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Abstract
A popular model to measure the stability of a net-
work is k-core - the maximal induced subgraph in
which every vertex has at least k neighbors. Many
studies maximize the number of vertices in k-core
to improve the stability of a network. In this pa-
per, we study the edge k-core problem: Given a
graphG, an integer k and a budget b, add b edges to
non-adjacent vertex pairs in G such that the k-core
is maximized. We prove the problem is NP-hard
and APX-hard. A heuristic algorithm is proposed
on general graphs with effective optimization tech-
niques. Comprehensive experiments on 9 real-life
datasets demonstrate the effectiveness and the effi-
ciency of our proposed methods.

1 Introduction
Graphs are widely used to model networks, where each ver-
tex represents a user and each edge represents a connection
between two users. The cohesive subgraph model of k-core,
introduced by [Seidman, 1983], is defined as the maximal in-
duced subgraph in which every vertex has at least k neighbors
(adjacent vertices) in the subgraph. The k-core of a network
corresponds to the natural equilibrium of a user engagement
model: each user incurs a cost (e.g., k) to remain engaged but
receives a benefit proportional to (e.g., equal to) the number
of engaged neighbors. Since the number of vertices (the size)
of k-core reflects the stability of a network, it is widely adopt-
ed in the study of network engagement (stability), e.g., [B-
hawalkar et al., 2015; Malliaros and Vazirgiannis, 2013;
Wu et al., 2013].

To prevent network unraveling, Bhawalkar and Kleinberg
et al. propose the anchored k-core problem which maximizes
the k-core by anchoring b vertices [Bhawalkar et al., 2015],
where the degree of an anchor is considered as infinitely large.
There are a series of following work to maximize the k-core,
e.g., [Zhang et al., 2018b; Zhang et al., 2017a; Chitnis et al.,
2013]. In order to improve network stability, another basic
graph operation is edge addition, which can also be applied
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Figure 1: An Example of k-Core and Anchoring, k = 3

to k-core maximization. Thus, the edge k-core problem is
proposed [Chitnis and Talmon, 2018]: Given a graph G, an
integer k and a budget b, add b edges to non-adjacent vertex
pairs in G such that the k-core is the largest.

Example 1. Figure 1 depicts a social group G with 9 users
and their connections. The willingness of a user to keep en-
gaged is influenced by the number of her friends (neighbors)
in this group. According to the k-core model, suppose k = 3,
v4, v6, and v7 firstly drop out. Their departure leads to the
leave of v5 and v8, as their degrees decrease to 1 which is
less than k. To improve network stability, we can anchor v6
and v7 based on anchored k-core model, or add an edge be-
tween v6 and v7 based on edge k-core model. Both solutions
lead to a larger k-core induced by the vertices inG except v4.

The edge k-core problem can find many applications on
real-life networks: friend recommendation in social network-
s, connection construction in telecom networks, etc. For in-
stance, in a P2P network, any user benefiting from the net-
work should be connected to at least k other users, to ex-
change resources. The holder of a P2P network can use the
edge k-core model to find which connections should be added
between users so that a large number of users can successfully
use the P2P network [Chitnis and Talmon, 2018].

Challenges and Contributions. In this paper, we propose
a concise reduction to prove that the problem is NP-hard and
APX-hard. The only existing solution is proposed for graphs
with bounded tree-width [Chitnis and Talmon, 2018]. How-
ever, this assumption usually does not hold in real-life graph-
s, and their techniques cannot be extended to handle general
graphs. Due to the hardness of the problem, we propose a
heuristic algorithm with effective pruning techniques. The
experiments are conducted on 9 real networks to demonstrate
the effectiveness and the efficiency of the proposed methods.
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2 Related Work
Graph processing on large data may require higher compu-
tation efficiency than traditional queries [Luo et al., 2008;
Cheema et al., 2010; Luo et al., 2011]. Cohesive subgraph
mining is a fundamental graph problem, with various mod-
els such as clique [Luce and Perry, 1949], k-core [Seidman,
1983], k-fami [Zhang et al., 2018a], etc. Among the model-
s, k-core is the only one known to have a linear time algo-
rithm [Batagelj and Zaversnik, 2003]. The k-core has a wide
range of applications such as social contagion [Ugander et al.,
2012], influential spreader identification [Kitsak et al., 2010],
collapse prediction [Morone et al., 2019], user engagement
study [Malliaros and Vazirgiannis, 2013], etc.

There is an efficient heuristic algorithm for the anchored k-
core problem [Zhang et al., 2017a], while it cannot be simply
applied to solve the edge k-core problem. One major reason
is that the anchored k-core model does not change the topol-
ogy of the graph while the edge k-core model needs to add
new edges. Besides the k-core maximization work introduced
in Section 1, there are some studies on k-core minimiza-
tion under the view of against attack [Zhang et al., 2017b;
Zhu et al., 2018; Medya et al., 2019].

The edge addition has been studied in different topics.
[Natanzon et al., 2001] studies the hardness of edge modi-
fication problems on some classes of graphs. [Suady and Na-
jim, 2014] aims to reduce the diameter of a graph by adding
edges. [Lai et al., 2005] aims to add a small number of edges
in a graph to enlarge the bandwidth. [Kapron et al., 2011]
aims to anonymize a given vertex set by adding fewest edges.

3 Preliminaries
We consider a simple, undirected and unweighted graph G =
(V,E), where V is a set of vertices and and E is a set of
edges. We denote n = |V |, m = |E| and assume m > n. Let
S = (V ′, E′) be an induced subgraph of G, where V ′ ⊆ V
and E′ ⊆ E. The notations are summarized in Table 1.
Definition 1. k-core. Given a graph G, a subgraph S is the
k-core ofG, denoted byCk(G), if (i) deg(u, S) ≥ k for every
vertice u ∈ S; (ii) S is maximal, i.e., any subgraph S′ ⊃ S
is not a k-core.

The k-core of a graph G can be obtained by recursive-
ly removing every vertex u and its incident edges in G if
deg(u,G) < k, with a time complexity of O(m). The k-
cores of G with different inputs of k constitute a hierarchical
structure of G, i.e., Ck+1(G) ⊆ Ck(G) for every value of k.
The definition of k-shell is then derived.
Definition 2. k-shell. Given a graph G, the k-shell of G,
denoted by Hk(G), is the set of vertices in k-core but not in
(k+1)-core, i.e., Hk(G) = V (Ck(G)− Ck+1(G)).

If we add some new edges among the vertices which are
not adjacent, the k-core of the graph may contain more ver-
tices, which is named the edge k-core. The added new edges
are called anchors or anchor edges. In this paper, we say an-
chor, add, or insert an edge interchangeably, e.g., an inserted
edge is also called an anchored edge. The edges, which may
be inserted to the graph, are called candidate anchors or can-
didate edges.

Notation Definition
G an unweighted and undirected graph
u, v; e, (u, v) a vertex in G; an edge in G
m; n the number of edges in G; the number of ver-

tices in G
N(u,G) the set of adjacent vertices (neighbors) of u

in G
deg(u,G) the number of adjacent vertices of u in G
S a subgraph of G
V (S); E(S) the vertex set of S; the edge set of S
G[X] induced subgraph of the vertex set X in G
Ck(G); Hk(G) the k-core of G; the k-shell of G
k; b the degree constraint; the anchor budget
A a set of anchor edges
GA; Ge the graph G+A; the graph G+ {e}
F(A,G) the followers of the anchor set A in G
L; Li the onion layers of G; the i-th layer of L
l(u) layer index of u in L
d∗(u) number of neighbors of u in its higher layers

Table 1: Summary of Notations

Definition 3. edge k-core. Given a graph G and a set of
anchor edges A ⊆ (

(
V
2

)
\ E), the edge k-core, denoted by

Ck(G+A), is the k-core of the graph G′ = (V,E ∪A).
Due to the addition of anchor edges (A), more vertices

might be retained in Ck(G + A), in addition to the vertices
in Ck(G). Note that the vertices not incident to the anchor
edges may also be retained, according to the contagious na-
ture of k-core computation. The vertices following the anchor
edgesA to engage in k-core are named the followers ofA, de-
noted by F(A,G). Formally, F(A,G) is the set of vertices
in Ck(G+A) \Ck(G). The number of the followers reflects
the importance of the corresponding anchor edges.

Problem Statement. Given a graph G, a degree constraint
k and a budget b, the edge k-core problem aims to find a set
A of b edges in

(
V
2

)
\E such that the number of followers of

A is maximized, i.e., F(A,G) is maximized.

4 Complexity
Theorem 1. Edge k-core problem is NP-hard when k ≥ 3.

Proof. We reduce the edge k-core problem from the maxi-
mum coverage (MC) problem [Karp, 1972] which is NP-hard.
The MC problem is to find at most b sets to cover the largest
number of elements, where b is a given budget. We consider
an arbitrary instance of MC with c sets T1, .., Tc and d ele-
ments {e1, .., ed} = ∪1≤i≤cTi. We suppose c > k, c > b,
and each of the resulting b sets contains at least 2 elements,
without loss of generality. Then we construct a correspond-
ing instance of the edge k-core problem on a graph G. Fig-
ure 2 shows a construction example from 3 sets and 4 ele-
ments when k = 3.

The set of vertices in G consists of three parts: M , N
and Q. The part M contains c set of vertices where each
set has d + 3 vertices, i.e., M = ∪1≤i≤cMi where Mi =
∪1≤j≤d+3u

i
j . The part N contains d vertices. The part Q is

a (k+1)-clique where every two vertices of the k + 1 vertices
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𝑇1: {𝑒1, 𝑒3} 𝑇2: {𝑒1, 𝑒2, 𝑒3} 𝑇3: {𝑒3, 𝑒4}
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Figure 2: Complexity Reduction, k = 3

are adjacent. For every i and j, if ei ∈ Tj in the MC in-
stance, we add an edge between vi and uji . In Figure 2, these
edges are marked in bold. For every Mi in M , we connect
uij and uij+1 by an edge for every j ∈ [1, d+ 2], and we also
connect ui1 and uid+3. For every Mi, we add edges between
every vertex in Mi and the vertices in Q so that every vertex
in Mi \ {uid+1, u

i
d+3} has a degree of k and every vertex in

{uid+1, u
i
d+3} has a degree of k − 1. We add k − 1 edges

between vi and the vertices in Q for every i ∈ [1, d]. The
construction of G is completed.

The k-core computation will delete all the vertices in M
and N . Thus, the k-core of G is Q. To enlarge the k-core, the
solution (A) is to add edges between uid+1 and uid+3, which is
most cost-effective. Another solution is to add edges between
Mi and Mj where i 6= j may also enlarge the k-core, while
this solution can always be replaced by solution (A) with at
most the same number of followers. Adding an edge to a
vertex in N is not worthwhile, since we suppose each of the
resulting b sets contains at least 2 elements. Thus, the edge
k-core problem always chooses b of the Mi in G which cor-
responds to b sets in the MC problem. If there is a polynomial
time solution for the edge k-core problem, the MC problem
will be solved in polynomial time.

Theorem 2. For k ≥ 3 and any ε > 0, the edge k-core
problem cannot be approximated in polynomial time within a
ratio of (1− 1/e+ ε), unless P = NP .

Proof. We reduce from the MC problem using a reduction
similar to that in the proof of Theorem 1. For any ε > 0,
the MC problem cannot be approximated in polynomial time
within a ratio of (1 − 1/e + ε), unless P = NP [Feige,
1998]. Let p be an arbitrarily large constant. There are two
differences in the construction of G: (i) Q is a p-clique; and
(ii) every vi is attached by a loop of p vertices where each
vertex is connected to Q by k − 2 edges except vi. Let γ >
1−1/e, if there is a solution with γ-approximation on optimal
follower number for the edge k-core problem, there will be a
λ-approximate solution on optimal element number for MC,
where λ = γ+ (γ−1)×b(d+3)

p×f and f is the number of followers
of edge k-core problem. Thus, the theorem is proved. The
edge k-core problem is APX-hard.

Theorem 3. Let f(A) = |F(A)|. We have that f is not
submodular for k ≥ 2.

Algorithm 1 NaiveEKC
Input: G: a graph, k: degree constraint, b: budget
Output: a setA of anchor edges

1: A← ∅; Ck ← Ck(G)
2: for i from 1 to b do
3: for each e ∈

(
V
2

)
\ {E ∪A ∪

(
V (Ck)

2

)
} do

4: compute F(e,G+A);
5: end for
6: e∗ ← the edge with most followers;
7: A← A ∪ e∗; Ck ← Ck(G+A);
8: end for
9: return A

Proof. For two arbitrary collapsers sets A and B, if f is sub-
modular, it must hold that f(A) + f(B) ≥ f(A ∪ B) +
f(A ∩ B). Let Q1 be a (k+1)-clique where vertices u and
v are contained. Let Q2 be another (k+1)-clique. We cre-
ate a vertex w and connect it to the vertices in Q2 by k − 2
edges. If A = (u,w) and B = (v, w), f(A) + f(B) = 0 <
f(A ∪B) + f(A ∩B) = 1.

5 Solution
Due to the NP-hardness and inapproximability of the prob-
lem, we resort to a greedy heuristic which iteratively find-
s the best anchor, i.e., the edge with the largest number of
followers. The framework of the greedy algorithm is shown
in Algorithm 1. At Line 4, we compute the followers for
each candidate anchor edge in the complement graph of G,
except the anchored edges in A and the edges between the
k-core vertices. Note that adding an edge between two (non-
adjacent) k-core vertices cannot enlarge the k-core, because
all the non-k-core vertices will still be deleted in k-core com-
putation. After the computation for every candidate anchor
edge, the best anchor is chosen at Line 6, and the k-core is
updated by inserting the anchor edge. The time complexity
of Algorithm 1 is O(b × n2 × m). As we do not explicitly
record the candidate edges, the space complexity of Algorith-
m 1 is O(m).

5.1 Optimizations on Each Iteration
In this section, we introduce optimization techniques for the
first iteration of the greedy algorithm, i.e., the edge k-core
problem with b = 1. They can be immediately applied to
other iterations by replace the k-core of G by the edge k-core
of G+A.

Basic Candidate Pruning
The following theorem locates the scope of valid candidate
anchors where each edge has at least one follower.

Theorem 4. Given a graphG, if a candidate edge e = (u, v)
has at least one follower, we have that u ∈ Ck−1(G) and
v ∈ Ck−1(G), where at least one of u and v is in Hk−1(G).

Proof. Suppose u /∈ Ck−1(G). We have e ∈ Ck(Ge); other-
wise, we have Ck(Ge) = Ck(G), i.e., there is no follower of
e. If we remove e from Ck(Ge), then deg(u,Ck(Ge) \ {e})
and deg(v, Ck(Ge) \ {e}) are at least k− 1, because (u, v) ∈
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Ck(Ge) and their degrees decrease by 1. Thus, Ck(Ge) \
{e} ⊆ Ck−1(G) which contradicts with u /∈ Ck−1(G). Now
we have proved that u ∈ Ck−1(G) and v ∈ Ck−1(G). Sup-
pose that {u, v} ∈ Ck(G) andCk(Ge)\Ck(G) = F 6= ∅, we
have that Ck(Ge) \ {e} belongs to Ck(G), which contradicts
with F /∈ Ck(G).

Example 2. In Figure 3, when k = 3, the 3-core C3(G)
is induced by {v0, v1, v5, v6}, and the 2-shell H2(G) =
{v2, v3, v7, v8}. According to Theorem 4, we only need to
consider every new edge (u, v) or (v, u) with u ∈ H2(G)
and v ∈ V (C2(G)) = V (C3(G)) ∪H2(G), as candidates.

Onion Layer based Candidate Pruning
Given the (k-1)-core of G, the computation of k-core on G
recursively deletes some vertices in the (k-1)-core. The ver-
tices are deleted in batch as their degrees are less than k
at a same time, like peeling an onion [Zhang et al., 2017c;
Zhang et al., 2017a]. The first layer of the onion, denot-
ed by L1, consists of the vertices in (k-1)-core with degree
less than k, i.e., L1 = {u | deg(u,Ck−1(G)) < k}. The
deletion of the first layer vertices may decrease the degrees
of other vertices, and produces the second layer. Recur-
sively, we have that Li = {u | deg(u,Gi) < k} where
Gi = Ck−1(G)−G[∪1≤j<iLj ].

Let l(u) denote the layer index of u, i.e., u ∈ Ll(u). If
l(u) < l(v), we say u is at a lower layer of v, or v is at a
higher layer of u. We use L to denote the union of layers, i.e.,
L = ∪1≤i≤sLi where s = max({l(u) | u ∈ Hk−1(G)}).
Let d∗(u) denote the number of adjacent neighbors of u in
higher layers and k-core, i.e., d∗(u) = deg(u,G′) where
G′ = Ck−1(G)−G[{∪1≤i≤l(u)Li} \ u].

Benefit from L, we propose an effective pruning technique.

Theorem 5. Given a graphG, if a candidate edge e = (u, v)
has at least one follower, we have that (i) d∗(u) = k−1 when
l(u) < l(v), (ii) d∗(v) = k − 1 when l(v) < l(u), and (iii)
d∗(u) = d∗(v) = k − 1 when l(u) = l(v);

Proof. Let O be the vertex deletion order of computing the
k-core on the (k-1)-core. We have d∗(u) ≤ k − 1 and
d∗(v) ≤ k − 1, since u and v are deleted at their layers in O,
respectively. When l(u) < l(v), we suppose d∗(u) < k − 1.
The anchoring of (u, v) increases the degrees of u and v by 1,
if we use the same order O to compute the k-core again, then
d∗(u) ≤ k − 1 < k, i.e., every vertex will be deleted at the
same position of the orderO, including u and v. It contradicts
with e = (u, v) has at least one follower. Thus, case (i) and
(ii) are proved. When l(u) = l(v), we suppose d∗(u) < k−1
without loss of generality. If we use the same order O to
compute the k-core again with the anchored edge e, u will
be deleted at the same position since d∗(u) < k. So v can’t
survive after the next batch of deletions since d∗(v) < k. Fi-
nally, every vertex will be deleted.

Example 3. In Figure 3, when k = 3, layer 1 contains v3
and v8, and layer 2 contains v2 and v7. By theorem 5, (v2, v7)
is not a promising candidate edge because d∗(v7) = 1, but
(v3, v8) is a proper candidate edge.

v0 v1 v2 v3

v7v6v5 v8

v4

v9

L1L2

3-core 2-shell

Figure 3: Candidate Seletion, k = 3

Note that if l(u) ≤ l(v), in the k-core computation with
anchor e, the survive of u may preserve some vertices before
visiting v. Thus, in Theorem 5, there is no degree requirement
for v to ensure that e = (u, v) has at least one follower.

Onion Layer based Follower Computation
A naive follower computation is to directly apply the k-core
computation on the graph with the existence of an anchor.
An improved idea is to use the core maintenance algorithms,
which update the k-core for every k with the addition of an
edge [Zhang et al., 2017c]. For the edge k-core algorithm,
we only need to update the k-core of a given k with an an-
chor edge. Thus, we adopt and refine the follower computa-
tion in the vertex-anchored k-core algorithm (OLAK) which
is shown to be more efficient than core maintenance for k-
core update with a fixed k [Zhang et al., 2017a].

In OLAK, anchoring a vertex means the degree of the ver-
tex is infinitely large. There is an observation that a vertex u
is the follower of the anchor vertex x if there is a path x u
based on neighboring relations, and l(y) < l(z) for every
two consecutive vertices y and z along the path. This in-
dicates that we do not need to consider the vertices without
such paths in the follower computation. Different from an-
chored k-core problem, edge k-core problem requires us to
add a new edge, where the vertex degree is increased by ex-
actly 1, and we have to consider two vertices rather than one.

In our algorithm, given an anchor edge (u, v) with l(u) <
l(v), we generate candidate followers layer-by-layer through
activating the neighbors at higher layers, starting from the
layer of u. Here u is the first activated vertex and only the
activated vertices can activate their neighbors at higher lay-
ers. In this activation procedure, each activated vertex is as-
signed an upper bound of its degree in the edge k-core. The
degree upper bound of a vertex u is generated by counting its
neighbors in higher layers and the activated neighbors of u at
other layers. Once the degree upper bound of a vertex is less
than k, it will be deleted immediately and the upper bounds
of its neighbours will be decreased by 1. The follower com-
putation is complete when the layer-by-layer activation is fin-
ished. Note that the two vertices incident to the anchor edge
may also be deleted in this procedure. Once one of them is
deleted, there is no follower and the computation is returned.

Follower based Candidate Pruning
We can further prune some candidate edges by known results,
when we retrieve the followers of some candidate edges.
Theorem 6. Given a candidate anchor edge e1 = (u1, v1)
and its follower set F(e1), we have F(e) ⊆ F(e1) for every
candidate edge e ∈ {(u, v) | u ∈ F(e1) and v ∈ F(e1) ∪
Ck(G) and u 6= v}.
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Algorithm 2 EKC
Input: G: a graph, k: degree constraint, b: budget
Output: A setA of anchor edges

1: A← ∅;
2: for i from 1 to b do
3: N ← {(u, v) | u ∈ Hk−1(G + A), v ∈ Ck−1(G +

A)} \ E(Ck−1(G+A)) (Theorem 4);
4: compute L and filter N based on Theorem 5;
5: for each e ∈ N do
6: F(e)← FindFollower(e,L) (Section 5.1);
7: update N based on Theorem 6;
8: end for
9: e∗ ← the edge with most followers; A← A ∪ e∗;

10: update N (Section 5.2);
11: end for
12: return A

Proof. Let e = (u, v). If F(e) is not empty, then Ck(Ge)
contains Ck(G), u, v and F(e). Because Ck(Ge1) contain-
s u and v, i.e., more vertices may be added to Ck(Ge) af-
ter anchoring e1. So, V (Ck(Ge)) ⊆ V (Ck(Ge1)) and thus
F(e) ⊆ F(e1).

Example 4. In Figure 3, when k = 3, if we get that v2 and v7
are the followers of edge (v3, v8). According to Theorem 6,
the followers of (v2, v7) are also the followers of (v3, v8), thus
(v2, v7) is not a promising candidate in current iteration.

5.2 Reusing Intermediate Results across Iterations
When one iteration of the greedy algorithm is completed, we
get the best anchor edge A and the number of followers for
every candidate edge in this iteration. These results can be
reused since some connected components in the induced sub-
graph of (k-1)-shell may keep the same topology after an-
choring an edge. For each connected component S where
none of the vertices are incident to the anchor A, we can
record the largest number of followers of one candidate an-
chor in S, for the later iterations. For the connected compo-
nent(s) S where there is a vertex incident to the anchor A, it
is hard to reuse the results because the addition of edges may
largely change the vertex deletion order and the layer struc-
ture in k-core computation.

5.3 EKC Algorithm
We present the EKC algorithm in Algorithm 2, which op-
timizes the greedy algorithm by adopting all the proposed
techniques. At Line 3, the candidate edge set is restricted
to N according to Theorem 4. In Line 4, we compute the
onion layers of G and then exclude the candidates based on
Theorem 5. The follower computation of a candidate edge
is conducted by exploring L layer-by-layer, as introduced in
Section 5.1. The set N is further filtered by Theorem 6 once
a follower computation is completed. After each iteration, we
get the anchor edge with the most followers. The algorithm
terminates after b iterations.

The resulting set of b anchors is same to that in Algorith-
m 2. The correctness is guaranteed by the correctness of op-

Algorithm Description
Rand randomly chooses b anchor edges (each with at

least one follower) from N1 = {(u, v) | u ∈
Hk−1(G), v ∈ Ck−1(G)} \ E(Ck−1(G))

Degree chooses b anchors from N1 with largest degrees in
L

Layer chooses b anchors from N1 at highest onion layers
in L

AKC the anchored k-core algorithm in [Zhang et al.,
2017a]

Exact identifies the optimal solution by exhaustively
searching all possible combinations of b anchors,
with all the proposed techniques

Naive computes a k-core on G for each candidate to find
best anchor in each iteration (Algorithm 1)

Baseline Naive + filtering candidates with Theorem 4
BL+O1 Baseline + filtering candidates with Theorem 5
BL+O2 BL+O1 + filtering candidates with Theorem 6
BL+OF BL+O2 + L based follower computation (Sec-

tion 5.1)
EKC BL+OF + intermediate result reuse (Section 5.2)

Table 2: Summary of Algorithms

Dataset Vertices Edges davg kmax

Facebook 4,039 88,234 43.69 115
Enron 36,692 183,831 10.02 43
Brightkite 58,228 214,078 7.35 52
Gowalla 196,591 950,327 9.67 51
DBLP 317,080 1,049,866 6.62 113
Twitter 81,306 1,768,149 33.02 96
Stanford 281,903 2,312,497 14.14 71
YouTube 1,134,890 2,987,624 5.27 51
Flickr 513,969 3,190,452 12.41 309

Table 3: Statistics of Datasets

timization techniques. The worst-case time complexity and
space complexity are same to Algorithm 1.

6 Evaluation
Algorithms. As far as we know, there is no existing al-
gorithm for the edge k-core problem on general graphs. In
the experiment, we implement and evaluate 11 algorithms as
shown in Table 2, where the bottom 6 algorithms produce the
same result, because they use the same greedy heuristic and
candidate visiting order.

Datasets. Flickr is from http://networkrepository.com/,
and the others are from https://snap.stanford.edu/data/. Ta-
ble 3 shows the statistics of the datasets.

Settings. All programs are implemented in C++. All exper-
iments are performed on Intel Xeon 2.20GHz CPU and Linux
System. We vary the parameters k and b.

6.1 Effectiveness
Figure 4 reports the number of followers w.r.t. b anchors.
For random approaches, we report the average number of fol-
lowers for 100 independent tests. In Figure 4, Degree and
Layer failed to get any followers in more than half of the
datasets, because a large degree vertex or a vertex in higher
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Figure 5: Exact vs EKC

onion layer does not necessarily have a follower. A totally
random algorithm cannot get any followers in most settings.
Thus, in Rand, we only choose the edges from the set where
each edge has at least one follower. We observe that the ma-
jority of the candidate edges does not have any followers,
while our greedy heuristic always finds effective anchors in
the experiments. In Figure 4, we notice that EKC preserves
more than 100 followers in Flickr with only 5 anchors.

We also compare the performance of EKC with the opti-
mal solution from Exact. Due to extremely high cost, we
run Exact on an induced subgraph by 50 random vertices.
The results are from 100 independent settings. The values
of k and b are small due to the small-scale of data. Figure 5
shows that the margins between EKC and Exact are not un-
acceptable, considering the non-submodular property and the
significantly better efficiency of EKC.

Figure 6 shows that EKC produces similar and almost larg-
er numbers of followers than AKC where the meaning of b
is different: the former for edges and the latter for vertices.
Although the anchoring of one vertex means the preserving
of many edges, EKC can produce similar followers with one
anchor edge. It shows that the edge k-core can enlarge the
k-core with less graph manipulations.

6.2 Efficiency
Figure 7 reports the performance of three algorithms on all
the datasets with k = 20 and b = 5. The datasets are or-
dered by the number of edges. We find the runtime among d-
ifferent datasets is largely influenced by the characteristics of
datasets and the onion layer structures in k-core computation.
Baseline cannot finish computation on 4 datasets within
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Figure 6: Anchor k-core vs Edge k-core
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Figure 8: Candidate Pruning

one week. BL+OF significantly improve the performance by
applying a series of techniques. EKC performs even better
given all the optimizations.

In Figure 8, we report the number of candidate edges of dif-
ferent algorithms by incrementally adding techniques, where
the details of each algorithms is given in Table 3. We can see
the improvement brought by each proposed technique.

Figure 9 studies the impact of k and r. Figure 9(a) shows
that the runtime decreases with a larger input of k. This is
because the number of candidate edges become fewer with
a larger k. Figure 9(b) reports the runtime with an increas-
ing b, which is proportional to the value of b. The margin
between BL+OF and EKC becomes smaller with a larger k,
because the number of connected components becomes less
when k increases. It is reported that EKC largely outperforms
the other algorithms under all the settings.

7 Conclusion
In this paper, we investigate the problem of edge k-core,
which aims to add a set b of edges in a network such that
the size of the resulting k-core is maximized. We prove the
problem is NP-hard and APX-hard. An efficient algorithm,
named EKC, is proposed with novel optimizations. Extensive
experiments on 9 real-life datasets are conducted to demon-
strate our model is effective and our algorithm is efficient.
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