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Abstract
In a social network, the strength of relationships
between users can significantly affect the stability
of the network. In this paper, we use the k-truss
model to measure the stability of a social network.
To identify critical connections, we propose a novel
problem, named k-truss minimization. Given a so-
cial network G and a budget b, it aims to find b
edges for deletion which can lead to the maximum
number of edge breaks in the k-truss of G. We
show that the problem is NP-hard. To accelerate
the computation, novel pruning rules are developed
to reduce the candidate size. In addition, we pro-
pose an upper bound based strategy to further re-
duce the searching space. Comprehensive experi-
ments are conducted over real social networks to
demonstrate the efficiency and effectiveness of the
proposed techniques.

1 Introduction
As a key problem in graph theory and social network analy-
sis, the mining of cohesive subgraphs, such as k-core, k-truss,
clique, etc, has found many important applications in real
life [Cohen, 2008; Tsourakakis et al., 2013; Wen et al., 2016;
Yu et al., 2013]. The mined cohesive subgraph can serve as
an important metric to evaluate the properties of a network,
such as network engagement. In this paper, we use the k-truss
model to measure the cohesiveness of a social network. Un-
like k-core, k-truss not only emphasizes the users’ engaged
activities (i.e., number of friends), but also requires strong
connections among users. That is, the k-truss ofG is the max-
imal subgraph where each edge is involved in at least k − 2
triangles. Note that triangle is an important building block
for the analysis of social network structure [Xiao et al., 2017;
Cui et al., 2018]. Thus the number of edges in the k-truss can
be utilized to measure the stability of network structure.

The breakdown of a strong connection may affect other re-
lationships, which can make certain relationships involved in
less than k−2 triangles and removed from the k-truss. Hence,
it will lead to a cascading breakdown of relationships even-
tually. To identify the critical edges, in this paper, we in-
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Figure 1: Motivation Example

vestigate the k-truss minimization problem. Given a social
network G and a budget b, k-truss minimization aims to find
a set B of b edges, which will result in the largest number of
edge breaks in the k-truss by deleting B.

Figure 1 is a toy social network with 10 users. Suppose k is
4. Then only the blue and red edges belong to the 4-truss. If
we delete edge (v2, v5), it will affect the connections among
other users and lead to the removal of all the blue edges from
the 4-truss, since they no longer meet the requirement of 4-
truss. We can see that the deletion of one single edge can se-
riously collapse the social network. The k-truss minimization
problem can find many applications in real life. For instance,
given a social network, we can reinforce the community by
paying more attention to the critical relationships. Also, we
can strengthen the important connections to enhance the sta-
bility of a communication network or detect vital connections
in enemy’s network for military purpose.

The main challenges of this problem lie in the following
two aspects. Firstly, we prove that the problem is NP-hard.
It means that it is non-trivial to obtain the result in polyno-
mial time. Secondly, the number of edges in a social network
is usually quite large. Even if we only need to consider the
edges in k-truss as candidates, it is still a large amount of
edges to explore. To the best of our knowledge, we are the
first to investigate the k-truss minimization problem through
edge deletion. We formally define the problem and prove its
hardness. Novel pruning rules are developed to reduce the
searching space. To further speed up the computation, an up-
per bound based strategy is proposed.

2 Preliminaries
2.1 Problem Definition
We consider a social network G as an undirected graph.
Given a subgraph S ⊆ G, we use VS (resp. ES) to denote
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the set of nodes (resp. edges) in S. N(u, S) is the neighbors
of u in S. deg(u, S) equals |N(u, S)|, denoting the degree
of u in S. m = |EG| is the number of edges in G. Assum-
ing the length of each edge equals 1, a triangle is a cycle of
length 3 in the graph. For e ∈ EG, a containing-e-triangle
is a triangle which contains e.

Definition 1 (k-core). Given a graph G, a subgraph S is the
k-core ofG, denoted asCk, if (i) S satisfies degree constraint,
i.e., deg(u, S) ≥ k for every u ∈ VS; and (ii) S is maximal,
i.e., any supergraph of S cannot be a k-core.

Definition 2 (edge support). Given a subgraph S ⊆ G and
an edge e ∈ ES , the edge support of e is the number of
containing-e-triangles in S, denoted as sup(e, S).

Definition 3 (k-truss). Given a graph G, a subgraph S is
the k-truss of G, denoted by Tk, if (i) sup(e, S) ≥ k − 2 for
every edge e ∈ ES; (ii) S is maximal, i.e., any supergraph
of S cannot be a k-truss; and (iii) S is non-trivial, i.e., no
isolated node in S.

Definition 4 (trussness). The trussness of an edge e ∈ EG,
denoted as τ(e), is the largest integer k that satisfies e ∈ ETk

and e /∈ ETk+1
.

Based on the definitions of k-core and k-truss, we can see
that k-truss not only requires sufficient number of neighbors,
but also has strict constraint over the strength of edges. A
k-truss is at least a (k-1)-core. Therefore, to compute the k-
truss, we can first compute the (k-1)-core and then find the
k-truss over (k-1)-core by iteratively removing all the edges
that violate the k-truss constraint. The time complexity is
O(m1.5) [Wang and Cheng, 2012]. Given a set B of edges
in G, we use TBk to denote the k-truss after deleting B. We
use |TBk | to denote the number of edges in TBk . We define
the followers F (B, Tk) of B as the edges that are removed
from Tk due to the deletion of B. Then our problem can be
formally defined as follows.

Given a graph G and a budget b, the k-truss minimization
problem aims to find a set B∗ of b edges, such that the |TB∗

k |
is minimized. It is also equivalent to finding an edge set B∗
that can maximize |F (B∗, Tk)|, i.e.,

B∗ = argmax
B⊆EG∧|B|=b

|F (B, Tk)|.

According to Theorem 1 and 2, the k-truss minimization
problem is NP-hard for k ≥ 5, and the objective function is
monotonic but not submodular.

Theorem 1. For k ≥ 5, the k-truss minimization problem is
NP-hard.

Proof. For k ≥ 5, we sketch the proof for k = 5. A simi-
lar construction can be applied for the case of k > 5. When
k = 5, we reduce the k-truss minimization problem from
the maximum coverage problem [Karp, 1972], which aims
to find b sets to cover the largest number of elements, where
b is a given budget. We consider an instance of maximum
coverage problem with s sets T1, T2, .., Ts and t elements
{e1, .., et} = ∪1≤i≤sTi. We assume that the maximum num-
ber of elements inside T is R ≤ t. Then we construct a
corresponding instance of the k-truss minimization problem

T1 : {e1, e2}T1 : {e1, e2} T2 : {e2, e3}T2 : {e2, e3} T3 : {e4}T3 : {e4}
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Figure 2: Example for NP-hard

in a graph G as follows. Figure 2(a) is a constructed example
for s = 3, t = 4, R = 2.

We divide G into three parts, V , N and P . 1) V consists
of s parts. Each part Vi corresponds to Ti in the maxi-
mum coverage problem instance. 2) N consists of t parts.
Each part Ni corresponds to ei in the maximum coverage
problem instance. 3) P is a dense subgraph. The support
of edges in P is no less than k − 2 + b. Specifically,
suppose Ti consists of ri ≤ R elements, Vi consists of
4R − ri + 1 nodes and 8R − ri edges. To construct Vi,
we first construct a (4R − 2ri)-polygon. Then, we add
a node vi0 in the center of (4R − 2ri)-polygon and add
4R − 2ri edges between vi0 and vi1, ..., v

i
4R−2ri . Finally, we

further add ri nodes vi4R−2ri+1, ..., v
i
4R−ri and 3ri edges

{(vi0, vi4R−2ri+1), (v
i
1, v

i
4R−2ri+1), (v

i
2, v

i
4R−2ri+1), ..., (v

i
0,

vi4R−ri), (v
i
2ri−1, v

i
4R−ri), (v

i
2ri , v

i
4R−ri)}. With the con-

struction, the edges in V have support no larger than 3.
We use P to provide support for edges in V and make the
support of edges in V to be 3. Each part in N consists of
2R + 2 nodes and the structure is a list of 4R triangles
which is shown in Figure 2(a). For each element ei in Tj , we
add two triangles between Ni and Vj to make them triangle
connected. The structure is shown in 2(b). Note that each
edge in Ni and Vj can be used at most once. We can see that
edges in N have support no larger than 3. Finally, we use P
to provide support for edges in N and make the support of
edges in N to be 3. Then the construction is completed. The
construction of Vi for R = 3 is shown in Figure 2(c).

With the construction, we can guarantee that 1) deleting
any edge in Vi can make all the edges in Vi and the edges
in Nj who have connections with Vi deleted from the truss.
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Algorithm 1: Baseline Algorithm
Input : G: a social network, k: truss constraint, b:

the budget
Output: B: the set of deleted edges

1 B ← ∅ ; Tk ← k-truss of G;
2 while |B| < b do
3 e∗ ← argmaxe∈ETk

|F (e, Tk)| ;
4 delete e∗ from Tk and update Tk ;
5 B ← B ∪ {e∗} ;
6 end while
7 return B

2) Only the edges in Vi can be considered as candidates. 3)
Except the followers in N , each Vi has the same number of
followers. In Figure 2(a), deletion of each Vi can make 8R
edges (except the edges in N ) removed. Consequently, the
optimal solution of k-truss minimization problem is the same
as the maximum coverage problem. Since the maximum cov-
erage problem is NP-hard, the theorem holds.

Theorem 2. The objective function f(x) = |F (x, Tk)| is
monotonic but not submodular.

Proof. Suppose B ⊆ B′. For every edge e in F (B, Tk),
e will be deleted from the k-truss when deleting B′. Thus
f(B) ≤ f(B′) and f is monotonic. Given two sets A and
B, if f is submodular, it must hold that f(A ∪ B) + f(A ∩
B) ≤ f(A) + f(B). We show that the inequality does not
hold by constructing a counter example. In Figure 1, for k =
4, suppose A = {(v5, v6)} and B = {(v7, v8)}. We have
f(A) = 4, f(B) = 0, f(A ∪ B) = 12 and f(A ∩ B) = 0.
The inequation does not hold. f is not submodular.

2.2 Baseline Algorithm
For the k-truss minimization problem, a naive solution is to
enumerate all the possible edge sets of size b, and return the
best one. However, the size of a real-world social network is
usually very large. The number of combinations is enormous
to enumerate. Due to the complexity and non-submodular
property of the problem, we resort to the greedy framework.
Algorithm 1 shows the baseline greedy algorithm. It is easy
to verify that we only need to consider the edges in the k-truss
as candidates. The algorithm iteratively finds the edge with
the largest number of followers in the current k-truss (Line
3). The algorithm terminates when b edges are found. The
time complexity of the baseline algorithm is O(bm2.5).

3 Group Based Solution
In this section, novel pruning techniques are developed to ac-
celerate the search in baseline algorithm.

3.1 Candidate Reduction
Before introducing the pruning rules, we first present some
definitions involved.

Algorithm 2: Group based Algorithm
Input : G: a social network, k: truss constraint, b:

the budget
Output: B: the set of deleted edges

1 B ← ∅ ; Tk ← k-truss of G ; /* compute
k-truss */;

2 while |B| < b do
3 mark all edges in Tk as unvisited ;
4 T ← FindGroup (Tk) ; /* Line 12-19 */;
5 for each e in T do
6 compute F (e, Tk) ;
7 T ← T\F (e, Tk) ;
8 e∗ ← the edge with the most followers ;
9 update k-truss Tk ;

10 B ← B ∪ {e∗} ;
11 return B
12 Function FindGroup (S):
13 C ← ∅ ; gID← 0; /* C stores the

candidates */;
14 for each e ∈ S do
15 if sup(e, S) = k − 2 and e is unvisited then
16 GroupExpansion (S, e); /* Line

20-32 */;
17 gID++ ;

18 return C
19 End Function
20 Function GroupExpansion (S, e):
21 Q← ∅ ;Q.enqueue(e); mark e as visited ;
22 while Q 6= ∅ do
23 e′(u, v)← Q.dequeue();
24 foreach a ∈ N(u, Tk) ∩N(v, Tk) do
25 if (u, a) is unvisited and sup = k − 2

then
26 Q.enqueue((u, a)) ;
27 mark (u, a) as visited ;
28 if (v, a) is unvisited and sup = k − 2

then
29 Q.enqueue((v, a)) ;
30 mark (v, a) as visited ;
31 update C ;

32 End Function

Definition 5 (triangle adjacency). Given two triangles 41,
42 in G, they are triangle adjacent if 41 and 42 share a
common edge, which means41 ∩42 6= ∅.

Definition 6 (triangle connectivity). Given two triangles
4s,4t in G, they are triangle connected, denoted as 4s ↔
4t, if there exists a sequence of θ triangles 41,42, ...,4θ
in G, such that 4s = 41,4t = 4θ, and for 1 ≤ i < θ, 4i
and4i+1 are triangle adjacent.

For two edges e and e′, we say they are triangle adjacent,
if e and e′ belong to the same triangle. As shown in the base-
line algorithm, we only need to consider the edges in Tk as
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candidates. Lemma 1 shows that we only need to explore the
edges in Q.

Lemma 1. Given a k-truss Tk, let P = {e | sup(e, Tk) =
k− 2}. If an edge e has at least one follower, e must be in Q,
where Q = {e | e ∈ Tk ∧∃e′ ∈ P where e and e′ are triangle
adjacent}.

Proof. We prove the lemma by showing that edges in EG \Q
do not have followers. We divide EG \ Q into two sets. 1)
For edge with trussness less than k, it will be deleted during
the k-truss computation. 2) For an edge e in Tk, if e is not
triangle adjacent with any edge in P , it means e is triangle
adjacent with edges such as e′ whose sup(e′, Tk) > k − 2.
If we delete e, all the edges triangle adjacent with e will still
have support at least k − 2 in Tk. Thus, e has no follower.
The lemma is correct.

Based on Lemma 2, we can skip the edges that are the fol-
lowers of the explored ones.

Lemma 2. Given two edges e1, e2 ∈ Tk, if e1 ∈ F (e2, Tk),
then we have F (e1, Tk) ⊆ F (e2, Tk).

Proof. e1 ∈ F (e2, Tk), it implies that e1 will be deleted dur-
ing the deletion of e2. Therefore, each edge in F (e1, Tk)
will be deleted when e2 is deleted. Consequently, we have
F (e1, Tk) ⊆ F (e2, Tk).

To further reduce the searching space, we introduce a prun-
ing rule based on k-support group.

Definition 7 (k-support group). Given a k-truss Tk, a sub-
graph S ⊆ Tk is a k-support group if it satisfies : 1) ∀e ∈ S,
sup(e, Tk) = k − 2. 2) ∀e1, e2 ∈ S, suppose e1 ∈ 4s,
e2 ∈ 4t. There exists a sequence of θ ≥ 2 triangles
41, ...,4θ with 4s = 41, 4t = 4θ. For i ∈ [1, θ), 4i
∩4i+1 = e and sup(e, Tk) = k − 2. 3) S is maximal, i.e.,
any supergraph of S cannot be a k-support group.

Lemma 3 shows that edges in the same k-support group are
equivalent. The deletion of any edge in a k-support group can
lead to the deletion of the whole k-support group.

Lemma 3. S is a k-support group of Tk. For ∀e ∈ S, if we
delete e, we can have S deleted from Tk.

Proof. Since S is a k-support group of Tk, for ∀e, e′ ∈ S,
suppose that e ∈ 4s, e′ ∈ 4t, there exists a sequence of θ tri-
angles 41, ...,4θ with 4s = 41,4t = 4θ. For i ∈ [1, θ),
4i ∩ 4i+1 = ei and sup(ei, Tk) = k − 2. The deletion
of any edge inside the group will destroy the corresponding
triangles and decrease the support of triangle adjacent edges
by 1. It will lead to a cascading deletion of subsequent trian-
gle edges in the group due to the violation of truss constraint.
Therefore, the lemma holds.

According to Lemma 3, we only need to add one edge from
a k-support group to the candidate set, and the other edges in
the group can be treated as the followers of the selected edge.
In the following lemma, we can further prune the edges that
are adjacent with multiple edges in a k-support group.

Lemma 4. Suppose that e ∈ Tk and sup(e, Tk) = w > k−2.
For a k-support group S, if e belongs to more than w− k+2
triangles, each of which contains at least one edge in S, then
e is a follower of S.

Proof. According to Lemma 3, by removing an edge from S,
we have S deleted from Tk. Since e belongs to more than
w− k + 2 triangles, each of which contains at least one edge
in S, the support of e will decrease by more than w − k + 2
due to the deletion of S. So its support will be less than k− 2
and it will be deleted due to the support constraint. Thus, e is
a follower of S.

3.2 Group Based Algorithm
We improve the baseline algorithm by integrating all the
pruning rules above, and the details are shown in Algorithm 2.
In each iteration, we first find k-support groups of current Tk
and compute the candidate set T according to Lemma 3 (Line
4). This process, i.e., FindGroup function, corresponds to
Line 12-19. It can be done by conducting BFS search from
edges in Tk. We use a hash table to maintain the group id (i.e.,
gID) for each edge and the gID starts from 0 (Line 13). For
each unvisited edge with support of k− 2, we conduct a BFS
search from it by calling function GroupExpansion (Line
20-32). During the BFS search, we visit the edges that are
triangle adjacent with the current edge, and push the edges
with support of k − 2 into the queue if they are not visited
(Line 25 and 28). The edges, which are visited in the same
BFS round, are marked with the current gID. For the visited
edges with support larger than k − 2, we use a hash table
to record its coverage with the current k-support group, and
update the candidate set based on Lemma 4 (Line 31). Ac-
cording to Lemma 2, we can further update the candidate set
after computing the followers of edges (Line 7).

4 Upper Bound Based Solution
The group based algorithm reduces the size of candidate set
by excluding the edges in the same k-support group and the
followers of k-support groups, which greatly accelerates the
baseline method. However, for each candidate edge, we still
need lots of computation to find its followers. Given an edge,
if we can obtain the upper bound of its follower size, then we
can speed up the search by pruning unpromising candidates.
In this section, we present a novel method to efficiently cal-
culate the upper bound required.

4.1 Upper Bound Derivation
Before introducing the lemma, we first present some basic
definitions. Recall that τ(e) denotes the trussness of e.

Definition 8 (k-triangle). A triangle4uvw is a k-triangle, if
the trussness of each edge is no less than k.

Definition 9 (k-triangle connectivity). Two triangles 4s
and 4t are k-triangle connected, denoted as 4s k↔ 4t, if
there exists a sequence of θ ≥ 2 triangles 41, ...,4θ with
4s = 41,4t = 4θ. For i ∈ [1, θ), 4i ∩ 4i+1 = e and
τ(e) = k.
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We say two edges e, e′ are k-triangle connected, denoted
as e k↔ e′, if and only if 1) e and e′ belong to the same k-
triangle, or 2) e ∈ 4s, e′ ∈ 4t, with4s k↔4t.
Definition 10 (k-truss group). Given a graph G and an in-
teger k ≥ 3, a subgraph S is a k-truss group if it satisfies: 1)
∀e ∈ S, τ(e) = k. 2) ∀e, e′ ∈ S, e k↔ e′. 3) S is maximal,
i.e., there is no supergraph of S satisfying conditions 1 and 2.

Based on the definition of k-truss group, Lemma 5 gives
an upper bound of |F (e, Tk)|.
Lemma 5. If e is triangle adjacent with θ k-truss groups g1,

g2, ..., gθ, we have |F (e, Tk)| ≤
θ∑
i=1

|Egi |.

Proof. Suppose sup(e, Tk) = w, we have w ≥ k − 2, so e
is contained by w triangles and is triangle adjacent with 2w
edges. We divide the edges which are triangle adjacent with
e in Tk into two parts. 1) τ(e′) > k. Since the deletion of
e may cause τ(e′) to decrease at most 1 [Huang et al., 2014;
Akbas and Zhao, 2017], we have τ(e′) ≥ k after deleting e,
which means e′ has no contribution toF (e, Tk). 2) τ(e′) = k.
Suppose e′ ∈ gi. The deletion of e can cause trussness of
each edge in gi to decrease at most 1. Then e′ can contribute

to |F (e, Tk)| with at most |Egi |. Thus,
θ∑
i=1

|Egi | is an upper

bound of |F (e, Tk)|.
4.2 Upper Bound Based Algorithm
Based on Lemma 5, we can skip the edges whose upper
bound of follower size is less than the best edge in the current
iteration. However, given the trussness of each edge, it may
still be prohibitive to find the k-truss group that contains an
edge e, since in the worst case we need to explore all the tri-
angles in the graph. To compute the upper bound efficiently,
we construct an index to maintain the relationships between
edges and their k-truss groups.

To find the k-truss group for a given edge e, we extend
the GroupExpansion function in Line 20-32 of Algorithm 2.
It also follows the BFS search manner. The difference is
that when we explore an adjacent triangle, it must satisfy the
k-triangle constraint, and we only enqueue an edge, whose
trussness satisfies k-triangle connectivity constraint. After
finishing the BFS search starting from e, its involved k-truss
groups can be found.

After deleting an edge e in the current iteration, the con-
structed k-truss groups may be changed. Therefore, we need
to update the k-truss groups for the next iteration. The up-
date algorithm consists of two parts, i.e., update the trussness
and update the groups affected by the changed trussness. To
update the edge trussness, we apply the algorithm in [Huang
et al., 2014], which can efficiently update the edge trussness
after deleting an edge e. Given the edges with changed truss-
ness, we first find the subgraph induced by these edges. Then
we reconstruct the k-truss groups for the induced subgraph
and update the original ones. Based on the k-truss groups
constructed, we can compute the upper bound of followers
for edges efficiently. The final algorithm, named UP-Edge,
integrates all the techniques proposed in Section 3 and 4.

5 Experiment
5.1 Experiment Setting
In the experiments, we implement and evaluate the following
algorithms. 1) Exact: naive algorithm that enumerates all the
combinations. 2) Support: in each iteration, it selects the edge
that is triangle adjacent with the edge with minimum support
in the k-truss. 3) Baseline: baseline algorithm in Section 2.2.
4) GP-Edge: group based algorithm in Section 3. 5) UP-
Edge: upper bound based algorithm in Section 4.

We employ 9 real social networks (i.e., Bitcoin-alpha,
Email-Eu-core, Facebook, Brightkite, Gowalla, DBLP,
Youtube, Orkut, LiveJournal) to evaluate the performance of
the proposed methods. The datasets are public available1.
Since the Exact algorithm is too slow, we only run Exact al-
gorithm on Email-Eu-core and Bitcoin-alpha dataset.

Since the properties of datasets are quite different, we
set the default k as 10 for 4 datasets (Gowalla, Youtube,
Brightkite, DBLP) and set the default k as 20 for 3 datasets
(Facebook, LiveJournal, Orkut). We set default b as 5 for all
datasets. All the programs are implemented in C++. All the
experiments are performed on a machine with an Intel Xeon
2.20 GHz CPU and 128 GB memory running Linux.

5.2 Effectiveness Evaluation
To evaluate the effectiveness of the proposed methods, we re-
port the number of followers by deleting b edges. Since UP-
Edge only accelerates the speed of Baseline and GP-Edge,
we only report the results of UP-Edge here. Due to the huge
time cost of Exact, we show the result on 3 datasets, that is,
Bitcoin-alpha, Email-Eu-core and Artificial network (gener-
ated by GTGraph with 500 nodes and 5000 edges).

We set k = 11 and 8 for Bitcoin-alpha and Artificial net-
work respectively, and vary b from 1 to 4. In Figure 3(a),
we can see that there is only a slight drop when b=3. In Fig-
ure 3(b), there is only a small drop when b=4. In Figure 3(c),
as we can see, UP-Edge also shows comparable results with
Exact and they all outperform Support significantly. Simi-
lar results can be observed in Figure 3(d)-3(f) over all the
datasets and the selected datasets. Figure 3(e) and 3(f) show
the results on LiveJournal by varying b and k. As observed,
the number of followers for the two algorithms are positive
correlated with b, and k has a great impact on follower size.

Figure 4 shows a case study on DBLP with k = 10, b = 1.
We can see that the edge between Lynn A. Volk and David
W. Bates is the most pivotal relationship. This edge has 264
followers (grey edges in the figure). It is interesting that most
followers have no direct connection with them.

5.3 Efficiency Evaluation
To evaluate the efficiency, we compare the response time of
UP-Edge and GP-Edge with Baseline . We first conduct the
experiments on all the datasets with default settings. Figure 5
shows the response time of the three algorithms. We can see
that UP-Edge and GP-Edge significantly outperform Baseline
in all the datasets because of the pruning techniques devel-
oped. UP-Edge is faster than GP-Edge due to the contribution

1https://snap.stanford.edu/data/, https://dblp.org/xml/release/
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Figure 3: Effectiveness Evaluation

Figure 4: Case study on DBLP, k=10, b=1

of upper bound derived. Figure 6 shows the results conducted
on LiveJournal by varying b and k. We can see that when b
grows, the response time increases since more edges need to
be selected. When k grows, the response time decreases since
the searching space becomes smaller.

6 Related Work
Graph processing has been a hot topic in many areas recently,
which usually requires much more computation comparing
with some traditional queries [Luo et al., 2008; Wang et al.,
2010; Wang et al., 2015]. Cohesive subgraph identification
is of great importance to social network analysis. In the lit-
erature, different definitions of cohesive subgraphs are pro-
posed, such as k-core [Seidman, 1983; Wen et al., 2016], k-
truss [Huang and Lakshmanan, 2017], clique [Tsourakakis et
al., 2013], dense neighborhood graph [Kreutzer et al., 2018],
etc. In the literature, numerous research is conducted to
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Figure 6: Efficiency Evaluation

investigate the k-truss decomposition problem under differ-
ent settings, including in-memory algorithms [Cohen, 2008],
external-memory algorithms [Wang and Cheng, 2012], dis-
tributed algorithms [Chen et al., 2014], etc. In some studies,
authors leverage the k-truss property to mine required com-
munities [Huang et al., 2014; Huang and Lakshmanan, 2017].
Huang et al. [Huang et al., 2016] investigate the truss de-
composition problem in uncertain graphs. Recently, some re-
search focuses on modifying the graph to maximize/minimize
the corresponding metric [Bhawalkar et al., 2015; Zhang et
al., 2017; Zhu et al., 2018; Medya et al., 2018]. Bhawalkar
et al. [Bhawalkar et al., 2015] propose the anchored k-core
problem, which tries to maximize the k-core by anchoring
b nodes, while Zhang et al. [Zhang et al., 2017] and Zhu et
al. [Zhu et al., 2018] investigate the problem of k-core mini-
mization by deleting nodes and edges, respectively. In [Me-
dya et al., 2018], Medya et al. try to maximize the node cen-
trality by adding edges to the graph. However, these tech-
niques cannot be extended for our problem.

7 Conclusion

In this paper, we study the k-truss minimization problem. We
first formally define the problem. Due to the hardness of the
problem, a greedy baseline algorithm is proposed. To speed
up the search, different pruning techniques are developed. In
addition, an upper bound based strategy is presented by lever-
aging the k-truss group concept. Lastly, we conduct extensive
experiments on real-world social networks to demonstrate the
advantage of the proposed techniques.
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