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Abstract

Bioimage Informatics is a growing area that aims to
extract biological knowledge from microscope im-
ages of biomedical samples automatically. Its mis-
sion is vastly challenging, however, due to the com-
plexity of diverse imaging modalities and big scales
of multi-dimensional images. One major challenge
is automatic image segmentation, an essential step
towards high-level modeling and analysis. While
progresses in deep learning have brought the goal
of automation much closer to reality, creating train-
ing data for producing powerful neural networks
is often laborious. To provide a shortcut for this
costly step, we propose a novel two-stage genera-
tive model for simulating voxel level training data
based on a specially designed objective function
of preserving foreground labels. Using segmenting
neurons from LM (Light Microscopy) image stacks
as a testing example, we showed that segmentation
networks trained by our synthetic data were able to
produce satisfactory results. Unlike other simula-
tion methods available in the field, our method can
be easily extended to many other applications be-
cause it does not involve sophisticated cell models
and imaging mechanisms.

1 Introduction
Since the digital age of imaging biological samples under
microscopes, extracting useful information from microscope
images using computers has become a major effort of compu-
tational biologists, leading to the growth of a new field called
Bioimage Informatics [Peng, 2008]. The ultimate goal of the
field is to convert images into biological knowledge automati-
cally, which is expected to revolutionize how biologists make
discoveries from their experiments [Meijering et al., 2016].
One primary example is the reconstruction of wiring dia-
grams of the brain using automatic segmentation and object
recognition [Takemura et al., 2015; Takemura et al., 2017].
Such computation-driven approaches, however, has not been
extensively used in imaging pipelines of most biological re-
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Figure 1: Illustration of image simulation approaches. Model-based
methods can simulate images with segmentation labels, but it often
needs expert knowledge design an accurate model, which cannot be
easily generalized. Learning-based methods can simulate realistic
images with less effort, but the existing methods cannot provide la-
bels at the pixel resolution. Our proposed method uses a simple
model to simulate draft images with segmentation labels and em-
ploys a GAN to refine the draft images while preserving the seg-
mentation labels.

searches, due to the difficulty of developing effective image
analysis for all varieties of bioimage data.

One major obstacle is segmentation, which labels 2D pix-
els or 3D voxels with numbers corresponding to biological
objects [Meijering, 2012]. While a myriad of automatic seg-
mentation methods have been developed and applied to var-
ious biological problems, none of them is flexible enough to
handle a large variety of imaging systems, cell types, or un-
expected imaging artifacts. In the current era of deep learn-
ing, it appears that the most promising way to tackle the
challenge is by designing and training powerful segmenta-
tion networks [Long et al., 2014; Ronneberger et al., 2015;
Yuan et al., 2017]. This solution, however, relies on creating
sufficient ground truth data, which itself is labor intensive,
time consuming and error prone [Wiesmann et al., 2017], let
alone the difficulty of finding expert annotators in some re-
search domains. The motivation of reducing the annotation
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hassle, and thus help bioimage informatics harness the power
of deep neural networks, has led to the goal of our work: use
computer simulation to replace the tedious manual annotation
work. Specifically speaking, we want to find a method to sim-
ulate images of predefined labels and use them to train neural
networks that can be applied to real images later.

As shown in Fig. 1, currently there are two major cate-
gories of microscope image simulation approaches, including
those based on models [Wiesmann et al., 2017; Weigert et
al., 2018] and those based on learning [Johnson et al., 2017;
Yuan et al., 2018]. The first category focuses on modeling
the whole imaging process. To make the simulated images
more realistic, numerous details, including object morpholo-
gies, intensities (or colors), sample properties, imaging op-
tics, noises and so on, must be carefully considered, even
though some parameters can be learned from real images
[Zhao and Murphy, 2007; Peng and Murphy, 2011]. Simu-
lating images in this way is a challenging task and has to be
tuned by experts whenever there is a change of imaging con-
dition. The second category takes advantages of the emerg-
ing deep learning technologies to generate visually realistic
images. Generated from inputs with random configuration,
these simulated images do not provide their pixel-level la-
bels, limiting their application in segmentation. In order to
simulate images that can be used to train segmentation net-
works, low level labels must be preserved. Unfortunately, to
the best of our knowledge, there exists no generative network
with such a property. Here, we propose a novel image sim-
ulation method based on two-stage generative models, which
combines the advantages of model-based and learning-based
methods, with a special objective function that preserves low
level labels. Minimizing this objective function should lead
to visually realistic images that are reliable for training while
paired with predefined labels.

To show the effectiveness of our method, we test it on
the problem of tracing neurons from light microscope (LM)
image stacks, an important step in mapping brain circuits
[Peng et al., 2010; Feng et al., 2015]. It is an open prob-
lem that has drawn much attention [Peng et al., 2015], lead-
ing to the development of numerous algorithms with dif-
ferent strengths and weaknesses. Combining these meth-
ods can perform better than a single one. There are ef-
forts of using machine learning to increase the generality
of a single algorithm [Gu and Cheng, 2015], and recently,
deep learning has been introduced into this area too [Zheng
and Hong, 2016] [Liu et al., 2017]. It has been shown
that segmenting images using deep neural networks as a
pre-processing step could significantly improve the perfor-
mance of various neuron tracing algorithms [Li et al., 2017;
Liu et al., 2018]. To unleash the power of machine learning,
more high-quality ground-truth data are needed. It is usually
a tedious task to trace neurons from LM images, and even
with manually traced neurons, some heuristics has to be used
to define the foreground for training [Liu et al., 2017].

To overcome the challenge, we use our method to gener-
ate sufficient training data automatically. Specifically, we de-
sign a simple model, which can be done easily with a little
prior knowledge, to simulate preliminary draft 3D LM im-
age stacks (with segmentation labels) containing neurons of

basic tree morphologies, with only intensity histograms and
blurring effects considered to simulate an arbitrary imaging
process. Using a special morphology-preserving loss func-
tion, we build a GAN [Goodfellow et al., 2014] that is capa-
ble of refining the draft stacks towards realistic intensity pat-
terns at the voxel level while preserving their segmentation
labels. The synthetic data is then used to train a well-verified
deep segmentation network [Ronneberger et al., 2015]. Ex-
perimental results show that the trained segmentation network
functions satisfactorily on segmenting neurons from real LM
neuron stacks, revealing a great potential of our proposed
work.

We summarize our contributions as follows:

• Proposed a novel and general two-stage generative
model, which combines the advantages of model-based
and learning-based methods, to overcome the training
data bottleneck in segmenting biological microscope im-
ages by neural networks.

• Built a morphology-preserving GAN with the ability of
modifying images at the voxel level to refine simulated
images.

• Showed the effectiveness of our method by applying it to
the significant and challenging problem of neuron trac-
ing from LM image stacks.

2 Method
2.1 Two-Stage Simulation Model
From coarse to fine, our model of simulating training data
consists of two stages, which is illustrated in Fig. 2. At the
first stage, we design a simple model Mγ by using our prior
knowledge of LM neuron stacks, including neuron morpholo-
gies, intensity histograms, noises and blur effects, to generate
draft stacks. In this model, neuron morphologies are simu-
lated first to provide segmentation labels. At the second stage,
we employ a GAN consisting of a refiner network Rθ and
a discriminator network Dφ to adjust draft stacks. Specifi-
cally, we designed a morphology-preserving loss function to
preserve segmentation labels during refinement (Equation 4).
The synergy between the two stages results in a big advan-
tage of our method: we do not have to model the imaging
process at a meticulous level. The first stage only needs to
provide a good start point for the second one, which is capa-
ble of tuning coarse simulations into realistic images. While
paired with their segmentation labels from the first stage, the
tuned images are expected to train a segmentation network to
segment real images accurately.

From the statistics point of view, our generative model
G = (Mγ , Rθ) is a sampler of a distribution pG, which is an
estimation of the real data distribution pdata. If pG ≈ pdata,
we can simulate an arbitrary number of realistic neuron stacks
with segmentation labels by sampling from pG. The original
GAN obtains the generative model G by optimizing the fol-
lowing minimax objective function:

min
G

max
D
V(G,D) = min

G
max
D

Ex∼pdata log[D(x)]

+ Ex∼pG log[1−D(x)], (1)
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Figure 2: Architecture of our proposed two-stage LM neuron stack simulation method. The first stage simulates draft stacks and segmentation
labels with a simple model; and the second stage refines draft stacks by learning features from real stacks while preserving segmentation labels.

where D is the discriminator. It is essentially minimizing the
JS divergence of pG and pdata:

JS(pdata||pG) =
1

2
KL(pdata||

pdata + pG
2

)

+
1

2
KL(pG||

pdata + pG
2

), (2)

where

KL(P (x)||Q(x)) =

∫
x

P (x) log(
P (x)

Q(x)
). (3)

If we start with some random pG, optimizing Equation 1
probably fails because Equation 2 is almost a constant (log 2)
when pG and pdata has little overlap. Unfortunately, this is
often the case given the high dimensionality of pdata that
reflects the complexity of neuron stacks. By incorporating
some prior knowledge into Mγ , we start with a distribution
much closer to pdata, or having much more significant over-
lap with pdata, than a random one does.

In order to fine tune the draft stacks and preserve their
segmentation labels simultaneously, we define the following
morphology-preserving objective function:

min
R

max
D
V(G(M,R), D) = min

R
max
D

Ex∼pdata log[D(x)]

+ Ex∼pG log[1−D(x)]

+ λEx∼pGLm(x, R(x)), (4)

where Lm is the morphology loss, which we will discuss in
detail in Subsection 2.3.

2.2 Incorporate Prior Knowledge into Mγ

Generally, the simple model Mγ is where we incorporate
prior knowledge. By sketching the objects to be modeled,
we expect Mγ to provide a basic but reasonable estimation
p0G of pdata. Moreover, Mγ gives us the ability of controlling

the simulation process so that we have the chance to produce
segmentation labels.

In the case of simulating LM neuron stacks, we model
the neuron morphology and the imaging effects, including
intensity histograms, noises and blur effects. To imitate
neuron morphology, we use a series of nodes with differ-
ent radii to simulate typical neuronal structures. Mathemat-
ically, the neuron morphology is simulated by a tree struc-
ture: {ni = (xi, yi, zi, ri,nj)|i = 1, ..., N, j = 0, ..., N, i 6=
j, xi, yi, zi, ri ∈ R}, where node ni is a sphere with center
(xi, yi, zi) and radius ri. nj is the parent node of ni, and n0

is defined as an empty node to represent the root.
In general, the more precisely we model the imaging pro-

cess of the target neuron image stacks, the closer p0G and pdata
will be, which means less work by the refiner. On the other
hand, it requires more expert knowledge and intellectual work
to design a more precise model, countering our goal of reduc-
ing human work. Therefore, our philosophy is to makeMγ as
simple as possible, with the constraint that the draft stacks can
be tuned by the refiner towards realistic appearance matching
their underlying labels.

More formally speaking, if pG is able to converge to pdata,
for any positive number ε, there exists positive numbers δ and
N , so that when the JS divergence of p0G and pdata satisfies
JS(p0G, pdata) < δ, we will have JS(pNG , pdata) < ε. That
means we can obtain a satisfactory pG within reasonable iter-
ation steps as long as p0G falls in some neighborhood of pdata.
In our experiments, we find that the simulated intensity dis-
tributions, noises and blur effects are not necessary to be as
precise as real ones to get such a good p0G. Approximations as
simple as Gaussian distributions and Gaussian kernels work
well. Specifically, we

• use Gaussian distributions to approximate neuron inten-
sity distribution and noises;

• convolve the neuron stack with a Gaussian kernel to sim-
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Figure 3: Structure of the refiner.

ulate blur effects.

2.3 Iterative Learning with MP Loss
In order to refine the draft stacks produced by Mγ to make
them more realistically looking while preserving their seg-
mentation labels, we employ the GAN, which consists of Rθ
and Dφ, to learn features iteratively from real stacks.

While training Rθ, we keep the parameters of Dφ fixed,
and minimize the following MP (Morphology Preserving)
loss:

LRθ =
1

|X|
∑
x∈X

log[1−D(x)] + λ
1

|X|
∑
x∈X
Lm(x, Rθ(x)),

(5)

where X is the set of draft stacks, λ defines a trade-off be-
tween preserving morphologies and being realistic, and

Lm(x, Rθ(x)) =
|xF ∪Rθ(x)F | − |xF ∩Rθ(x)F |

|xF ∪Rθ(x)F |
, (6)

where xF and Rθ(x)F represent foreground voxels of x and
Rθ(x) respectively. Lm(x, Rθ(x)) measures the difference
between foreground (neuron) voxels of the draft stack xF and
the refined stack Rθ(x).

We compute |xF ∪Rθ(x)F | and |xF ∩Rθ(x)F | using the
following approximations:

|xF ∪Rθ(x)F | ≈
1

2

∑
i

[g(xi) + g(Rθ(x)i)

+ |g(xi)− g(Rθ(x)i)|], (7)

|xF ∩Rθ(x)F | ≈
1

2

∑
i

[g(xi) + g(Rθ(x)i)

− |g(xi)− g(Rθ(x)i)|], (8)

where
g(x) =

1

1 + e−K(x−µ) , (9)

Layers Configurations
input 64× 64× 16

convolution kernel size 5, stride 2, channels 64
max pooling kernel size 2, stride 2
resnet block ×3
convolution kernel size 3, stride 1, channels 128
resnet block ×3
convolution kernel size 3, stride 1, channels 256
resnet block ×3

average pooling kernel size 2, stride 2
flatten

fully connected 1024 units
fully connected 2 units

Table 1: Configuration of the discriminator.

where K is a big number and

µ = argmax
θ

∫ 255

θ

pf (x)dx >= 0.95, (10)

where pf is the foreground intensity distribution of the draft
stacks. As an offset term of g(x), µ defines a threshold be-
tween foreground and background voxels by pushing g(x) to
1 for x > µ and to 0 for x < µ. With a large K value,
1
2 [g(xi) + g(Rθ(x)i) − |g(xi) − g(Rθ(x)i)|] ≈ 1 if and
only if xi and Rθ(x)i are both foreground voxels; otherwise
it is close to 0. Similarly, 1

2 (g(xi) + g(Rθ(x)i) + |g(xi) −
g(Rθ(x)i)|) is close to 1 iff either xi or Rθ(x)i is a fore-
ground voxel, and 0 otherwise. Converting Lm(x, Rθ(x)) to
a differentiable form using g(x) enables back-propagation in
neural network training.

While training Dφ, we keep the parameters of Rθ fixed,
and minimize:

LDφ = − 1

|X|
∑
x∈X

log(1−Dφ(R(x)))−
1

|Y |
∑
x∈Y

log(Dφ(x)),

(11)
where Y is the set of real neuron stacks.

In each training iteration, we train one step for Dφ and
three steps for Rθ because we find that Dφ is much faster to
converge than Rθ.

As illustrated in Fig. 3, we implement Rθ as a fully con-
volutional network, which consists of n resnet blocks [He et
al., 2016] and a 1× 1× 1 convolution layer. The absence of
striding and pooling enabled voxel-level modification of the
draft stacks.

3 Experiments
3.1 Data
We used neuron stacks from BigNeuron 1 to evaluate our
method. Launched as a community effort to define and
advance state-of-the-art of LM neuron reconstruction, the
BigNeuron project has collected a large set of neuron im-
age stacks of different species and nervous system regions
acquired by various light microscopy protocols. From this

1https://alleninstitute.org/bigneuron/data
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(a) (b)

(c) (d) (e)

Figure 4: (a) Effects of the refiner; (b) Segmentation results. (c)∼(e) Intensity distributions of draft stacks,refined stacks and real stacks.

data set, we selected three groups of stacks with different in-
tensity characteristics to create our test data set:
• S-NSF: stacks with noises surrounding the foreground;
• S-NSB: stacks with noises spreading all over the back-

ground;
• S-LN: stacks with little noise.
Due to the big size of each single stack, which can be as big

as 2000 × 2000 × 100, it is not practical to input the whole
stack into the discriminator and segmentation networks. In-
stead, we use small patches with the size of 64 × 64 × 16.
The test patches (about 5K) are selected from one stack and
the training patches (about 50K) are selected from others. To
exclude patches containing few foreground voxels, we use a
64 × 64 × 16 sliding window with strides (16, 16, 4) to tra-
verse each stack. Only if the average intensity of voxels in
the window is greater than a predefined threshold, it will be
selected. The segmentation ground truth was generated by
tracing neurons semi-automatically in neuTube [Feng et al.,
2015], open-source software widely used for digital neuron
reconstruction.

3.2 Implementation Details
Discriminator. The configuration of the discriminator is
shown in Table 1.

Parameters. The number of resnet blocks in the refiner is
set to 12. The coefficient λ in Equation 5 is set to 0.5, which
gives a balance of preserving morphology and learning fea-
tures from real stacks in our experiments.

3.3 Results
Qualitative Results
Fig. 4(a) shows the refining effects of our refiner. In the
global view, it keeps the morphology, which means the shape
of the simulated neuron is preserved after refinement; and in
the local view, it learns realistic voxel patterns, such as incor-
porating certain randomness into the typical intensity distri-
bution, which generally has brighter values for voxels closer
to the central skeleton of the neuron. As shown Fig. 4(c), the
distributions of foreground and background voxels in a draft
stack are barely mixed. After being tuned by the refiner, the
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Figure 5: Roc curves made by applying segmentation thresholds.
The AUC of M-FNBR is the biggest, which means M-FNBR has
the best generalization ability, indicating the effectiveness of our
synthetic data.

two distributions have a much more significant overlap (Fig.
4(d)), resembling real distributions quite well (Fig. 4(e)).

Quantitative Results
For each group of stacks, we trained five U-Net models [Ron-
neberger et al., 2015] to segment real LM stacks. All pa-
rameters and training environments of these models are the
same except for the training data. The model names and
their training data details are shown in Table 2. The seg-
mentation results in Table 3 and Fig. 5 show that the model
trained by our synthetic data (M-FNBR) has the best overall
performance in the experiments. When compared to thresh-
olding, M-FNBR separates foreground and background more
precisely and consistently (Fig. 4(b)).

Table 3 also shows that M-FN performs poorly on real
LM stacks segmentation task, which suggests that simulat-
ing intensity histograms and noises only is almost useless to
generate data for training neural networks. M-FNR performs
much better than M-FN, but it is still not comparable to M-
FNBR, indicating that modeling blur effects, even in an over-
simplified way, is helpful. For stacks in the S-LN group, M-
FBR gives good results, but it performs poorly on S-NSF and
S-NSB, which means that adding background noises is neces-
sary when simulating stacks containing notable noises. Last
but most interestingly, we can tell how useful the refiner is by
comparing M-FNB and M-FNBR. As shown in Table 3 and
Fig. 4(b), the precision values of M-FNB are much lower than
those from M-FNBR, indicating a dramatic increase of false
positives caused by the absence of the refiner. It implies that
the refiner is able to produce data that can teach neural net-
works to distinguish complicated foreground and background
intensity patterns.

4 Conclusion
Extracting useful knowledge from LM stacks often relies on
segmenting biological objects from noisy background. Au-
tomatic segmentation has been widely considered as a ma-
jor bottleneck of automating the discovery process, despite

Model Foreground Noises Blur Refined
M-FNBR

√ √ √ √

M-FN
√ √

M-FNR
√ √ √

M-FBR
√ √ √

M-FNB
√ √ √

Table 2: Model names and training data details

Stack Model Precision Recall F1

S-NSF

Thresholding 0.283 0.749 0.411
M-FNBR 0.704 0.859 0.774

M-FN 0.906 0.001 0.002
M-FNR 0.653 0.821 0.727
M-FBR 0.214 0.836 0.340
M-FNB 0.606 0.901 0.725

S-NSB

Thresholding 0.582 0.727 0.647
M-FNBR 0.586 0.865 0.698

M-FN 0.864 0.103 0.184
M-FNR 0.537 0.694 0.605
M-FBR 0.368 0.736 0.490
M-FNB 0.308 0.705 0.429

S-LN

Thresholding 0.770 0.625 0.689
M-FNBR 0.796 0.601 0.685

M-FN 0.883 0.007 0.013
M-FNR 0.633 0.471 0.540
M-FBR 0.538 0.912 0.676
M-FNB 0.272 0.632 0.381

Table 3: Segmentation results.

decades of efforts from computational biologists. While a
new hope has sprung from the advancement of deep seg-
mentation networks, the progress of applying powerful net-
works are slowed down by a lack of sufficient training data.
To tackle this challenge, we proposed a two-stage training
data simulation method. At the first stage, we incorporate
prior knowledge into a simple model to generate draft neuron
stacks with voxel-level labels. At the second stage, we em-
ploy a GAN to adjust draft stacks. In the refiner design, we
proposed a morphology-preserving loss and its approxima-
tion for practical computing. By minimizing the morphology-
preserving loss, we can make the simulated stacks look like
real stacks without messing up the underlying labels, which
is crucial for producing high-quality training data. Experi-
mental results from the application on neuron tracing show
that U-Net trained by our synthetic data functions satisfacto-
rily on real tasks, suggesting a potentially significant impact
of our proposed work on bioimage informatics.
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