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Abstract
In this paper, we study the sparse covariance matrix
estimation problem in the local differential privacy
model, and give a non-trivial lower bound on the
non-interactive private minimax risk in the metric
of squared spectral norm. We show that the lower
bound is actually tight, as it matches a previous up-
per bound. Our main technique for achieving this
lower bound is a general framework, called Gen-
eral Private Assouad Lemma, which is a consider-
able generalization of the previous private Assouad
lemma and can be used as a general method for
bounding the privateminimax risk ofmatrix-related
estimation problems.

1 Introduction
Machine Learning and Statistical Estimation have made pro-
found impacts in recent years to many applied domains such
as social sciences, genomics, and medicine. A frequently en-
countered challenge in such applications is how to deal with
the high dimensionality of the datasets, especially for those
in genomics, educational and psychological research. A com-
monly adopted strategy is to assume that the underlying struc-
ture of the parameter space is sparse.

Another often encountered challenge is how to handle sen-
sitive data, such as those in social science, biomedicine and
genomics. A promising approach is to use some private mech-
anisms for the statistical inference and learning tasks. Differ-
ential Privacy (DP) and its distributed version, Local Differen-
tial Privacy (LDP) [Dwork et al., 2006], are widely-accepted
models that provide provable protection against identifica-
tion and are resilient to arbitrary auxiliary information that
might be available to attackers. Since its introduction over a
decade ago, a rich line of works are now available, which have
made (local) differential privacy compelling privacy enhanc-
ing technologies for many organizations, such as Uber [Near,
2018], Google [Erlingsson et al., 2014], Apple [Tang et al.,
2017].
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While differentially private high dimensional estimation is
quite promising, such as sparse linear regression [Cai et al.,
2019] and selection problem [Steinke and Ullman, 2017], es-
timating high dimensional datasets in a locally differentially
private manner could be quite challenging for many problems,
such as sparse linear regression [Wang and Xu, 2019b], sparse
mean estimation [Duchi and Ruan, 2018] and selection prob-
lem [Ullman, 2018]. Fortunately, recent research has shown
that the loss of some problems caused by the local differen-
tial privacy constraints can be quite small compared to their
non-private counterparts. Examples of this phenomenon in-
clude high dimensional sparse PCA [Ge et al., 2018]. Re-
cently, [Wang and Xu, 2019a] studied the locally differen-
tially private high dimensional sparse covariance estimation
problem and proposed an algorithm which achieves an upper
bound of O( s

2 log p
n�2 ) measured by the squared spectral norm,

i.e., ‖Σpriv − Σ∗‖22, where s is the row sparsity of the under-
lying covariance matrix, p is the dimensionality, and n is the
sample size. With the above upper bound, a natural question
is the follows.

Is the upper bound ofO( s
2 log p
n�2 ) in the LDP high dimen-

sional sparse covariance estimation tight?
In this paper, we give an affirmative answer to the above

question. Specifically, we have the following contributions.
1. We show that in the non-interactive local differne-

tial privacy model, the private minimax risk (in the
metric of squared spectral norm) of high dimensional
sparse covariance matrix estimation is lower bounded
by Ω( s

2 log p
n�2 ). Moreover, we show that the same lower

bound also holds, even if the metric is generalized from
the squared spectral norm to the general squared lw
norm for any w ∈ [1,∞]. Combining these with pre-
vious upper bounds, it indicates that these lower bounds
are tight.

2. To prove the above lower bounds, we propose a frame-
work, called General Private Assouad Lemma, for
lower bounding the private minimax risk in the non-
interactive or sequential differential privacy model. Our
lemma is a generalization of the private Assoud lemma
in [Duchi et al., 2018], and can be viewed as a general
method for locally differentially private matrix estima-
tion problems. We believe that it has the potential to be
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used in other matrix-related estimation problems.

2 Related Work

Recently, there are several papers studying the private co-
variance matrix estimation problem [Kamath et al., 2018;
Joseph et al., 2018; Karwa and Vadhan, 2017; Gaboardi et
al., 2018; Amin et al., 2018; Wang and Xu, 2019a]. For
covariance matrix estimation in the central differential pri-
vacy model, [Karwa and Vadhan, 2017] considered the 1-
dimensional Gaussian distribution estimation with (un)known
variance. [Kamath et al., 2018] studied the problem of pri-
vately learning a multivariate Gaussian and product distri-
butions in the total variation distance and showed that it is
privacy-free for these problems. [Amin et al., 2018] recently
also investigated the low dimensional case of the problem in
Frobenious norm and proposed an iterative eigenvector sam-
pling method. The work that is the most related to ours is
probably the one in [Wang and Xu, 2019a], where the authors
studied the problem in the high dimensional sparse case and
proposed a method based on the idea of thresholding the pri-
vate empirical covariance matrix. A missing ingredient in all
the above works is that no lower bound is given, which makes
it difficult to tell how far their solutions are away from the op-
timal.

Covariance matrix estimation under local differential pri-
vacy has been studied in [Gaboardi et al., 2018; Joseph et
al., 2018; Wang and Xu, 2019a]. Specifically, [Gaboardi et
al., 2018; Joseph et al., 2018] comprehensively studied the
1-dimensional Gaussian distribution estimation and provided
several lower bounds. However, none of these works can
be extended to general distributions and to the high dimen-
sional sparse case. For the high dimensional case of the prob-
lem, [Wang and Xu, 2019a] proposed a general method which
achieves an upper bound of O( s

2 log p
n�2 ) in the squared spectral

norm. In this paper, we provide a lower bound which matches
this upper bound.

Using information-theoretic techniques to prove lower
bounds in the local differential privacy model has also been
studied in many papers, such as [Duchi and Ruan, 2018;
Duchi et al., 2018; 2013; Joseph et al., 2018; Duchi and
Rogers, 2019]. [Duchi and Ruan, 2018; Duchi et al., 2018;
2013] proposed several general frameworks for bounding the
private minimax risk, such as the private versions of Le Cam
lemma, Fano lemma, and Assouad lemma. However, none
of these methods can be applied to our problem since all the
previous lemmas can only be used in the one-directional case
(i.e., the underlying parameter is a vector), while it is a two-
directional case (i.e., the underlying parameter is a matrix) in
our problem. Moreover, all of the previous methods need to
obtain some upper bounds of some hard distribution instances
under the total variation distance (or KL-divergence) while in
our problem we use �2-divergence, which makes our method
quite different from the previous ones. The method that is the
most related to ours is the private Assouad lemma proposed
in [Duchi et al., 2018] which can be seen as a special case of
our general private Assoud lemma.

3 Preliminaries
In this section, we introduce some definitions that will be used
throughout the paper. More details can be found in [Duchi et
al., 2018].
Notation In this paper, we will always assume (except for
Corollary 2) that Φ(x) = x2 and �(Σ1,Σ2) = ‖Σ1 − Σ2‖2 is
the spectral norm between two matrices Σ1 and Σ2.

3.1 Classical Minimax Risk
Since all of our lower bounds are in the form of private min-
imax risk, we first introduce the classical statistical minimax
risk before discussing its locally differentially private version.

Let  be a class of distributions over a data universe  .
For each distribution p ∈  , there is a deterministic func-
tion �(p) ∈ Θ, where Θ is the parameter space. Let � ∶
Θ × Θ ∶↦ ℝ+ be a semi-metric function on the space Θ and
Φ ∶ ℝ+ ↦ ℝ+ be a non-decreasing function with Φ(0) = 0.
We further assume that {Xi}ni=1 are n i.i.d observations drawn
according to some distribution p ∈  , and �̂ ∶ n ↦ Θ be
some estimator. Then the minimax risk in metric Φ◦� is de-
fined by the following saddle point problem:
n(�(),Φ◦�) ∶= inf

�̂
sup
p∈

Ep[Φ(�(�̂(X1,⋯ , Xn), �(p))],

where the supremum is taken over distributions p ∈  and
the infimum over all estimators �̂.

3.2 Local Differential Privacy and Private
Minimax Risk

Since we will consider the sequential interactive and non-
interactive local models in this paper, we follow the defini-
tions in [Duchi et al., 2013].
We assume that {Zi}ni=1 are the private observations trans-

formed from {Xi}ni=1 through some privacy mechanisms. We
say that the mechanism is sequentially interactive, when it has
the following conditional independence structure:
{Xi, Z1,⋯ , Zi−1}↦ Zi, Zi ⫫ Xj ∣ {Xi, Z1,⋯ , Zi−1}

for all j ≠ i and i ∈ [n], where ⫫means independent relation.
The full conditional distribution can be specified in terms of
conditionals Qi(Zi ∣ Xi = xi, Z1∶i = zi∶i). The full privacy
mechanism can be specified by a collection Q = {Qi}ni=1.

WhenZi is depending only onXi, the mechanism is called
non-interactive and in this case we have a simpler form for the
conditional distributions Qi(Zi ∣ Xi = xi). We now define
local differential privacy by restricting the conditional distri-
bution Qi.
Definition 1 ([Duchi et al., 2013]). For a given privacy pa-
rameter � > 0, the random variable Zi is an � sequentially lo-
cally differentially private view ofXi if for all z1, z2,⋯ , zi−1
and x, x′ ∈  we have the following for all the events S:

Qi(Zi ∈ S ∣ Xi = xi, Z1∶i−1 = z1∶i−1)
Qi(Zi ∈ S ∣ Xi = x′i, Z1∶i−1 = z1∶i−1)

≤ e� .

We say that the random variable Zi is an � non-interactively
locally differentially private view of Xi if

Qi(Zi ∈ S ∣ Xi = xi)
Qi(Zi ∈ S ∣ Xi = x′i)

≤ e� .
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We say that the privacy mechanism Q = {Qi}ni=1 is �-
sequentially (non-interactively) locally differentially private
(LDP) if each Zi is a sequentially (non-interactively) locally
differentially private view.

For a given privacy parameter � > 0, let � be the set of
conditional distributions that have the �-LDP property. For a
given set of samples {Xi}ni=1, let {Zi}

n
i=1 be the set of obser-

vations produced by any distribution Q ∈ � . Then, our es-
timator will be based on {Zi}ni=1, that is, �̂(Z1,⋯ , Zn). This
yields a modified version of the minimax risk:

n(�(),Φ◦�,Q) = inf
�̂
sup
p∈

EpΦ(�(�̂(Z1,⋯ , Zn), �(p)).

From the above definition, it is natural for us to seek the mech-
anism Q ∈ � that has the smallest value for the minimax
risk. This allows us to define functions that characterize the
optimal rate of estimation in terms of privacy parameter �.
Definition 2. Given a family of distributions �() and a pri-
vacy parameter � > 0, the � sequential private minimax risk
in the metric Φ◦� is:

Int
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � sequentially locally differentially
private mechanisms. Moreover, the � non-interactive private
minimax risk in the metric Φ◦� is:

Nint
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � non-interactively locally differen-
tially private mechanisms.

4 General Private Assouad Lemma
In this section we introduce our general framework for lower
bounding. Before that, we first review the classical Assouad
lemma [Tsybakov, 2008] and its two-directional generaliza-
tion [Cai et al., 2012].
Assouad’s method works with a hypercube  = {−1,+1}r

for some r ∈ ℕ. It transforms an estimation problem into
multiple hypothesis testing problems using the structure of the
problem in an essential way. Let {Pv}v∈ ∈  be a family of
distributions with its corresponding parameters {�v}v∈ in-
dexed by the hypercube. Similar to the standard reduction
from estimation to testing, we consider the following random
process. Let V be a random vector uniformly chosen from the
hypercube {−1,+1}r. After that, the samples X1, X2,⋯ , Xn
are drawn from the distribution Pv conditioned on V = v. For
each j ∈ [r], we define the mixture of distributions

P nj,+1 =
1
2r−1

∑

v∶vj=1
P nv , P

n
j,−1 =

1
2r−1

∑

v∶vj=−1
P nv , (1)

where P nv is the product distribution ofX1,⋯ , Xn. Then, As-
souad lemma can be stated as follows.
Lemma 1 (Assouad Lemma). Under the conditions stated in
the above paragraph,

n(�(),Φ◦�) ≥
�
4

r
∑

j=1
[1 − ‖P nj,+1 − P

n
j,−1‖TV ], (2)

where ‖ ⋅ ‖TV is the total variation distance, � =
minH(v,v′)≥1,v,v′∈

Φ(�(�v,�v′ ))
2H(v,v′) , and H(v, v′) is the hamming

distance between � and �′, i.e.,H(v, v′) =
∑r
j=1 1{vj ≠ v′j}.

Instead of restricting to a hypercube , the general Assouad
lemma in [Cai et al., 2012] works with the Cartesian product
of a hypercube and the r-th power of a finite set of vectors.
Specifically, for a given r ∈ ℕ and a finite set of p-dimensional
vectors B ⊂ ℝp∖{01×p}, let  = {−1,+1}r and Λ ⊆ Br.
Define T =  ⊗ Λ = {� = (v, �) ∶ v ∈  and � ∈ Λ}. This
means that one can view an element � ∈ Λ as an r × p matrix
with each row coming from setB, and as a set of parameters
with each row indicating whether a given row of � is present
or not. Similar to Assouad lemma, we assume that there is a
family of distributions in the class  , {P�}�∈T indexed by T
and its corresponding parameters {��}�∈T .

Let DΛ = |Λ|. For a given a ∈ {−1,+1} and j ∈ [r], we
let Ti,a = {� ∶ �i(�) = a}, where �i(�) is the i-th coordinate of
the first component of �. It is easy to see that |Ti,a| = 2r−1DΛ.
We have the following mixture of distributions

P nj,a =
1

2r−1DΛ

∑

�∈Tj,a

P n� , Pj,a =
1

2r−1DΛ

∑

�∈Tj,a

P� . (3)

Lemma 2 (General Assouad’s Lemma [Cai et al., 2016]). Un-
der the conditions stated in above paragraph, we have the fol-
lowing

n(�(),Φ◦�) ≥
�
4

r
∑

j=1
[1 − ‖P nj,+1 − P

n
j,−1‖TV ],

where � satisfies

� = min
H(�(�),�(�′))>1,�(�),�(�′)∈

Φ(�(�� , ��′ ))
2H(�(�), �(�′))

,

and �(�) is the first component of �.
Now, we present the locally private version of Lemma 2.

Suppose that we draw samplesZ1,⋯ , Zn according to �-LDP
channel Q(⋅|X1∶n). Then, conditioned on V = �, the private
sample is distributed according to the marginal distribution
Mn

� :

Mn
� (S) = ∫ Qn(S|x1, x2,⋯ , xn)dP n� (x1, x2,⋯ , xn). (4)

Specifically, when Q is non-interactive, we have Mn
� =

(∫ Q(⋅|x)dP� (x))⊗n. Similarly to (3), we can defineMn
j,a and

Mj,a for a ∈ {−1,+1} and j ∈ [r]. Thus, combining the
above with Lemma 2, we have the following theorem:
Theorem 1. Under the conditions given in Lemma 2, the �
private minimax risk satisfies:

n(�(),Φ◦�, �) ≥
�
4

r
∑

j=1
[1 − ‖Mn

j,+1 −M
n
j,−1‖TV ]. (5)

For the sequential private minimax risk, we have the fol-
lowing general lower bound.
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Theorem 2. Under the conditions given in Theorem 1 and
further assuming that � ∈ (0, 12 ], the � sequential private min-
imax risk in the metric Φ◦� satisfies

Int
n (�( ,Φ◦�, �) ≥ �r

4
[1−

(n�2

2r
sup

∈B∞()

r
∑

j=1
(∫

(x)(dPj,+1 − dPj,−1))2
)
1
2 ], (6)

where B∞ is the 1-ball of supremum norm B∞ = { ∈
L∞() ∣ ‖‖∞ ≤ 1}, and L∞() = {f ∶  ↦ ℝ ∣
‖f‖∞ <∞} is the space of uniformly bounded functions with
the supremum norm ‖f‖∞ = supx |f (x)|.
Note that the lower bound in Theorem 2 reduces to the

same one in the private Assouad lemma [Duchi et al., 2018]
whenΛ contains only onematrix which every row is non-zero.
Thus, we call Theorem 1 as the General Private Assouad
Lemma. Particularly, if we restrict our attention only to the
non-interactive LDP mechanisms, we have the following the-
orem bounding the private minimax risk, which will be used
to prove our lower bounds in this paper.
Theorem 3. Under the conditions given in Theorem 1 and
further assuming that � ∈ (0, ln 22 ], the � non-interactive pri-
vate minimax risk in the metric Φ◦� satisfies

Nint
n (�,Φ◦�, �) ≥ r�

4
×

min
1≤j≤r

(1 −
√

1
2
(�2D�2 (Pj,+1‖Pj,−1))n), (7)

where D�2 (⋅‖⋅) is the �2-divergence, that is, D�2 (P‖Q) =

∫ (dP−dQ)2
dQ for distributions P and Q.

Proof. By Theorem 1, we have

Nint
n (�(),Φ◦�, �) ≥ r�

4
min
j∈[r]

(1 − ‖Mn
j,+1 −M

n
j,−1‖TV ).

By the non-interactivity, we haveMn
j,a = (∫ Q(⋅|x)dPj,a)

⊗n.
Let Mj,a = ∫ Q(⋅|x)dPj,a. By Pinsker inequality, we have
the following

|Mn
j,+1 −M

n
j,−1‖

2
TV ≤ 1

2
Dkl(Mn

j,+1‖M
n
j,−1) (8)

≤ 1
2
D�2 (M

n
j,+1‖M

n
j,−1) (9)

= 1
2
(D�2 (Mj,+1‖Mj,−1))n (10)

≤ 1
2
(min{4, e2�}(e� − 1)2‖Pj,+1 − Pj,−1‖2TV )

n (11)

≤ 1
2
(min{2, e

2�

2
}�2D�2 (Pj,+1‖Pj,−1)))

n, (12)

where (8) is due to Pinsker inequality, (9) is by the rela-
tion between KL-divergence and �2-divergenceDkl(P‖Q) ≤
log(1 + D�2 (P‖Q)) ≤ D�2 (P‖Q) [Tsybakov, 2008], (10) is
due to the non-interactivity, (12) is by Pinsker inequality and
inequalities (e� −1)2 ≤ 2�2 and e2� ≤ 2. Next, we prove (11).

Lemma 3.

D�2 (Mj,+1‖Mj,−1) ≤ min{4, e2�}(e�−1)2‖Pj,+1−Pj,−1‖2TV .

Proof. W.l.o.g, we can assume that the density function of
Mj,a ismj,a(z) = ∫ q(z|x)dPj,a and q(⋅|x) is the density func-
tion of Q(⋅|x). By the definition, we have

D�2 (Mj,+1‖Mj,−1) = ∫
(mj,+1(z) − mj,−1(z))2

mj,−1(z)
dz (13)

≤ ∫
c2� infx q

2(z|x)(e� − 1)2‖Pj,+1 − Pj,−1‖2TV
∫ q(z|x)dPj,a

dz (14)

≤ c2� (e
� − 1)2‖Pj,+1 − Pj,−1‖2TV ∫ inf

x
q(z|x)dz

≤ c2� (e
� − 1)2‖Pj,+1 − Pj,−1‖2TV , (15)

where c� = min{2, e�}, (13) is by the definition of �2-
divergence, (14) is by Lemma 3 in [Duchi et al., 2018] and
(15) is due to the fact that ∫ infx q(z|x)dz ≤ 1.

The inequality in Lemma 3 is weaker than the one in The-
orem 1 of [Duchi et al., 2018] in the sense that it becomes the
later one if combining the inequality of ‖Mj,+1−Mj,−1‖TV ≤
D�2 (Mj,+1‖Mj,−1).

Remark 1. We note that comparing to existing general lower
bounding methods on the private minimax risk, such as
[Duchi et al., 2018; Duchi and Ruan, 2018; Duchi and Rogers,
2019], Theorem 3 is quite different. Firstly, while all previ-
ous lower bounds depend only linearly on the sample size n,
the lower bound in Theorem 3 depends exponentially on n.
Secondly, due to the special structure of our indexing set T ,
Theorem 3 is more suitable for matrix estimation problems,
while previous methods are more suitable for vector estima-
tion problems. Thirdly, previous lower bounds are measured
by (or derived from) the mutual information, the total vari-
ation distance, or the KL-divergence between the hard dis-
tribution instances, while in Theorem 3, the lower bound is
measured by the �2- divergence between distributions. This
indicates that although Theorem 3 is stronger than the previ-
ous ones, as it can be seen later in the sparse covariance es-
timation problem, it is easier to obtain a lower bound on the
�2-divergence of the hard instances than other measurements.
This is also the reason that existing methods cannot be applied
to our problem.

From (7), we can see that, to obtain the lower bound, one
needs to bound the terms ofD�2 (Pj,+1‖Pj,−1) for all j, which
are quite complicated since they are mixture distributions. To
simplify the task, we fix all the other terms and consider only
the j-th term, which can be seen as an r × p matrix with all
other rows fixed, except for the j-th one. Formally, for an
element � ∈ T , we define the projection �A(�) = (�i(�))i∈A
for a set A ⊆ {1, 2⋯ , r}, and the set {−j} = [r]∖{j}. �A(�)
and �−i(�)(�i(�))i∈A can be defined similarly, where �i(�) is
the i-th coordinate of the second component of �. Denote by
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ΛA the set ΛA = {�A(�) ∶ � ∈ T }. For a ∈ {+1,−1},
b ∈ {−1,+1}r−1 and c ∈ Λ−j ⊆ Br−1, we let

TΛj (a,b,c) = {� ∈ T ∶ �j(�) = a, �−j(�) = b, �−j(�) = c}

and DΛj (a,b,c) = |TΛj (a,b,c)|. Let P̄ nj,a,b,c denote the mixture
distribution

P̄ nj,a,b,c =
1

DΛj (a,b,c)

∑

�∈TΛj (a,b,c)

P n� , (16)

and M̄n
j,a,b,c be its corresponding marginal distribution. Sim-

ilar to Theorem 3, we have the following corollary.
Corollary 1. Under the conditions given in Theorem 1 and
further assuming that � ∈ (0, ln 22 ], the � non-interactive pri-
vate minimax risk in the metric Φ◦� satisfies

Nint
n ( (�),Φ◦�, �) ≥ r�

4
× min
1≤j≤r

(1−
√

�2n
2

Average�−j ,�−j (D�2 (P̄j,+1,�−j ,�−j‖P̄j,−1,�−j ,�−j ))
n),
(17)

where the average over �−j , �−j is induced by the uniform dis-
tribution over T .

Proof. The key observation is that the distributions P nj,a can
be represented by a linear combination of {P̄ nj,a,b,c}b,c∈T−j ,
where the set T−j is

T−j = {0, 1}r−1 ⊗ Λ−i
= {(b, c) ∶ ∃� ∈ T s.t �−i(�) = b and �−i(�) = c}.

That is, P nj,a =
∑

(b,c)∈T−j wb,cP̄
n
j,a,b,c , where wb,c =

DΛj (a,b,c)
2r−1DΛ

(note that since DΛj (a,b,c) is independent of a, we omit it).
Also,

∑

(b,c)∈T−j wb,c = 1. Thus, P nj,a can be seen as an av-
erage over (b, c). The same also holds forMn

j,a.
By the convexity of total variation norm and Lemma 3, we

have

‖Mn
j,+1 −M

n
j,−1‖TV ≤

∑

(b,c)∈T−j

wb,c‖M̄
n
j,+1,b,c − M̄

n
j,−1,b,c‖TV

= Averageb,c‖M̄n
j,+1,b,c − M̄

n
j,−1,b,c‖TV .

By a similar argument given in the proof of Theorem 3, we
get

‖M̄n
j,+1,b,c − M̄

n
j,−1,b,c‖

2
TV ≤ D�2 (M̄j,+1,�−j ,�−j‖M̄j,−1,�−j ,�−j )

n

≤ 1
2
(min{2, e

2�

2
}�2D�2 (P̄j,+1,b,c‖P̄j,−1,b,c)))

n

≤ 1
2
(�2D�2 (P̄j,+1,b,c‖P̄j,−1,b,c)))

n.

Thus, by the inequality Averageb,c‖M̄n
j,+1,b,c −

M̄n
j,−1,b,c‖TV )

2 ≤ Averageb,c‖M̄n
j,+1,b,c − M̄n

j,−1,b,c‖
2
TV ,

we have the proof.

5 Lower Bound of Private Sparse Covariance
Estimation

We follow the settings in [Cai et al., 2012; Wang and Xu,
2019a]. LetX1,⋯ , Xn be random samples from a zero-mean
p-variate distribution with covariance matrix Σ = (�ij)1≤i,j≤p.
The goal of sparse covariance matrix estimation is to estimate
the unknown matrix Σ based on samples {X1,⋯ , Xn}, and
the locally private version is to determine a locally differen-
tially private estimator. In this paper, we focus on the high
dimensional case, that is, c1n� ≤ p ≤ exp(c2n) for some
� > 1, c1, c2 > 0. We assume that the underlying covariance
is sparse. That is, Σ ∈ (s) with

(s) = {Σ = (�ij)1≤i,j≤p ∶ ‖�−j,j‖0 ≤ s,∀j ∈ [p]}, (18)
where �−j,j is the j-th column of Σ with �j,j removed, i.e., a
matrix in (s) has at most s-nonzero off-diagonal elements on
each column.

Moreover, we assume that eachXi is sampled from a �-sub-
Gaussian distribution. That is, for all t > 0 and ‖v‖2 = 1,

ℙ{|⟨v,X⟩| > t} ≤ exp(−t
2

2�
), (19)

whichmeans that all the one-dimensional marginals ofX have
sub-Gaussian tails.

Additionally, in private matrix-related estimation prob-
lems, it is always assumed that the l2 norm of each Xi
are bounded by 1 [Dwork et al., 2014; Ge et al., 2018;
Wang et al., 2018; Wang and Xu, 2019a]. In this paper, we
relax the bounded norm assumption in the following way; for
the random vector X ∈ ℝp, we assume that ‖X‖2 ≤ 1 with
probability at least 1 − e−Ω(p). This leads us to the following
class of distributions (�, s).
(�, s) = {P ∶ X ∼ P satisfies (19) and ‖X‖2 ≤ 1
w.p at least 1 − e−Ω(p),EX = 0,Σ = E[XXT ] ∈ (s)}.

(20)
Before showing the lower bound, we first describe our con-
struction of the hard indexing set T with their distributions
{P�}�∈T instances, which is motivated by the ones in [Cai et
al., 2012].
We first construct the parameter set, which is the same as in

[Cai et al., 2012]. Let r = ⌊

p
2⌋ and B be the collection of all

row vectors b = (vj)1≤j≤p such that vj = 0 for all 1 ≤ j ≤ p−r
and vj = 0 or 1 for p− r+1 ≤ j ≤ p under the constraint that
‖b‖0 = k (where the value of k will be specified later). We
can view each (b1,⋯ , br) as an r × p matrix with the i-th row
being bi.
Then, we define the set T and its corresponding distribu-

tions. Define Λ ⊂ Br to be the set of all elements in Br such
that each column is less than or equal to 2k. For each matrix
� = (�1, �2,⋯ , �r) ∈ Λ, define a p × p matrix Am(�m) by
making the m-th row and column of Am(�m) be �m and the
rest of entries be 0.

Next, we construct the distributions. Let T =  ⊗ Λ. For
each � = (v, �), we define a matrix P� =  (0,Σ(�) with the
matrix Σ(�) having the following form

Σ(�) = cIp + c�n,p,�
n
∑

j=1
vjAj(�j), (21)
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where c > 0 is some constant to be specified later and �n,p,� =


√

log p
n�2 for some universal small enough constant  .

We first choose c,  and k to make the Gaussian distribution
 (0,Σ(�)) contained in the class (20).

Lemma 4. Under the assumption of n ≥ C s2 log p
�2 , if let c ≤

min{ �2 ,
1
10p} and k = max{⌈

s
2⌉−1, 0}, then there is a  , which

depends only on C , such that  (0,Σ(�)) ∈ (�, s) for every
� ∈ T , where T is the set defined in the above paragraph.

Proof. We first bound the term of ‖Σ(�)‖2. Note that since
Σ(�) is symmetric, we have ‖Σ(�)‖2 ≤ ‖Σ(�)‖1. By the con-
struction of Σ(�), we can see that the l1 norm of each column
in Σ(�) is less than 1 + 2k�n,p,� ≤ 1 + s

√

log p
n�2 . Thus, we

have ‖Σ(�)‖2 ≤ c + cs
√

log p
n�2 .

We need  (0,Σ(�)) satisfying (19). By [Wellner and oth-
ers, 2013], we know that it is sufficient to have ‖Σ(�)‖2 ≤ �.
Let Σ(�) = V TQV be the SVD decomposition and Q =

diag(�1,⋯ , �p). Then, for X ∼  (0,Σ(�)), we have V X ∼
 (0, Q). Thus, ‖X‖

2
2 = ‖V X‖

2
2 ≤ ‖Σ(�)‖2Y , where Y is

a �2p random variable. For the �2-distribution, we have the
following concentration bound.

Lemma 5 ([Laurent and Massart, 2000]). If z ∼ �2n , then

ℙ[z − n ≥ 2
√

nx + 2x] ≤ exp(−x).

Thus, with probability at least 1−exp(−p), we have Y ≤ 5p.
This means that, to ensure ‖X‖2 ≤ 1, it is sufficient to have
5p‖Σ(�)‖2 ≤ 1. Thus, we need that

c + cs
√

log p
n�2

≤ min{�, 1
5p
}. (22)

Taking c = min{�∕2, 1
10p} and choosing a small enough  ≤

√

C
2 , we can get the proof.

In order to use Theorem 4, we need to bound the term � =
minH(�(�),�(�′))>1,�(�),�(�′)∈

‖Σ(�)−Σ(�′)‖22
2H(�(�),�(�′)) , which is due to the

following Lemma in [Cai et al., 2012].
Lemma 6. Under the conditions given in Lemma 4, we have
� ≥ (k�n,p,�)2

p .

The following key lemma gives a lower bound on the term
Average�−j ,�−j (D�2 (P̄j,+1,�−j ,�−j‖P̄j,−1,�−j ,�−j ))

n.

Lemma 7. Under the conditions on T , Σ(�) and the con-
ditions of given in Lemma 4, the following holds for every
j ∈ [r], when  is sufficiently small and p is sufficiently large

Average�−j ,�−j (D�2 (P̄j,+1,�−j ,�−j‖P̄j,−1,�−j ,�−j ))
n ≤ 3

4
1
�2n

.

Combining Lemmas 4, 6 and 7 with r = ⌊

p
2⌋, by Corollary

1 we have the following lower bound theorem.

Theorem4. If � ∈ (0, ln 22 ], n ≥ C s2 log p
�2 and p ≥ c1n� for � >

1, then the � non-interactive privateminimax risk in themetric
of squared spectral norm satisfies the following inequality

Nint
n (Σ((s, �)),Φ◦�, �) ≥ Ω(

s2 log p
n�2

). (23)

For the upper bound, [Wang and Xu, 2019a] recently
showed that if each ‖Xi‖2 ≤ 1 and {Xi}ni=1 ∼ P , where
P ∈ (s, �), then by using a thresholding method on the per-
turbed empirical covariance matirx with some well-defined
threshold, the output Σ̃ satisfies ‖Σ̃ − Σ‖22 ≤ O( s

2 log p
n�2 ) with

high probability. Combining this upper bound with Theorem
4, we can see that the bound Θ( s

2 log p
n�2 ) is actually tight (i.e.,

optimal).
We note that for the non-private case, the optimal rate

of minimax risk under the same measurement is Θ( s
2 log p
n )

[Cai et al., 2012]. Thus, in this case, the impact of the
local differential privacy is to change the number of efficient
samples from n to n�2. However, the collection of the
considered distributions needs another assumption, which
says that ‖X‖2 is bounded by 1 with high probability. This is
not necessary in the non-private case [Cai et al., 2012], but
needed for showing the upper bound.

Moreover, [Wang and Xu, 2019a] also show that there is
an (�, �) non-interactive LDP algorithm whose output Σ̃ sat-
isfies ‖Σ̃ − Σ‖2w ≤ O( s

2 log p
n�2 ) for every w ∈ [1,∞] with high

probability. One natural question is whether it is optimal. The
following corollary provides an affirmative answer.
Corollary 2. Under the assumptions given in Theorem 4, for
each w ∈ [1,∞], the � non-interactive private minimax risk
in the metric of squared lw norm satisfies the following

Nint
n (Σ((s, �)),Φ◦�, �) ≥ Ω(

s2 log p
n�2

), (24)

where the lw-norm of any matrix A is defined as ‖A‖w =
sup ‖Ax‖w

‖x‖w
.

6 Discussions
There are still some open problems. Firstly, both Theorem 3
and 4 are restricted to non-interactive LDP protocols. The first
open question is whether they can be extended to the sequen-
tial LDP model. Secondly, from Theorem 3 we can see that
the lower bound holds under the assumption of � ∈ (0, ln 22 ].
Thus, the second open question is whether the range of � can
be enlarged, or whether better result can be achieved when
� is larger, such as those in [Ye and Barg, 2018]? The third
open question is whether Theorem 2 and 3 can be used to other
matrix-related estimation problems? We leave them for future
research.
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