
A Quantum-inspired Classical Algorithm for Separable Non-negative Matrix
Factorization

Zhihuai Chen1,2 , Yinan Li3 , Xiaoming Sun1,2 , Pei Yuan1,2 and Jialin Zhang1,2

1CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese
Academy of Sciences, 100190, Beijing, China

2University of Chinese Academy of Sciences, 100049, Beijing, China
3Centrum Wiskunde & Informatica and QuSoft, Science Park 123, 1098XG Amsterdam, Netherlands

{chenzhihuai, sunxiaoming, yuanpei, zhangjialin}@ict.ac.cn, yinan.li@cwi.nl

Abstract
Non-negative Matrix Factorization (NMF) asks to
decompose a (entry-wise) non-negative matrix into
the product of two smaller-sized nonnegative matri-
ces, which has been shown intractable in general. In
order to overcome this issue, separability assump-
tion is introduced which assumes all data points
are in a conical hull. This assumption makes NMF
tractable and is widely used in text analysis and im-
age processing, but still impractical for huge-scale
datasets. In this paper, inspired by recent develop-
ment on dequantizing techniques, we propose a new
classical algorithm for separable NMF problem. Our
new algorithm runs in polynomial time in the rank
and logarithmic in the size of input matrices, which
achieves an exponential speedup in the low-rank
setting.

1 Introduction
Non-negative Matrix Factorization (NMF) aims to approxi-
mate a non-negative data matrix A ∈ Rm×n

≥0 by the product
of two non-negative low rank factors, i.e., A ≈ WHT , where
W ∈ Rm×k

≥0 is called basis matrix, H ∈ Rn×k
≥0 is called encoding

matrix and k � min{m, n}. In many applications, an NMF of-
ten results in more natural and interpretable part-based decom-
position of data [Lee and Seung, 1999]. Therefore, NMF has
been widely used in a number of practical applications, such
as topic modeling in text, signal separation, social network,
collaborative filtering, dimension reduction, sparse coding,
feature selection and hyperspectral image analysis. Since com-
puting an NMF is NP-hard [Vavasis, 2009], a series of heuris-
tic algorithms have been proposed [Lee and Seung, 2001;
Lin, 2007; Hsieh and Dhillon, 2011; Kim and Park, 2008;
Ding et al., 2010; Guan et al., 2012]. All of the heuristic algo-
rithms aim to minimize the reconstruction error, the formula
which is a non-convex program and lack optimality guarantee:

min
W∈Rm×k

≥0 H∈Rn×k
≥0

∥∥∥A −WHT
∥∥∥

F .

A natural assumption on the data called separability assump-
tion, was observed in [Donoho and Stodden, 2004] . From a
geometry perspective, the separable assumption means that all
rows of A reside in a cone generated by a rather smaller num-
ber of rows. In particular, these generators are called anchors

of A. To solve the Separable Non-Negative Matrix Factoriza-
tions (SNMF), it is sufficient to identify the anchors in the
input matrices, which can be solved in polynomial time [Arora
et al., 2012a; Arora et al., 2012b; Gillis and Vavasis, 2014;
Esser et al., 2012; Elhamifar et al., 2012; Zhou et al., 2013;
Zhou et al., 2014]. Separability assumption is favored by vari-
ous practical applications. For example, in the unmixing task
in hyperspectral imaging, separability implies the existence
of ‘pure’ pixel [Gillis and Vavasis, 2014]. And in the topic
detection task, it also means some words are associated with
unique topic [Hofmann, 2017]. In huge datasets, it is useful
to pick up some representative data points to stand for other
points. Such ‘self-expression’ assumption helps to improve
the data analysis procedure [Mahoney and Drineas, 2009;
Elhamifar and Vidal, 2009].

1.1 Related Work
It is natural to assume all the rows of the input A has unit
`1-norm, since `1-normalization translates the conical hull to
convex hull while keeping the anchors unchanged. From this
perspective, most algorithms essentially identify the extreme
points in the convex hull of the (`1-normalized) data vectors.
In [Arora et al., 2012a], the authors use m linear programs in
O(m) variables to identify the anchors out of m data points,
and it is therefore not suitable for dealing with large-scale real-
world problems. Furthermore, [Recht et al., 2012] presents a
single LP in n2 variables for SNMF to deal with large-scale
problems (but is still impractical for huge-scale problems).

There is another class of algorithms based on greedy algo-
rithms. The main idea is to opt a data point on the direction
where the current residual decreases fast. The algorithms ter-
minate with a sufficiently small error or a large iteration times.
For example, Successful Projection Algorithm (SPA) [Gillis
and Vavasis, 2014] derives from Gram-Schmidt orthogonal-
ization with row or column pivoting. XRAY [Kumar et al.,
2013] detects a new anchor referring to the residual of exterior
data points and updates the residual matrix by solving a non-
negative least square regression. Both of these two algorithms
based on greedy pursuit have smaller time complexity com-
pared with LP-based methods. However, the time complexity
is still too large for large-scaled data.

[Zhou et al., 2013; Zhou et al., 2014] utilize a Divide-and-
Conquer Anchoring (DCA) framework to tackle the SNMF.
Namely, by projecting the data set into several low-dimension

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4511

subspaces, and each projection can determines a small set of
anchors. Moreover, it can be proven that all the k anchors can
be identified by O(k log k) projections.

Recently, a quantum algorithm for SNMF called Quantum
Divide-and-Conquer Anchoring algorithm (QDCA), has been
presented [Du et al., 2018], which uses the quantum tech-
nology to speed up the random projection step in [Zhou et
al., 2013]. QDCA implements matrix-vector product (i.e.,
random projection) via quantum principal component anal-
ysis and then a quantum state encoding the projected data
points could be prepared efficiently. Moreover, there are al-
so several papers utilizing dequantizing techniques to solve
some low-rank matrix operations, such as recommendation
systems [Tang, 2018] and matrix inversion [Gilyén et al., 2018;
Chia et al., 2018]. Dequantizing techniques in those algorithm-
s involve two technologies, the Monte-Carlo singular value
decomposition and rejection sampling, which could efficiently
simulate some special operations on low-rank matrices.

Inspired by QDCA and the dequantizing techniques , we
propose a classical randomized algorithm which speeds up
the random projection step in [Zhou et al., 2013] and thereby
identifies all anchors efficiently. Our algorithm takes time
polynomial in rank k, condition number κ and logarithm of
the size of matrix. When rank k = O(log(mn)), our algorith-
m achieves exponentially speedup than any other classical
algorithms for SNMF.

2 Preliminaries
2.1 Notations
Let [n] := {1, 2, . . . , n}. Let span{xi ∈ R

n|i ∈ [k]} :=
{
∑k

i=1 αixi|αi ∈ R, i ∈ [k]} denote the space spanned by xi

for i ∈ [k]. For a matrix A ∈ Rm×n, A(i) and A(j) denote
the ith row and the jth column of A for i ∈ [m], j ∈ [n], re-
spectively. Let AR = [AT

(i1), A
T
(i2), . . . , A

T
(ir)]

T where A ∈ Rm×n

and R = {i1, i2, . . . , ir} ⊆ [m] (without loss of generality, as-
sume i1 ≤ i2 ≤ · · · ≤ ir). ‖A‖F and ‖A‖2 refer to Frobe-
nius norm and spectral norm, respectively. For a vector
v ∈ Rn, ‖v‖ denotes its `2-norm. For two probability distri-
butions p, q (as density functions) over a discrete universe
D, the total variation distance between them is defined as∥∥∥p, q

∥∥∥
TV

:= 1
2
∑

i∈D |p(i)− q(i)|. κ(A) := σmax/σmin denotes the
condition number of A, where σmax and σmin are the maximal
and minimal non-zero singular values of A.

2.2 Sample Model
In query model, algorithms for SNMF problem require time
which is at least linear in the number of nonzero elements
of the matrix, since in the worst case, they have to read out
all entries. However, we expect our algorithm to be efficient
even if the datasets are extremely large. Considering the QD-
CA in [Du et al., 2018], one of its advantage is that data is
prepared in quantum state and can be access via ‘quantum’
way (like sampling). Thus, in quantum algorithm, quantum
state is served to represent data implicitly which can be read
out by measurement only. In order to avoiding reading the
whole matrix, we introduce a new sample model other than the
query model based on the idea of quantum state preparation
assumption.

‖v‖2

v2
1 + v2

2

v2
1

sgn(v1)

v2
2

sgn(v2)

v2
3 + v2

4

v2
3

sgn(v3)

v2
4

sgn(v4)

Figure 1: Binary search tree for v = (v1, v2, v3, v4)T ∈ R4. The leaf
node stores v2

i and interior node stores the sum of the children. In
order to restore the original vector, we also store the sign of vi in leaf
node. To sampling from Dv, we can start from top and randomly
recurring on a child, with probability proportional to its weight.

Definition 2.1 (`2-norm Sampling). Let Dv denote the dis-
tribution over [n] with density function Dv(i) = v2

i /‖v‖
2 for

v ∈ Rn. A sample from a distribution Dv is called a sample
from v.

Lemma 2.2 (Vector Sample Model). There is a data structure
storing vector v ∈ Rn in O(n log n) space, and supporting
following operations:

• Querying and updating a entry in O(log n) time;

• Sampling fromDv in O(log n) time;

• Finding‖v‖ in O(1) time.

Such a data structure can be easily implemented via Binary
Search Tree (BST) (see Figure 1).

Proposition 2.3 (Matrix Sample Model). Considering matrix
A ∈ Rm×n, let Ã and Ã′ be the vector whose entry is

∥∥∥A(i)
∥∥∥

and
∥∥∥A(j)

∥∥∥, respectively. There is a data structure storing
matrix A ∈ Rm×n in O(mn) space and supporting following
operations:

• Querying and updating an entry in O(log m + log n) time;

• Sampling from A(i) for any i ∈ [m] in time O(log n);

• Sampling from A(j) for any j ∈ [n] in time O(log m);

• Finding‖A‖F ,
∥∥∥A(i)

∥∥∥ and
∥∥∥A(j)

∥∥∥ in time O(1);

• Sampling Ã and Ã′ in time O(log m) and O(log n), respec-
tively.

This data structure can be easily implemented via Lem-
ma 2.2, we can just use two arrays of BST to store all rows
and columns of A and use two extra BSTs store Ã and Ã′.

2.3 Low-rank Approximations in Sample Model
FKV algorithm is a Monte-Carlo algorithm [Frieze et al.,
2004] that returns approximate singular vectors of given ma-
trix A in matrix sample model. The low-rank approximation of
A can be reconstructed by approximate singular vectors. The
query and sample complexity of FKV algorithm are indepen-
dent of size of A. FKV algorithm outputs a short ‘description’
of V̂ , which is approximate to a right singular vectors V of
matrix A. Similarly, FKV algorithm can output a description
of approximate left singular vectors Û of A by inputting AT .
Let FKV (A, k, ε, δ) denote the FKV algorithm, where A is a
matrix given by sample model, k is the rank of approximate

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4512

matrix of A, ε is error parameter, and δ is the failure probability.
The FKV algorithm is described in Theorem 2.4.
Theorem 2.4 (Low-rank Approximations, [Frieze et al.,
2004]). Given matrix A ∈ Rm×n in matrix sample model,
k ∈ N and ε, δ ∈ (0, 1), FKV algorithm outputs the descrip-
tion of the approximate right singular vectors V̂ ∈ Rn×k in
O(poly(k, 1/ε, log 1

δ
)) samples and queries of A with probabil-

ity 1 − δ, which satisfies∥∥∥AV̂V̂T − A
∥∥∥2

F ≤ min
D:rank(D)≤k

‖A − D‖2F + ε‖A‖2F .

Especially, if A is a matrix with rank k exactly, Theorem 2.4
also implies an inequality:

∥∥∥AV̂V̂T − A
∥∥∥

F ≤
√
ε‖A‖F .

Description of V̂ . Note that FKV algorithm does not output
the approximate right singular vectors V̂ directly since their
lengths are linear of n. It returns a description of V̂ , which
consists of three components: the row index sets T := {it ∈
[m]|t ∈ [p]}, a vector set U := {u(j) ∈ Rp| j ∈ [k]} which
are singular vectors of a submatrix sampled from A , and
its corresponding singular values Σ := {σ(j)| j ∈ [k]}, where
p = O(poly(k, 1

ε
)). In fact, V̂ (i) := AT u(i)/σi for i ∈ [k].

Given a description of V̂ , we can sample from V̂ (i) in time
O(poly(k, 1

ε
)) for i ∈ [k] [Tang, 2018] and query its entry in

time O(poly(k, 1
ε
)).

Definition 2.5 (α-orthonormal). Given α > 0, V̂ ∈ Rn×k is
called α-approximately orthonormal if 1 − α/k ≤

∥∥∥V̂ (i)
∥∥∥2
≤

1 + α/k for i ∈ [k] and |V̂ (s)V̂ (t)| ≤ α/k for s , t ∈ [k].
The next lemma presents some properties of α-approximate

orthonormal vectors.
Lemma 2.6 (Properties of α-orthonormal Vectors, [Tang,
2018]). Given a set of k α-approximately orthonormal vectors
V̂ ∈ Rn×k, then there exists a set of k orthonormal vectors
V ∈ Rn×k spanning the columns of V̂ such that∥∥∥V − V̂

∥∥∥
F ≤ α/

√
2 + c1α

2, (1)∥∥∥ΠV̂ − V̂V̂T
∥∥∥

F ≤ c2α, (2)

where ΠV̂ := VVT represents the orthonormal projector to
image of V̂ and c1, c2 > 0 are constants.
Lemma 2.7 ([Frieze et al., 2004]). The output vectors V̂ ∈
Rn×k of FKV (A, k, ε, δ) is εk/16-approximate orthonormal.

3 Fast Anchors Seeking Algorithm
In this section, we present a randomized algorithm for SNMF
which is called Fast Anchors Seeking (FAS) Algorithm. Espe-
cially, the input A ∈ Rm×n

≥0 of FAS is given by matrix sample
model which is realized via a data structure described in Sec-
tion 2. FAS returns the indices of anchors in time polynomial
logarithmic to the size of matrix.

3.1 Description of Algorithm
Recall that SNMF aims to factorize A = FAR where R is the
index set of anchors. In this paper, an additional constraint
is added: the sum of entries in any row of F is 1. Namely,
any data point of A resides in convex hull which is the set
of all convex combination of AR. In fact, normalizing each

row of matrix A by `1-norm is valid, since the anchors remain
unchanged. Moreover, Instead of storing `1-normalized matrix
A, we can just maintain the `1-norms for all rows and columns.

The Quantum Divide-and-Conquer Anchoring (QDCA) is
a quantum algorithm for SNMF which achieves exponential
speedup than any classical algorithms [Du et al., 2018]. After
projecting any convex hull into an 1-dimensional space, the
geometric information is partially preserved. Especially, the
anchors in 1-dimensional projected subspace are still anchors
in the original space. The main idea of QDCA is quantizing
random projection step in DCA. It decomposes SNMF into
several subproblems: projecting A onto a set of random u-
nit vectors {βi ∈ R

n}si=1 with s = O(k log k), i.e., computing
Aβi ∈ R

m. Such a matrix-vector product can be efficiently
implemented by Quantum Principle Component Analysis (QP-
CA). And then it returns a log m-qubits quantum state whose
amplitudes are proportional to entries of Aβi. Measurement
of quantum state outcomes an index j ∈ [m] which obeys
distributionDAβi . Thus, we can prepare O(poly log m) copies
of quantum states, measure each of them in computational
basis and record the most frequent index. By repeating proce-
dure above with s = O(k log k) times, we could successively
identify all anchors with high probability.

As discussed above, the core and most costly procedure
is to simulate DAβi . At the first sight, traditional algorithms
can not achieve exponential speedup on account of limits of
computational model. In QDCA, vectors are encoded into
quantum states and we can sample the entries with probability
proportional to their magnitudes by measurements. This quan-
tum state preparation overcomes the bottleneck of traditional
computational model. Based on divided-and-conquer scheme
and sample model (See Section 2.2), we present Fast Anchors
Seeking (FAS) Algorithm inspired by QDCA. Designing FAS
is quite hard and non-trivial although FAS and QDCA have
the same scheme. Indeed, we can simulate DAβi directly by
rejection sampling technology. However, the number of itera-
tions of rejection sampling is unbounded. To overcome this
difficulty, we translate matrix A into its approximation ÛÛT A,
where the columns Û ∈ Rm×k consists of k approximate left
singular vectors of matrix A and k = rank(A). Next, it is
obvious that y = ÛT Aβi ∈ R

k is a short vector and we can
estimate its entries one by one (see Lemma 3.5) efficiently.
Now the problem becomes to simulateDÛy and it can be done
by Lemma 3.4 .

Given an error parameter ε/2, the method described above
will result in

∥∥∥Aβi − ÛÛT Aβi

∥∥∥ < ε‖A‖F
∥∥∥βi

∥∥∥ /2 via Theorem

2.4, which implies
∥∥∥∥DAβi −DÛÛT Aβi

∥∥∥∥
TV
≤ ε‖A‖F

∥∥∥βi

∥∥∥ /∥∥∥Aβi

∥∥∥.
Namely, the method above introduces an unbounded error in
form ε‖A‖F

∥∥∥βi

∥∥∥ /∥∥∥Aβi

∥∥∥ if βi is arbitrary vector in entire space
Rn. Fortunately, this issue can be solved by generating random
vectors {βi}

s
i=1 lying in row space of A instead of those lying

in entire space Rn. To generate uniform random unit vectors
on the row space of A, we need to find a basis of row space of
A. If V ∈ Rn×k is a set of orthonormal basis of the row space
of A (the space spanned by the right singular vectors), and xi
is uniform random unit vector on Sk−1, then β = V xi is a unit
random vector in row space of A. Moreover, FKV algorithm
will figure out approximate singular vectors V̂ for V , that can

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4513

DAβi

(1) βi = V xi
←−−−−−−−−− DAV xi

(2) Lemma 2.6, Lemma 3.2

span{V̂ (i)} = span{A(i)}
DAV̂ xi

(3) Theorem 2.4

ÛÛT A ≈ A
DÛÛT AV̂ xi

(4) Lemma 3.5

M̃ ≈ ÛT AV̂ , ỹi = M̃xi
DÛỹi

(5) Lemma 3.4
rejection sampling

Oi

Figure 2: An illustration for how to approximate distributionDAβi . Oi represents the final distribution which approximateDAβi .
f represents ‘approximate’ and← represents ‘equal to’ in a sense of total variation distance. To prove the upper bound for
‖DAβi ,Oi‖TV , we introduce several medium distributions DAV̂ xi

, DÛÛT AV̂ xi
andDÛy. From left to right, (1) use a set of right

singular vectors V ∈ Rn×k to generate the random unit vector lying in the row space of A; (2) however, since V cannot be
gained efficiently, use FKV algorithm to figure out an approximation V̂ given by a ‘short desription’; (Lemma 2.6, Lemma
3.2) (3) translate AV̂ xi into ÛÛT AV̂ xi since A ≈ ÛÛT A (Theorem 2.4), where Û is the approximate left singular vectors
generated by FKV given by a ‘short desription’. (4) return an estimation M̃ of M = ÛT AV̂ ∈ Rk×k by estimating each entry by
Lemma 3.5 and then approximate Mxi (denoted as ỹi); (5) finally, the rejection sampling works for Ûỹi by Lemma 3.4 since Û
is approximately orthonormal.

x

y

z

A = { , }
AR = { }

argmaxi{A(i)β} = { }

P

β

Figure 3: An illustration of finding an anchor of A with rank k = 3.
The 3-dimensional space represents the row space of A and A’s data
points (blue and black points) lie on the `1-normalized plane P. The
blue points also stand for the anchors of A. A random vector β is
picked up from row space of A and then data points are projected on
β. The anchors of the projected space on β are still the anchors of
A, such that implies that the red point with the maximum absolute
projection component on β is an anchor of A.

help us make an approximate β̂i = V̂ xi for βi. Therefore, we
will estimate distributionDÛÛT AV̂ xi

instead ofDAβi . Based on
Corollary 3.5, ÛT AV̂ can be estimated efficiently. According
to Lemma 3.4, Ûy can be sampled efficiently, thus we can treat
ỹ as estimation of ÛT AV̂ xi (see Figure 2).

Once we can simulate distributionDAV xi , we can figure out
the index of the largest component of vector AV xi by picking
up O(poly log m) samples (Theorem 3.6). Moreover, accord-
ing to [Zhou et al., 2013], by repeating this procedure with
O(k log k) times, we can find all anchors of A with high proba-
bility (For single step of random projection, see Figure 3).

3.2 Analysis
Now, we propose our main theorem and analyze the correct-
ness and complexity of our algorithm FAS.

Theorem 3.1 (Main Result). Given separable non-negative
matrix A ∈ Rm×n

≥0 in matrix sample model, the rank k, condition
number κ and a constant δ ∈ (0, 1), Algorithm 1 returns the
indices of anchors with probability at least 1 − δ in time

O
poly

(
k, κ, log

1
δ
, log(mn)

) .
Correctness
In this subsection, we will analyze the correctness of Algo-
rithm 1. Firstly, we show that the columns of V defined in
Lemma 2.6 form a basis of row space of matrix A, which is

Algorithm 1 Fast Anchors Seeking Algorithm
Input: Separable non-negative matrix A ∈ Rm×n

≥0 in matrix
sample model, k = rank(A), condition number κ, a constant
δ ∈ (0, 1) and s = O(k log k).
Output: The index set R of anchors for A.

1: Initialize R = ∅.
2: Set ε < 2

√
2 log(4 log2(m)/δ)/ log2(m).

3: Set εV = O
(
min

{
ε/
√

kκ, 1/kκ2
})

, δV = 1 − (1 − δ)
1
4 .

4: Run FKV (A, k, εV , δV) and output the description of ap-
proximate right singular vectors V̂ .

5: Set εU = O
(
min

{
ε
k ,

1
kκ2

})
, δU = 1 − (1 − δ)

1
4 .

6: Run FKV (AT , k, εU , δU) and output the description of ap-
proximate left singular vectors Û.

7: By Lemma 3.5, estimate M := ÛT AV̂ with relative error
ζ = O

(
ε/k2κ

)
and failure probability η = 1− (1− δ)

1
4 , and

denote the result as M̃.
8: for i = 1 to s do
9: Generate a unit random vector xi ∈ R

k.
10: Directly compute ỹi = M̃xi.
11: By rejection sampling (Algorithm 2), simulate distribu-

tionDÛỹ with failure probability γ = 1 − (1 − δ)
1
4s and

pick up O(poly log m) samples.
{Let Oi denotes the actual distribution which simulates
DÛỹi

}

12: R ← R ∪ {l}, where l is the most frequently index
appearing in O(poly log m) samples.

13: end for
14: Return R

necessary to generate unit vector in row space of A. The next,
we prove that for each i ∈ [s], distribution Oi is ε-close to
distribution DAV xi in total variant distance. Once again, we
show how to gain the index of largest component of AV xi from
distribution Oi. Finally, by O(k log k) random projection, it is
enough for us to gain all anchors of matrix A.

The following lemma tells us the approximate singular vec-
tors outputted by FKV spans the row space of matrix A. And
combining with Lemma 2.6, it gives us that V also spans the
same space, i.e., V forms an orthonormal basis of row space
of matrix A.

Lemma 3.2. Let V̂ be the output of algorithm FKV (A, k, ε, δ).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4514

If ε < 1
kκ2 , then with probability 1 − δ, we obtain

span
{
V̂ (i)

∣∣∣i ∈ [l], l ≤ k
}

= span
{
A(i)

∣∣∣i ∈ [m]
}
.

Proof. By contradiction, we assume that span
{
V̂ (i)

∣∣∣i ∈ [k]
}
,

span
{
A(i)

∣∣∣i ∈ [m]
}
, which implies that there exists a unit vector

x ∈ span
{
A(i)

∣∣∣i ∈ [m]
}

and x ⊥ span
{
V̂ (i)

∣∣∣i ∈ [k]
}
. Then we

can obtain
∥∥∥Ax − AV̂V̂T x

∥∥∥ = ‖Ax‖ ≥ σmin(A) since V̂T x = ~0.
And according to Theorem 2.4, we have∥∥∥Ax − AV̂V̂T x

∥∥∥ ≤ √ε‖A‖F ≤ √εkκσmin(A).

Thus σmin(A) ≤
√
εkκσmin(A), which makes a contradiction if

ε < 1/kκ2. �

By Lemma 3.2, we can generate an approximate random
vector in the row space of A with probability 1 − δ in time
O(poly(k, 1/ε, log 1/δ)) by FKV (A, k, ε, δ). Firstly, we obtain
the description of approximate right singular vectors by FKV
algorithm, where the error parameter ε is bounded by rank k
and condition number κ (see in Lemma 3.2). Secondly, we
generate a random unit vector xi ∈ R

k as a coordinate vector
referring to a set of orthonormal vectors in Lemma 2.6. Let V
denotes the matrix defined in Lemma 2.6, then it is obvious
that its columns form the right singular vectors for matrix A.
That is, β̂i = V̂ xi is an approximate vector of a random vector
β = V xi. Next, we show that total variant distance between
Oi andDAV xi is bounded by constant ε. For convenience, we
assume that each step in Algorithm 1 succeeds and the final
success probability will be given in next subsection.
Lemma 3.3. For all i ∈ [s],

∥∥∥Oi,DAV xi

∥∥∥
TV ≤ ε holds simulta-

neously with probability 1 − δ.
In the rest, without ambiguity, we use notations O, x instead

of Oi, xi. By applying triangle inequality, we divide the left
part of inequality into four parts (the intuition idea please ref
Figure 2):∥∥∥DAV x,O

∥∥∥
TV ≤

∥∥∥DAV x,DAV̂ x

∥∥∥
TV︸ ︷︷ ︸

1

+
∥∥∥DAV̂ x,DÛÛT AV̂ x

∥∥∥
TV︸ ︷︷ ︸

2
+
∥∥∥DÛÛT AV̂ x,DÛ M̃x

∥∥∥
TV︸ ︷︷ ︸

3

+
∥∥∥DÛ M̃x,O

∥∥∥
TV︸ ︷︷ ︸

4

.

Thus, we only need to prove that 1 , 2 , 3 , 4 < ε
4 ,

respectively. In addition, given u, v ∈ Rn, if ‖u − v‖ ≤ ε
2‖u‖,

then‖Du,Dv‖TV ≤ ε. For 1 , 2 and 3 , we only show their
`2-norm version, i.e.,
• ‖AV x − AV̂ x‖ ≤ ε

8‖AV x‖;

• ‖AV̂ x − ÛÛT AV̂ x‖ ≤ ε
8‖AV̂ x‖;

• ‖ÛÛT AV̂ x − Û M̃x‖ ≤ ε
8‖ÛÛT AV̂ x‖.

For convenience, in the rest part, let αU = εUk/16 and
αV = εVk/16 represent approximate ratio for orthonormality
of Û and V̂ based on Lemma 2.7, respectively.

Before we start our proof, we list two tools which are used
to prove 3 and 4 , respectively.

Based on rejection sampling, Lemma 3.4 shows that sam-
pling from linear combination of α-approximately orthogonal
vectors can be quickly realized without knowledge of norms
of these vectors (see Algorithm 2).

Algorithm 2 Rejection Sampling forDÛy

Input: A set of approximately orthonormal vectors Û(j) ∈ Rm

(for j = 1, . . . , k) in vector sample model and a vector y ∈ Rk.
Output: A sample s subjecting toDÛy.

1: Sample j according to probability proportional to ‖Û(j)y j‖.
2: Sample s fromDÛ(j) .
3: Compute rs =

(Ûy)2
s

k
∑

i(yiÛi j)
.

4: Accept s with probability rs, otherwise, restart.

Lemma 3.4 ([Tang, 2018]). Given a set of α-approximately
orthonormal vectors V̂ ∈ Rn×k in vector sample model, and
an input vector w ∈ Rk, there exists an algorithm outputting a
sample from a distribution α

1−α -close toDV̂w with probability
1 − γ using O(k2 log 1

γ
(1 + O(α))) queries and samples.

Lemma 3.5. Given A ∈ Rm×n in matrix sample model and
L ∈ Rk1×m and R ∈ Rn×k2 in query model, let M = LAR, then
we can output a matrix M̃ ∈ Rk1×k2 , with probability 1 − η,
such that ∥∥∥M − M̃

∥∥∥
F ≤ ζ‖A‖F‖L‖F‖R‖F

by O
(
k1k2

1
ζ2 log 1

η

)
queries and samples.

Proof. Let Mi j = L(i)AR(j) with i ∈ [k1] and j ∈ [k2]. In [Tang,
2018], there exists an algorithm that outputs an estimation of
Mi j (M̃i j) to precision ζ‖A‖F

∥∥∥L(i)
∥∥∥∥∥∥R(j)

∥∥∥ with probability 1−η′

in time O
(

1
ζ2 log 1

η′

)
. Let η′ = 1− (1−η)1/(k1k2). We can output

M̃ with probability 1 − η utilizing O
(
k1k2

1
ζ2 log 1

1−(1−η)1/k2

)
=

O
(
k1k2

1
ζ2 log 1

η

)
queries and samples respectively where M̃

satisfies ∥∥∥M − M̃
∥∥∥2

F =
∑

i∈[k1], j∈[k2]

|Mi j − M̃i j|
2

≤
∑

i∈[k1], j∈[k2]

ζ2‖A‖2F
∥∥∥L(i)

∥∥∥2∥∥∥R(j)
∥∥∥2

= ζ2‖A‖2F
∑
i∈[k1]

∥∥∥L(i)
∥∥∥2 ∑

j∈[k2]

∥∥∥R(j)
∥∥∥2

= ζ2‖A‖2F‖L‖
2
F‖R‖

2
F .

�
proof of Lemma 3.3. Upper bound for 1 . By Lemma 3.2,
V x is a unit random vector sampled from the row space of A
with probability 1 − δV := (1 − δ)

1
4 if εV <

1
kκ2 . From Eq. (1)

in Lemma 2.6, with probability 1 − δV∥∥∥AV x − AV̂ x
∥∥∥ ≤‖A‖F∥∥∥V − V̂

∥∥∥
F‖x‖ ≤ (αV/

√
2 + c1α

2
V)‖A‖F .

Combing with‖A‖F ≤
√

kκσmin(A) ≤
√

kκ‖AV x‖, we gain∥∥∥AV x − AV̂ x
∥∥∥ ≤ (αV/

√
2 + c1α

2
V)
√

kκ‖AV x‖ . (3)

Eq. (3) satisfies
∥∥∥AV x − AV̂ x

∥∥∥ ≤ ε
8‖AV x‖ with

εV = O
(
min

{
ε
√

kκ
, 1

kκ2

})
.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4515

Upper bound for 2 . According to Lemma 3.2, the columns
of Û span a space equal to the column space of A if εU ≤

1
kκ2

with probability 1−δU := (1−δ)
1
4 . Let ΠÛ denote the orthonor-

mal projector to image of Û (column space of A). Similarly,
Π⊥

Û
denotes the orthonormal projector to the orthogonal space

of column space of Û.∥∥∥AV̂ x − ÛÛT AV̂ x
∥∥∥

=
∥∥∥∥(ΠÛ + Π⊥

Û
)AV̂ x − ÛÛT AV̂ x

∥∥∥∥ =
∥∥∥ΠÛ AV̂ x − ÛÛT AV̂ x

∥∥∥
≤
∥∥∥ΠÛ − ÛÛT

∥∥∥
F

∥∥∥AV̂ x
∥∥∥ ≤ c2αU

∥∥∥AV̂ x
∥∥∥ , (4)

based on Eq. (2) in Lemma 2.6. If εU = O
(
min

{
ε
k ,

1
kκ2

})
,∥∥∥AV̂ x − ÛÛT AV̂ x

∥∥∥ ≤ ε
8

∥∥∥AV̂ x
∥∥∥.

Upper bound for 3 . When εU and εV are discussed above,
with probability 1 − η := (1 − δ)

1
4 , we have∥∥∥ÛÛT AV̂ x

∥∥∥ ≥ (
1 −

ε

8

)∥∥∥AV̂ x
∥∥∥ ≥ (

1 −
ε

8

)2
‖AV x‖ . (5)

According to Lemma 3.5, we obtain∥∥∥ÛT AV̂ − M̃
∥∥∥

F ≤ ζ
∥∥∥Û

∥∥∥
F

∥∥∥V̂
∥∥∥

F‖A‖F

≤ ζk1.5κ

√
(1 +

αU

k
)(1 +

αV

k
)‖AV x‖ . (6)

Combining Eq. (5) and Eq. (6), the following holds∥∥∥ÛÛT AV̂ x − Û M̃x
∥∥∥ ≤∥∥∥Û

∥∥∥
F

∥∥∥ÛT AV̂ − M̃
∥∥∥

F

≤ ζk2κ

√
(1 +

αU

k
)2(1 +

αV

k
)‖AV x‖

≤ ζk2κ

√
(1 +

αU

k
)2(1 +

αV

k
)/(1 −

ε

8
)2
∥∥∥ÛÛT AV̂ x

∥∥∥ . (7)

If ζ = O
(
ε

k2κ

)
, then

∥∥∥ÛÛT AV̂ x − Û M̃x
∥∥∥ < ε

8

∥∥∥ÛÛT AV̂ x
∥∥∥

holds.

Upper bound for 4 . Since εU = O
(
min

{
ε
k ,

1
kκ2

})
as discussed

before, directly taking usage of Lemma 3.4, with probability
1 − γ := (1 − δ)

1
4s we have∥∥∥∥DÛỹ,O

∥∥∥∥
TV
≤

αU

1 − αU
<
ε

4
. (8)

Hence, Algorithm 1 generates a distribution Oi which satis-
fies

∥∥∥Oi,DAV xi

∥∥∥
TV ≤ ε for s random unit vectors generated

simultaneously with probability 1 − δ. �

The following theorem tells us how to find the largest com-
ponent of AV xi from distribution Oi.
Theorem 3.6 (Restatement of Theorem 1 in [Du et al., 2018]).
LetD be a distribution over [m] andD′ is another distribution
simulatingD with total variant error ε. Let x1, . . . , xN be ex-
amples independently sampled fromD′ and Ni be the number
of examples taking value of i. Let Dmax = max{D1, . . . ,Dm}

andDsecmax = max{D1, . . . ,Dm}\Dmax. IfDmax − Dsecmax >

2
√

2 log(4N/δ)/N + ε, then, for any δ > 0, with a probability
at least 1 − δ, we have

arg max
i
{Ni|1 ≤ i ≤ N} = arg max

i
{pi|1 ≤ i ≤ m}.

As mentioned in [Du et al., 2018], the assumption about the
gap betweenDmax andDsecmax is easy to satisfy in practice. By

choosing N = log2 m and ε < 2
√

2 log(4 log2 m/δ)/ log2 m,

we have Dmax − Dsecmax > 4
√

2 log(4 log2 m/δ)/ log2 m,
which will converge to zero as m goes to infinity.

To estimate the number of random projections we need, we
denote p∗i the probability that after random projection β, a data
point A(i) is identified as an anchor in subspace, i.e.,

p∗i = Pr
β

(i = argmaxi{(Aβ)i}).

In [Zhou et al., 2014], if p∗i > k/α for a constant α, with
s = 3

α
k log k random projections, all anchors can be found

with probability at least 1 − k exp(−αs/3k).

Complexity and Success Probability
Note that Algorithm 1 involves operations that query and
sample from matrix A, Û and V̂ , but those operations can be
implemented in O(log(mn)poly(k, κ, 1/ε)) time. Thus, in the
following analysis, we just ignore the time complexity of those
operations but multiple it to the final time complexity.

The running time and failure probability mainly concen-
trates on lines 4, 6, 7 and 11 in Algorithm 1. The run-
ning time of lines 4 and 6 are O

(
poly(k, 1/εV , log 1/δV)

)
and

O
(
poly(k, 1

εU
, log 1

δU
)
)
, respectively, according to Theorem 2.4.

And line 7 takes O
(
k2 1

ζ2 log 1
η

)
to estimate matrix M̃ accord-

ing to Lemma 3.5. And line 11 with s iterations totally spends

O
(
sk2 log 1

γ
poly log m

)
. In the perspective of failure probabil-

ity, lines 4, 6 and 7 take the same failure probabilities (1− η)
1
4 .

And line 11 takes (1 − η)
1
4s for each iteration.

Above all, the time complexity of FAS is

O
(
poly

(
k, κ, log 1

δ
, log mn

))
. The success probability is

1 − δ.

4 Conclusion
This paper presents a classical randomized algorithm FAS
which dramatically reduces the running time to find anchors of
low-rank matrix. Especially, we achieve exponential speedup
when the rank is logarithmic of the input scale. Although
our algorithm running in polynomial of logarithm of matrix
dimension, it still has a bad dependence on rank k. In the
future, we plan to improve its dependence on rank as well as
analyze its noise tolerance.

Acknowledgements
Part of this work is done during Y. Li’s visit at the Institute
of Quantum Computing, Baidu Inc.. This work is supported
in part by the National Natural Science Foundation of China
Grants No. 61433014, 61832003, 61761136014, 61872334,
61502449, the Strategic Priority Research Program of Chinese
Academy of Sciences Grant No. XDB28000000, and Anhui
Initiative in Quantum Information Technologies, Grant No.
AHY150100. Y. Li is supported by ERC Consolidator Grant
615307-QPROGRESS. Y. Li thanks Runyao Duan for hosting
his visit at the Institute of Quantum Computing, Baidu Inc..

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4516

References
[Arora et al., 2012a] Sanjeev Arora, Rong Ge, Ravindran

Kannan, and Ankur Moitra. Computing a nonnegative
matrix factorization–provably. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing,
pages 145–162. ACM, 2012.

[Arora et al., 2012b] Sanjeev Arora, Rong Ge, and Ankur
Moitra. Learning topic models–going beyond svd. In Foun-
dations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 1–10. IEEE, 2012.

[Chia et al., 2018] Nai-Hui Chia, Han-Hsuan Lin, and Chun-
hao Wang. Quantum-inspired sublinear classical algorithms
for solving low-rank linear systems. arXiv preprint arX-
iv:1811.04852, 2018.

[Ding et al., 2010] Chris HQ Ding, Tao Li, and Michael I
Jordan. Convex and semi-nonnegative matrix factoriza-
tions. IEEE transactions on pattern analysis and machine
intelligence, 32(1):45–55, 2010.

[Donoho and Stodden, 2004] David Donoho and Victoria S-
todden. When does non-negative matrix factorization give
a correct decomposition into parts? In Advances in neural
information processing systems, pages 1141–1148, 2004.

[Du et al., 2018] Yuxuan Du, Tongliang Liu, Yinan Li, Run-
yao Duan, and Dacheng Tao. Quantum divide-and-conquer
anchoring for separable non-negative matrix factorization.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 2093–2099. AAAI Press,
2018.

[Elhamifar and Vidal, 2009] Ehsan Elhamifar and René Vi-
dal. Sparse subspace clustering. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2790–
2797. IEEE, 2009.

[Elhamifar et al., 2012] Ehsan Elhamifar, Guillermo Sapiro,
and Rene Vidal. See all by looking at a few: Sparse mod-
eling for finding representative objects. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1600–1607. IEEE, 2012.

[Esser et al., 2012] Ernie Esser, Michael Moller, Stanley Os-
her, Guillermo Sapiro, and Jack Xin. A convex model
for nonnegative matrix factorization and dimensionality
reduction on physical space. IEEE Transactions on Image
Processing, 21(7):3239–3252, 2012.

[Frieze et al., 2004] Alan Frieze, Ravi Kannan, and Santosh
Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM (JACM), 51(6):1025–
1041, 2004.

[Gillis and Vavasis, 2014] Nicolas Gillis and Stephen A Vava-
sis. Fast and robust recursive algorithmsfor separable non-
negative matrix factorization. IEEE transactions on pattern
analysis and machine intelligence, 36(4):698–714, 2014.

[Gilyén et al., 2018] András Gilyén, Seth Lloyd, and Ewin
Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension. arXiv
preprint arXiv:1811.04909, 2018.

[Guan et al., 2012] Naiyang Guan, Dacheng Tao, Zhigang
Luo, and John Shawe-Taylor. Mahnmf: Manhattan non-
negative matrix factorization. stat, 1050:14, 2012.

[Hofmann, 2017] Thomas Hofmann. Probabilistic latent se-
mantic indexing. In ACM SIGIR Forum, volume 51, pages
211–218. ACM, 2017.

[Hsieh and Dhillon, 2011] Cho-Jui Hsieh and Inderjit S D-
hillon. Fast coordinate descent methods with variable selec-
tion for non-negative matrix factorization. In Proceedings
of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1064–1072.
ACM, 2011.

[Kim and Park, 2008] Jingu Kim and Haesun Park. Toward
faster nonnegative matrix factorization: A new algorithm
and comparisons. In Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on, pages 353–362. IEEE,
2008.

[Kumar et al., 2013] Abhishek Kumar, Vikas Sindhwani, and
Prabhanjan Kambadur. Fast conical hull algorithms for
near-separable non-negative matrix factorization. In Inter-
national Conference on Machine Learning, pages 231–239,
2013.

[Lee and Seung, 1999] Daniel D Lee and H Sebastian Seung.
Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401(6755):788, 1999.

[Lee and Seung, 2001] Daniel D Lee and H Sebastian Seung.
Algorithms for non-negative matrix factorization. In Ad-
vances in neural information processing systems, pages
556–562, 2001.

[Lin, 2007] Chih-Jen Lin. Projected gradient methods for
nonnegative matrix factorization. Neural computation,
19(10):2756–2779, 2007.

[Mahoney and Drineas, 2009] Michael W Mahoney and Pet-
ros Drineas. Cur matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences,
pages pnas–0803205106, 2009.

[Recht et al., 2012] Ben Recht, Christopher Re, Joel Tropp,
and Victor Bittorf. Factoring nonnegative matrices with
linear programs. In Advances in Neural Information Pro-
cessing Systems, pages 1214–1222, 2012.

[Tang, 2018] Ewin Tang. A quantum-inspired classical algo-
rithm for recommendation systems. arXiv preprint arX-
iv:1807.04271, 2018.

[Vavasis, 2009] Stephen A Vavasis. On the complexity of
nonnegative matrix factorization. SIAM Journal on Opti-
mization, 20(3):1364–1377, 2009.

[Zhou et al., 2013] Tianyi Zhou, Wei Bian, and Dacheng Tao.
Divide-and-conquer anchoring for near-separable nonnega-
tive matrix factorization and completion in high dimensions.
In 2013 IEEE 13th International Conference on Data Min-
ing, pages 917–926. IEEE, 2013.

[Zhou et al., 2014] Tianyi Zhou, Jeff A Bilmes, and Carlos
Guestrin. Divide-and-conquer learning by anchoring a
conical hull. In Advances in Neural Information Processing
Systems, pages 1242–1250, 2014.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4517

