be sub-sampled to reduce the influence of noise. Based
on the consolidated diagram, the codebook C is generated by
clustering. For a given codebook we generate codeword his-
tograms by different quantization strategies.

3.1 Persistence Bag of Words
In order to directly adapt BoW [Baeza-Yates and Ribeiro-
Neto, 1999; Sivic and Zisserman, 2003] to PDs, let us con-
solidate a collection of training diagrams D1,D2, . . . ,Dn

into D = D1 ∪ D2 ∪ . . . ∪ Dn in order to obtain a code-
book by using k-means clustering on D. Let {µi ∈ R2, i =
1, . . . ,N} denote the centers of obtained clusters. Given a
new PD B = {xt ∈ R2}Tt=1 let NN(xt) be equal to i if
d(xt,µi) ≤ d(xt,µj) for all j ∈ {1, . . . ,N}. We define a
persistence bag of words (PBoW) as a vector:

vPBoW(B) =
(
vPBoW
i (B)

)
i=1,...,N

, (1)

where vPBoW
i (B) = card{xt ∈ B | NN(xt) = i}. In

other words, vPBoW
i captures the number of points from B,

which are closer to µi than to any other µj . Next, vPBoW(B)
is normalized by taking the square root of each component
(preserving the initial sign) and dividing it by the norm of the
vector. This is a standard normalization for BoW [Perronnin
et al., 2010] used to reduce the influence of outliers.

This direct adaptation of BoW to PDs is, however, not 1-
Wasserstein stable. To show this, let us assume that we have
two clusters with centers µ1 = (0, 0),µ2 = (1, 0) ∈ R2, and
PD B containing only one point x1 = ( 1

2 + ε, 0), for some
small ε > 0. Then, vPBoW(B) = [0, 1], because x1 is closer
to µ2 than µ1. However, a small perturbation in B, e.g. by
−2ε, changes the assignment of x1 from µ2 to µ1. In this
case B′ = {( 1

2 − ε, 0)} and vPBoW(B′) = [1, 0]. In order
to be stable in 1-Wasserstein sense, PBoW should fulfill the
following condition:

2 = |vPBoW(B)− vPBoW(B′))| < C|x1 − y1| < 2Cε,
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Figure 1: Persistence bag-of-words: An illustration of the entire pipeline for codebook generation and the extraction of codeword histograms.
From the input data we compute PDs in birth-persistence coordinates and combine them into one consolidated diagram. Next, a subset of
points is obtained from this diagram by either weighted or unweighted sub-sampling. Subsequently, we cluster the sub-sampled consolidated
diagram to derive a codebook. Finally, the individual points for each input PD are encoded by the codewords (BoW quantization). This
illustration shows a hard assignment of points to codewords (for better illustration). In practice, a soft assignment strategy is recommended
for stability reasons. The result is a codeword histogram for each input PD that represents how many points fall into which cluster of the
codebook. These histograms represent a compact and fixed-size vectorial representation.

therefore C > 1/ε. As ε > 0 can be arbitrarily small, there
does not exist a constant C that meets this condition. There-
fore PBoW is not stable. In the next section, we adopt BoW to
better fit the structure of PDs and to deal with the instability.

3.2 Stable Persistence Bag of Words
In this section we present two important adaptations of BoW
for PDs. Firstly, we enforce the codeword selection to be
preferential to higher persistence points. Secondly, we adopt
soft assignment of points to the clusters and prove that such
an approach guarantees stability of the representation.

A consequence of the stability theorem for PDs is that
points with higher persistence are typically considered more
important than points with lower persistence. Therefore,
when selecting the cluster centers µi in BoW, preference
should be given to higher persistence points. To integrate this
into codebook generation we perform the clustering on a sub-
set of points obtained by a weighted sampling of D. For the
sub-sampling we use a piece-wise linear weighting function
wa,b : R→ R. Given a < b:

wa,b(t) =

{
0 if t < a
(t− a)/(b− a) if a ≤ t < b
1 if b ≤ t

(2)

and use it to weight the second coordinate (persistence) of
the points in the PD. In our experiments we set a and b to
the persistence values corresponding to 0.05 and 0.95 quan-
tiles of the persistence coordinate of the points in D. Conse-
quently, persistence points having higher values for function
w are more likely to be sampled. Note that the sub-sampling
does not guarantee that the points of highest persistence will
be selected as centers of clusters, but it makes the probability
of such an event considerably larger.

To account for the instability of PBoW (see Section 3.1),
we propose Stable Persistence Bag of Words (sPBoW).

Similarly to PBoW, we first consolidate PDs in the ini-
tial step of construction. Next, we generate a GMM
based on the sub-sampled points (by expectation maximiza-
tion [Nasrabadi, 2007]). This approach was originally intro-
duced in [Van Gemert et al., 2008]. Let the parameters of the
fitted GMM be λ = {wi,µi, Σi, i = 1, . . . ,N}, where wi, µi

and Σi denote the weight, mean vector and covariance matrix
of Gaussian i andN denotes the number of Gaussians. Given
a PD B its stable PBoW is defined as:

vsPBoW(B) =

(
vsPBoW
i = wi

∑
xt∈B

pi(xt|λ)

)
i=1,...,N

,

(3)

where wi > 0,
∑N

i=1 wi = 1, and pi(xt|λ) is the likelihood
that observation xt was generated by Gaussian i:

pi(xt|λ) =
exp{− 1

2 (xt − µi)
′Σ−1i (xt − µi)}

2π|Σi|
1
2

.

See SMa for a complexity analysis of PBoW and sPBoW.

4 Stability Proof

Theorem. Let B and B′ be persistence diagrams with a fi-
nite number of non-diagonal points. Stable persistence bag
of words, sPBoW with N words is stable with respect to
1-Wasserstein distance between the diagrams, that is∥∥vsPBoW(B)− vsPBoW(B′)

∥∥
∞ ≤ C ·W1(B,B′),

where C is a constant.

Proof. Let η : B → B′ be an optimal matching in the defi-
nition of 1-Wasserstein distance. For a fixed i ∈ {1, . . . ,N}
we have:
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∥∥vsPBoW
i (B)− vsPBoW

i (B′)
∥∥
∞ =∥∥∥∥∥wi

∑
x∈B

(pi(x|λ)− pi(η(x)|λ)

∥∥∥∥∥
∞

≤

|wi|
∑
x∈B
‖(pi(x|λ)− pi(η(x)|λ))‖∞

Note that pi : R2 → R are Lipschitz continuous (as they
are 2-dimensional Gaussian distributions). Let Li be their
Lipschitz constant. We get

|wi|
∑
x∈B
‖(pi(x|λ)− pi(η(x)|λ))‖∞ ≤

|wi|
∑
x∈B
‖(Li(x− η(x)))‖∞ =

|wi Li|
∑
x∈B
‖(x− η(x))‖∞ = |wi Li|W1(B,B′)

Consequently for C = maxi|wi Li| we have∥∥vsPBoW(B)− vsPBoW(B′)
∥∥
∞ ≤ C W1(B,B′).

�

5 Experimental Setup
5.1 Datasets
We incorporate datasets which cover a wide range of differ-
ent retrieval problems. Firstly, to provide a proof-of-concept,
we evaluate all approaches on a set of synthetically gener-
ated shape classes from [Adams et al., 2017]. It consists of
six shape classes represented by point clouds of the geomet-
rical objects. The task is to differentiate them by the derived
representations. Additionally, we evaluate the approaches on
real-world datasets for geometry-informed material recogni-
tion (GeoMat) [DeGol et al., 2016], classification of social
network graphs (reddit-5k, reddit-12k) [Hofer et al., 2017],
analysis of 3D surface texture (PetroSurf3D) [Zeppelzauer
et al., 2017], and 3D shape segmentation [Carrière et al.,
2017]. Where available, we have used pre-computed PDs
available with datasets to foster reproducibility and compa-
rability. More detail on the datasets is provided in the SMa.

5.2 Compared Approaches
We compare our bag-of-word approaches with both
kernel-based techniques and vectorized representations.
Kernel-based approaches include: 2-Wasserstein distance2

(2Wd) [Kerber et al., 2017], the multi-scale kernel3 (MK)
of [Reininghaus et al., 2015], and sliced Wasserstein ker-
nel4 (SWK) [Carrière et al., 2017]. Furthermore, we employ
the persistence landscape5,6 (PL) representation and generate

2https://bitbucket.org/grey narn/hera
3https://github.com/rkwitt/persistence-learning
4code obtained from Mathieu Carrière
5https://www.math.upenn.edu/∼dlotko
6https://github.com/queenBNE/Persistent-Landscape-Wrapper

a kernel matrix by the distance metric defined in [Bubenik,
2015]. Vectorized PD representations include: persistence
image7 (PI) [Adams et al., 2017] and the Riemannian mani-
fold approach8 (RM) [Anirudh et al., 2016].

5.3 Setup
For all datasets, we aim at solving a supervised classifica-
tion task. The classification pipeline is as follows: for the
kernel-based approaches we take the PDs as input and com-
pute the kernel matrices for the training and test samples.
Next we train an SVM from the explicit kernel matrices and
evaluate it on the test data. For the vectorized representa-
tions we compute the respective feature vectors from the PDs
and feed them into a linear SVM for training. This proce-
dure allows for directly comparing kernel-based approaches
and vectorized representations. To enhance the comparability
we employ (if available) the original train/test division of the
datasets. To find optimal parameters for each evaluated ap-
proach, we run a grid search including cross-validation over
the hyperparameters of all approaches (see Table 1 in SMa).

As the computation times for some of the considered meth-
ods, especially for kernel-based approaches, do not scale well
with the sizes of datasets (computation time and space re-
quired for explicit kernel matrices grows exponentially), we
have decided to split the evaluation into two parts: EXP-
A uses all related approaches on smaller randomly sub-
sampled versions of the datasets (see SMa for details on sub-
sampling), while EXP-B operates only on the vectorized rep-
resentations and uses larger datasets.

The mean accuracy is obtained as an average over 5 runs
with the same train/test divisions used by the compared meth-
ods. A Wilcoxon signed-rank tests is used to show the statis-
tical significance of differences between the scores of the best
and the remaining methods. As the number of repetitions is
small, the p-value is set to 0.1 and no multiple testing correc-
tion is applied.

The code of our experiments is implemented in Matlab9.
For external approaches we use the publicly available imple-
mentations of the original authors. For bag-of-words we em-
ploy the VLFeat library [Vedaldi and Fulkerson, 2008].

6 Results and Discussion
Table 1 summarizes the results obtained in our experiments
for EXP-A and EXP-B. For each combination of dataset
and approach we provide the obtained classification accuracy
(including the standard deviation) and the processing time
needed to construct the representations (excluding the time
for classification). Note that for the synthetic dataset and the
3D shape segmentation dataset, results of EXP-A and EXP-B
are equal, as no sub-sampling was needed to perform EXP-A.

Overall, for all experiments in EXP-A and EXP-B, PBoW
or sPBoW achieve state-of-the-art performance or even
above. From EXP-A we further observe that vectorized rep-
resentations (including the proposed ones) in all cases outper-
form kernel-based approaches. Among the compared vector-

7https://github.com/CSU-TDA/PersistenceImages
8https://github.com/rushilanirudh/pdsphere
9https://github.com/bziiuj/pcodebooks
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EXP-A
Descr. Synthetic GeoMat Reddit-5k Reddit-12k PetroSurf3D 3D Shape Segm.

Score Time (sec.) Score Time (sec.) Score Time (sec.) Score Time (sec.) Score Time (sec.) Score Time (sec.)
2Wd 98.0 ± 1.3 133.4 24.7 ± 3.1 14740.6 29.6 ± 5.6 6198.8 23.3 ± 2.4 4979.8 79.9 ± 6.6 63822.5 71.0 ± 0.6 6300.8
MK 92.3 ± 2.8 44.0 9.1 ± 3.1 10883.0 32.7 ± 3.1 7251.7 26.7 ± 4.6 4222.3 80.2 ± 3.6 53831.0 88.5 ± 0.5 860.3

SWK 97.4 ± 1.9 33.3 22.0 ± 2.7 1069.6 39.2 ± 6.1 373.8 30.9 ± 5.0 329.7 78.0 ± 6.3 3913.0 94.2 ± 0.5 1995.4
PL 95.1 ± 2.2 81.0 17.9 ± 3.8 1563.7 30.4 ± 6.2 791.3 24.7 ± 4.2 719.0 78.2 ± 6.7 7991.7 92.6 ± 0.8 2668.3
PI 98.3 ± 1.6 10.1 11.1 ± 2.4 342.3 48.4 ± 5.7 1250.9 35.6 ± 4.6 111.8 80.0 ± 3.7 1877.0 94.9 ± 0.3 291.2

RM 92.3 ± 2.6 0.9 19.1 ± 2.7 10.3 39.2 ± 9.2 7.8 28.7 ± 2.0 17.9 77.3 ± 6.3 128.8 72.3 ± 0.4 6.6
PBoW 98.0 ± 2.2 0.8 26.7 ± 2.5 0.3 46.8 ± 4.8 0.5 32.7 ± 2.2 0.3 79.9 ± 4.6 1.8 90.8 ± 0.7 5.4
sPBoW 96.9 ± 1.6 4.0 22.2 ± 2.6 2.2 45.6 ± 5.4 0.7 31.6 ± 2.8 1.3 78.8 ± 3.7 31.5 94.4 ± 0.6 14.7

EXP-B
PI

same as EXP-A
22.45 ± 0.0 7243.1 49.3 ± 2.8 4758.7 38.4 ± 0.9 11329.0 80.4 ± 4.9 12137.0

same as EXP-ARM 9.4 ± 0.0 222.6 46.3 ± 3.1 108.1 32.6 ± 1.1 215.5 79.9 ± 5.0 1451.0
PBoW 29.0 ± 0.4 5.2 49.9 ± 3.3 1.5 38.6 ± 0.9 4.8 80.3 ± 5.3 28.5
sPBoW 27.8 ± 0.7 29.7 46.6 ± 3.3 5.2 35.3 ± 1.4 29.3 79.9 ± 5.2 161.8

SoA 97.3 [Adams et al., 2017] 22.3 ± 0.8 [DeGol et al., 2016] 49.1 [Hofer et al., 2017] 38.5 [Hofer et al., 2017] n/a n/a

Table 1: Results of EXP-A and EXP-B averaged over 5 runs. We provide average classification accuracy, standard deviation and compu-
tation time. Results with statistically significant improved performance are highlighted bold. The first four approaches are kernels (2Wd:
2-Wasserstein Distance, MK: Multiscale Kernel, SWK: Sliced Wasserstein Kernel, PL: Persistence Landscape). The remaining approaches
are vectorized representations evaluated in EXP-A and EXP-B (PI: Persistence Image, RM - Riemmanian Manifold, (s)PBoW: (stable) Per-
sistence Bag-of-Words). Column “Time” shows the computation times for kernel matrices or vectorized representations using the optimal
parameters obtained in grid search (excluding cross-validation and classification). Times highly depend on those parameters (e.g. the resolu-
tion of PI), which is further investigated in Section 6.1 and in the SMa. Times (esp. in EXP-A) further vary significantly with the dataset that
influences the number of points in the PDs. Row ”SoA” shows comparable state-of-the-art results from the literature where available.

ized representations, PI in most cases outperforms RM and
will thus serve as the primary approach for further compar-
ison. When comparing the stable vs. unstable variants of
PBoW, we observe that PBoW in most cases outperforms its
stable equivalent. This is further studied in Section 6.1.

Large differences exist in processing times of the differ-
ent approaches. The slowest vectorized approach is PI. The
runtimes, however, vary strongly, depending on the resolution
used for PI, which depends on the optimally estimated resolu-
tion during grid search. The RM representation is one to two
magnitudes faster than PI10. All kernel methods are about one
magnitude or more slower then PI. (s)PBoW outperform al-
most all state of the art approaches in runtime for all datasets
(in EXP-A and EXP-B). The gain in runtime efficiency ranges
from one to up to four orders of magnitude. For the largest
dataset (PetrSurf3D), for example, the PBoW and sPBoW re-
quire 29 and 162 seconds while RM requires 1.451 seconds
and PI 12.136 seconds. In the following, we analyze selected
aspects of the proposed representations in greater detail.

6.1 Accuracy vs. Codebook Size
The most important parameter for BoW representations is
the codebook size N , i.e. the number of clusters. There is
no commonly agreed analytic method to estimate the opti-
mal codebook size, thus the estimation is usually performed
empirically. To investigate the sensitivity of (s)PBoW and
their performance on the codebook size, we evaluate both ap-
proaches for a range of values of N for each dataset. Re-
sults are shown in Fig. 2, both without (solid lines) and with
weighted sub-sampling (dashed lines) of the consolidated PD.

On the synthetic dataset we observe that without weight-
ing PBoW outperforms sPBoW. However, when codebook
weighting is introduced, the stable variant sPBoW starts to
work equally well. The trend shows that larger codebook
sizes are better than small ones but also that with already 20

10For both representations the original implementations are used
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Figure 2: Accuracy vs. codebook size for datasets from EXP-A
without (solid lines) and with codebook weighting (dashed lines).
See plots for the remaining datasets in Fig. 3 of the SMa.

words a high performance can already be achieved. Using
weighting and the stable formulation of PBoW clearly im-
proves the performance on this dataset.

Unlike to the synthetic data, in the case of social network
graphs (reddit-5k) there is no recognizable increase in per-
formance for larger codebook sizes. We assume that this is
caused by the larger variation between training and test data
in real data sets. More precisely, larger codebooks result in
codewords which tend to overfit on the training PDs. Such
codewords do not generalize well to test data, which can re-
sult in the observed behavior.

Over all datasets we observe that the benefit of weighting
is dataset dependent and that no general recommendation can
be derived (see results for the remaining datasets in SMa).
The stable formulation of PBoW, however, performs equally
well or even better than the unstable one in 4/6 datasets.

6.2 Qualitative Analysis
In this section we investigate the proposed representations
with a special focus on their discriminative abilities. We em-
ploy the synthetic dataset as proof-of-concept and GeoMat
as example of a complex real-world dataset. We compute
PBoW with N = 20 clusters for the synthetic dataset and
visually analyze the codeword histograms obtained by (hard)
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Figure 3: Average codebook histograms computed for each of the
six shape classes of the synthetic dataset. The cluster center of each
codeword is presented as a circle in the birth-persistence domain.
The area of the circles reflects the histogram values of the specific
class. For all classes the same codebook (same clustering) is em-
ployed, thus, dot locations are the same on all plots. Class differ-
ences are thus reflected by different sizes of the circles.

assignment. For each of the six shape classes we compute the
average codebook histogram (over all samples of each class)
to obtain one representative PBoW vector per class. The av-
eraged PBoW histograms for each classes are presented in
Fig. 3. Instead of only providing the histograms themselves,
we plot for each codeword of the histogram the correspond-
ing cluster center as a circle in the original birth-persistence
domain and encode the number of assigned codeworks (the
actual values of the histograms) in the area of the circles, i.e.
the larger the count for a cluster, the larger the circle. The
advantage of this representation is that the spatial distribution
of the codewords in the PD is preserved.

From Fig. 3 we can see that except for the classes “random
cloud” and “sphere” (which are difficult to differentiate) all
classes generate strongly different cluster distributions. Class
“circle”, for example, uniquely activates four clusters with
strong persistence (top-left corner) and the “torus” class dis-
tributes its corresponding code words across a large number
of clusters representing less persistent components.

Fig. 3 further illustrates an important property of persis-
tence bag-of-words, namely its sparse nature. More specif-
ically, areas with no points in the consolidated persistence
diagram will contain no codewords (clusters). In Fig. 3, for
example, no codeword is obtained in the upper-right quadrant
of the diagram, since no components are located there for the
underlying data. Thus these unimportant areas are neglected
and not encoded into the final representation. This not only
reduces the dimension of the final representation but further
makes the representation adaptive to the underlying data and
increases the information density of the representation.

We further investigate the performance on the GeoMat
dataset. For GeoMat (s)PBoW significantly outperforms all
other representations (see Table 1), first and foremost PI,
which is the best related approach on this dataset in EXP-
B. To this end, we generate confusion matrices for PI and
PBoW that show that PBoW yields a better class separa-
tion (see Fig. 6 in SMa). Averaged PBoW histograms for
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Figure 4: Comparison of averaged PBoW histograms for class “ce-
ment smooth” (left, red) and “concrete cast-in-place” (right, blue)
from GeoMat (top row: total view, bottom row is zoomed in). The
plot in the center shows the difference between the classes where
red color means that the left class has stronger support for this clus-
ter and blue means that the right class has stronger support.

two example classes (“cement smooth” and “concrete cast-in-
place”) are shown in Fig. 4. For both classes the histograms
are on the first sight similar (upper row in Fig. 4). However,
by zooming-in towards the birth-persistence plane in Fig. 4
(bottom row), differences become visible. The plots in the
center illustrate the difference between the class distributions
(red color means left class is stronger, blue means right class
is stronger for this cluster). The classes distinguish them-
selves by fine-grained spatial differences. The set of three
blue points around birth time of 0 (which are characteristic
for class “concrete cast-in-place”) surrounded by red points
(which are characteristic for class “cement smooth”) illus-
trates this well (see lower central plot). For the discrimina-
tion of these two classes a particularly fine-grained codebook
with many clusters is needed. The PI has problems with such
fine-grained structures, because due to its limited resolution,
all topological components in the most discriminative area
would most likely fall into one pixel. Therefore, an extraor-
dinary high resolution would be necessary to capture the dis-
criminative patterns between those two classes. The bag-of-
words model makes our approaches independent of the res-
olution and enables to efficiently capture such fine-grained
differences. More examples from the GeoMat dataset can be
found in SMa in Section 5.4 together with additional eval-
uations of (s)PBoW on computation time, dataset size and
accuracy, see Sections 5.2 and 5.3.
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