
Modeling Source Syntax and Semantics for Neural AMR Parsing

Donglai Ge1 , Junhui Li1∗ , Muhua Zhu2 and Shoushan Li1
1School of Computer Science and Technology, Soochow University, Suzhou, China

2Alibaba Group, Hangzhou, China
20175227014@stu.suda.edu.cn, {lijunhui, lishoushan}@suda.edu.cn,

muhua.zmh@alibaba-inc.com

Abstract
Sequence-to-sequence (seq2seq) approaches for-
malize Abstract Meaning Representation (AMR)
parsing as a translation task from a source sentence
to a target AMR graph. However, previous stud-
ies generally model a source sentence as a word
sequence but ignore the inherent syntactic and se-
mantic information in the sentence. In this paper,
we propose two effective approaches to explicitly
modeling source syntax and semantics into neu-
ral seq2seq AMR parsing.1 The first approach lin-
earizes source syntactic and semantic structure into
a mixed sequence of words, syntactic labels, and
semantic labels, while in the second approach we
propose a syntactic and semantic structure-aware
encoding scheme through a self-attentive model to
explicitly capture syntactic and semantic relations
between words. Experimental results on an English
benchmark dataset show that our two approaches
achieve significant improvement of 3.1% and 3.4%
F1 scores over a strong seq2seq baseline.

1 Introduction
Recent studies in Abstract Meaning Representation (AMR)
parsing regard it as a sequence-to-sequence (seq2seq) map-
ping problem, where AMR graphs are properly linearized
into sequences [Peng et al., 2017; Konstas et al., 2017;
van Noord and Bos, 2017]. Nevertheless, most previous
works in this direction simply recast source sentences as word
sequences, without considering the inherent syntactic and se-
mantic information deemed to be useful for the construction
of AMR graphs. In fact, recent progress in seq2seq mod-
eling, such as neural machine translation [Shi et al., 2016;
Li et al., 2017], shows that vanilla seq2seq models still fail to
learn deep structural details from million-scale parallel cor-
pora, let alone AMR corpora which are of much smaller sizes.
As a result, in the absence of linguistic knowledge, seq2seq
models for AMR parsing tend to produce results that do not
well respect syntax and semantics of the input sentence.

∗Corresponding Author
1In this paper, we view the output of PropBank semantic role

labeling (SRL) as source semantics.

(e / escalate-01  
      :ARG1 (s / strike-01  
                       :ARG1 (c / country  
                                       :wiki "Georgia_national_rugby_union_team" 
                                       :name (n / name :op1 "Georgia"))  
                       :location (a / area :mod (s2 / separatist))))

(b) Gold AMR

(a) Input

The airstrikes escalated conflict in a separatist area of Georgia .

(e / escalate-01  
     :ARG0 (s2 / strike-01 :path (a / air))  
     :ARG1 (c / conflict-01  
                     :location (a2 / area  
                                         :mod (s / separatist)  
                                         : part-of (c2 / country  
                                                         :wiki "Georgia_(country)"  
                                                         :name (n / name :op1 "Georgia")))))

(c) SeqSeq AMR

(d) Gold AMR Linearization

( escalate-01 : ARG0 ( strike-01 : path ( air ) ) : ARG1 ( conflict-01 : 
location ( area : mod ( separatist ) : part-of ( country : name ( name : 
op1 “ Georgia “ ) ) ) ) )

Figure 1: An example of seq2seq-based AMR parsing output (c) and
AMR graph linearization (d).

As an example, Figure 1(c) shows the output of a state-of-
the-art seq2seq baseline system, which indicates at least the
following issues. First, the seq2seq model mistakenly recog-
nizes the segment a separatist area of Georgia as two parallel
concepts: country and area. Secondly, it deems both the con-
cepts to be modifiers of the concept strike, which offenses the
syntactic structure of the source sentence. Finally, it mistak-
enly views the concept strike as ARG1 (i.e., patient) of the
concept escalate, which is inconsistent with semantic role la-
beling (SRL) output in which the segment The airstrikes acts
as ARG0 of predicate escalated. By manually examining the
AMR parsing outputs of 50 sentences from the development
set, we find that 52% of automatic AMRs offense their corre-
sponding source syntactic structures.

In principle, syntactic information provides a useful and
promising avenue for AMR parsing, considering the fact that
an AMR graph explicitly contains syntactic modifier-head re-
lations between AMR concepts. The idea of incorporating
syntactic and semantic information has already been shown
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effective in non-seq2seq AMR parsing [Wang et al., 2015a;
Wang et al., 2015b; Damonte et al., 2017; Peng et al., 2018].
However, to the best of our knowledge, this idea has not been
well explored for neural seq2seq AMR parsing.

In this paper, we focus on improving AMR parsing by
modeling source syntax and semantics via a neural seq2seq
modeling. Specifically, we exploit syntactic and semantic in-
formation for AMR parsing by explicitly taking advantage
of linguistic knowledge derived from the outputs of syntac-
tic parsing and SRL on source sentences. In our first ap-
proach, we linearize source syntax and/or semantics to ob-
tain a mixed input sequence which consists of words, syn-
tactic labels, and/or semantic labels. This approach is simple
yet effective, even not requiring any modifications to existent
seq2seq models. In our second approach, we propose syn-
tactic (and/or semantic) structure-aware encoder to explicitly
model syntactic (or semantic) structure between word pairs.
Hereafter, we call the first approach as a sequence-aware lin-
earization approach and the second approach as a structure-
aware encoding approach. Experimental results on an English
benchmark dataset show that both the two approaches signif-
icantly improve the performance over a strong baseline.

2 AMR Parsing as Neural Seq2Seq Learning
Our baseline system is built on Transformer, a state-of-the-
art seq2seq model that is originally proposed for neural ma-
chine translation and syntactic parsing [Vaswani et al., 2017].
To make the model applicable to AMR parsing, we linearize
AMR graphs into sequences in pre-processing and recover
AMR graphs from sequences in post-processing.

Sequence-to-Sequence Modeling. Specifically, the en-
coder in the Transformer consists of a stack of multiple iden-
tical layers, each of which has two sub-layers, one for multi-
head self-attention mechanism, and the other is a position-
wise fully connected feed-forward network. The decoder is
also composed of a stack of multiple identical layers. Each
layer in the decoder consists of sub-layers as in the encoder
layers as well as an additional sub-layer that performs multi-
head attention to the output of the encoder stack. Experi-
ments on the tasks of machine translation and syntactic pars-
ing show that Transformer outperforms RNN-based seq2seq
models. See [Vaswani et al., 2017] for more details.

Pre-Processing: AMR Graph to Target Sequence. As
in [van Noord and Bos, 2017], we obtain simplified AMRs by
removing variables and wiki links. Variables in AMR graphs
are only necessary to indicate co-referring nodes and they do
not carry any semantic information by themselves. Therefore,
AMR graphs are first converted into AMR trees by removing
variables and duplicating the co-referring nodes. Then new-
lines present in an AMR tree are replaced by spaces to get a
sequence. For example, Figure 1(d) presents the linearization
of the AMR graph in Figure 1(b). Based on the data of sen-
tences paired with linearized AMR graphs, we train a seq2seq
model whose outputs are also linearized AMRs.

Post-Processing: Target Sequence to AMR Graph.
There is no surprise that the obtained translation from Trans-
former is an AMR sequence without variables, wiki-links,

and co-occurrent variables. Moreover, the output may contain
brackets that do not match, resulting incomplete concepts. To
recover its full graph, the post-processing should restore in-
formation removed in pre-processing by assigning a unique
variable to each concept, pruning duplicated and redundant
material, performing Wikification, and restoring co-referring
nodes. Meanwhile, it should fix incomplete concepts.

We use the pre-processing and post-processing scripts pro-
vided by [van Noord and Bos, 2017].2 Note that there exist
some other linearization methods proposed in related stud-
ies [Konstas et al., 2017; Peng et al., 2017], and our approach
can also be applied to them.

3 Modeling Source Syntax and Semantics via
Sequence-Aware Linearization

Seq2seq models treat a sentence as a sequence of words and
ignore external knowledge, failing to effectively capture var-
ious kinds of inherent structure of the sentence. To lever-
age external knowledge of input sentence, specifically the
syntax and semantics, we focus on the syntactic parse tree
and semantic roles of a sentence and propose three different
parsing models that explicitly consider the syntactic and se-
mantic structures into encoding. Figure 2 shows an example
of a source sentence with syntactic parse tree and semantic
roles. Though these syntactic and semantic information is
tree structured, we follow recent studies [Vinyals et al., 2015;
Choe and Charniak, 2016; Li et al., 2017] to linearize the tree
structure into a sequence, which can be viewed as an alterna-
tive to tree structure.

3.1 Linearizing Source Syntax
Syntactic parsing is a process of mapping a sentence into a
syntactic parse tree. Our approach of incorporating syntactic
structure information is straightforward. The basic idea here
is to convert a source sentence into a syntactic sequence from
its parse tree, as exemplified in the Figure 2. Note that there
exist many variants in linearization of a syntactic parse tree
(e.g., including symbols indicating syntactic ending bound-
aries or not [Vinyals et al., 2015; Choe and Charniak, 2016;
Li et al., 2017]). However, our preliminary experiments
showed that the performance gap between these methods is
very small. Therefore, we follow [Li et al., 2017] and sim-
ply use pre-order traversal to obtain the syntactic sequence,
mixed with grammar labels, POS tags as well as words.

+Syntax in Figure 2 shows the syntactic sequence of the
example sentence. The new sequence will directly be used as
input of our AMR seq2seq system.

3.2 Linearizing Source Semantics
Semantic role labeling [Gildea and Jurafsky, 2002], some-
times also called shallow semantic parsing, is a process that
assigns labels to phrases in a sentence that indicate their se-
mantic roles in the sentence, such as that of agent, patient,
time, or location, and so on. Given a source sentence, a pred-
icate in it may have multiple semantic roles which usually
map to syntactic nodes. There also exist many variants in

2https://github.com/RikVN/AMR
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The airstrikes escalated conflict in a separatist area of Georgia . Sentence

S NP DT The NNS airstrikes VP VBZ escalated NP NP NN conflict PP IN in NP 
NP DT a JJ separatist NN area PP IN of NP NNP Georgia . .

+ Syntax

ARG0 The airstrikes Pre escalated ARG1 conflict in a separatist area of Georgia .+ Semantics

The airstrikes escalated conflict in separatist .

DT

NP 
(ARG0)

.

S

Syntactic tree 
with semantic roles

S NP ARG0 DT The NNS airstrikes VP VBZ escalated NP ARG1 NP NN conflict 
PP IN in NP NP DT a JJ separatist NN area PP IN of NP NNP Georgia . .

+Both

VBZ 
(Pre)

a area of Georgia

NNS NN IN DT NN NN IN NNP

PPNP

NP 
(ARG1)

VP

Figure 2: An example of a source sentence with syntactic and semantic structure. To save space, we do not present the detailed syntactic
structure for prepositional phrase PP(in a separatist area of Georgia). In the mixed sequences, the syntactic labels are in italic font while the
semantic labels are in bold font.

linearization of semantic role labels. To be consistent with
the method of linearizing syntactic structure, we insert se-
mantic role labels at the corresponding segment’s beginning
position. For example, segment The airstrikes with ARG0 se-
mantic role label will be linearized as ARG0 The airstrikes.
Note that a sentence may have multiple predicates, thus it is
frequent that a segment plays same or different semantic roles
to two or more predicates. In this case, we linearize the seg-
ment with multiple semantic labels. For example, if segment
The airstrikes plays roles of ARG0, ARG0 and ARG1 for three
left-to-right predicates in one sentence, it will be linearzed as
ARG0 ARG0 ARG1 The airstrikes.

+Semantics in Figure 2 shows the semantic sequence of the
example sentence. We also include symbol Pre to indicate the
position of predicates. Again the new sequence will directly
be used as input of our AMR seq2seq system.

3.3 Linearizing Both Source Syntax and Semantics

In order to obtain a sequence with both syntactic and semantic
information, we also run the pre-order traversal on the syntac-
tic tree with semantic roles to obtain the linearized version: if
a syntactic node is augmented with semantic roles, then it
is sequenced as its syntactic label, followed by the semantic
role labels. For example, as the syntactic node NP in Fig-
ure 2 is associated with ARG0 semantic role, it is linearized
as NP ARG0. Note that we discard predicate label Pre in the
linearization due to its redundancy with verbal POS tags.

+Both in Figure 2 shows the sequence with syntax and se-
mantics for the example sentence.

4 Modeling Source Syntax and Semantics via
Structure-Aware Encoding

Transformer uses multi-head self-attention which enables the
encoder to learn sentence-wide context for every source word.
Therefore, to make the encoder be aware of sentence struc-
ture, we extend the relation-aware self-attention proposed
in [Shaw et al., 2018] to encode structural information.

4.1 Structure-Aware Self-Attention
The conventional self-attention in Transformer uses Scaled
Dot-Product Attention which operates on an input sequence,
x = (x1, · · · , xn) of n elements where xi ∈ Rdx and com-
putes a new sequence z = (z1, · · · , zn) with the same length:

z = Attention (x) (1)
where z ∈ Rn×dz . Each output element zi is calculated as a
weighted sum of a linearly transformed input elements:

zi =
n∑

j=1

αij

(
xjW

V
)

(2)

where WV ∈ Rdx×dz is a parameter matrix, and

αij =
exp(eij)∑n
k=1 exp(eik)

(3)

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(4)

where the weight vector αi = (αi1, · · · , αin) over input vec-
tors is obtained by self-attention model, which captures the
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correspondences between element xi and others, and eij is an
alignment model which scores how well the input elements
xi and xj match. Here WQ,WK ∈ Rdx×dz are parameter
matrices. Motivated by [Shaw et al., 2018], our main inno-
vation over the conventional self-attention architecture is that
we encode the structure relationships between two element
pair (xi, xj) in the alignment model as shown in Eq. 4. We
generalize this to an arbitrary number of features that repre-
sent the structure relationships between (xi, xj):

eij =

(
xiW

Q
) (
xjW

K +
∑|F |

l=1 fijlW
Kl

)T
√
dz

(5)

where |F | is the number of features, and fijl ∈ Rdf is the
l-th feature embedding for (xi, xj) pair, WKl ∈ Rdf×dz is
a parameter matrix. Then, we update Eq. 2 accordingly to
propagate structure information to the sublayer output by:

zi =
n∑

j=1

αij

xjWV +

|F |∑
l=1

fijlW
Vl

 (6)

where WVl ∈ Rdf×dz is a parameter matrix. For simplicity,
we set feature embedding size df as dz .

Note that to enable an efficient implementation, we follow
[Shaw et al., 2018] and use simple addition to incorporate
structure representations in Eq. 5 and Eq. 6.

4.2 Syntactic and Semantic Features
Our generalized self-attention model supports an arbitrary
number of input features to represent the structure relation-
ships between word pairs. Next, we will focus on a few of
well known syntactic and semantic features extracted from
parse tree augmented with semantic information.
Syntactic Path (SynP). We use syntactic path, the combi-
nation of syntactic labels along the path from xi to xj to in-
dicate the syntactic structure of xi and xj .3 For example, the
syntactic path from airstrikes to conflict is→NP↑S↓VP↓NP.
Note that we use a positional tag→ or← to indicate if xi is
on the left or right side of xj .
Syntactic Distance (SynD). We use syntactic distance, the
numbers of nodes up-along and down-along the syntactic
path, to indicate how far the two words xi and xj are from
syntax perspective. For example, the syntactic distance from
airstrikes to conflict is →1↑2↓. Similarly, positional tag →
indicates that airstrikes is on the left side of conflict. Note
that this feature is a coarse version of syntactic path.
Semantic Relation (SemR). Deriving semantic relation for
a word pair is not straight forward since semantic structure is
not strictly of tree style. Given a sentence, every predicate has
its own semantic structure which connects the predicate and
its arguments. For example, the semantic structure for pred-
icate escalated in Figure 2 is ARG0 (The airstrikes) + Pre
(escalated) + ARG1 (conflict .... Georgia). We use BIO tags
to assign each word in a sentence with a semantic label per

3If there exist two or more identical labels along the path, we use
one as to alleviate path sparsity.

predicate. For predicate escalated, the semantic label for The
is B-ARG0, similarly I-ARG0 for airstrikes, B-ARG1 for con-
flict, O for ., the sentence period. As a result, each word will
have n semantic labels, where n is the number of predicates
in this sentence. For word pair xi and xj , we first choose an
appropriate predicate and then combine the two words’ se-
mantic labels w.r.t the chosen predicate. Here an appropriate
predicate is the one (if exists) when the two words are cov-
ered by the semantic structure of the predicate. Otherwise,
we use NONE to represent their semantic relation. Finally,
we add the positional tag → or ← to indicate if xi is on the
left or the right side of xj . For example, the semantic relation
for airstrikes and conflict is→I-ARG0*B-ARG1.

5 Experimentation
5.1 Experimental Settings
For evaluation of our approach, we use the sentences anno-
tated with AMRs from the LDC release LDC2017T10. The
dataset consists of 36,521 training AMRs, 1,368 development
AMRs and 1,371 testing AMRs. To assign syntactic parses
and semantic roles to the sentences in the whole dataset, we
utilize the toolkit AllenNLP [Gardner et al., 2017] which
achieves an F1 of 94.1% on Penn Treebank for syntactic pars-
ing and 84.9% on English Ontonotes 5.0 for PropBank SRL.
The results are currently state of the art of the tasks. For eval-
uation purpose, we use the AMR-evaluation tools to evaluate
parsing performance in Smatch and other fine-grained met-
rics [Cai and Knight, 2013; Damonte et al., 2017].

We use tensor2tensor as the implementation of Trans-
former seq2seq model.4 In parameter setting, we set the num-
ber of layers in both the encoder and decoder to 6. For opti-
mization we use Adam with β1 = 0.1 [Kingma and Ba, 2015].
The number of heads is set to 8. In addition, we set the hidden
size to 512 and the batch token-size to 4096. In beam search-
ing, we increase the extra length as 100 from default 50. We
also set Google NMT length penalty parameter α = 1.0 to
encourage longer generation. In all experiments, we train the
models for 250K steps on a single K40 GPU.

Moreover, we share vocabulary for the input and the out-
put. For better translating rare words, we segment words
into word pieces by byte pair encoding (BPE) [Sennrich et
al., 2016]) with 20K operations. Our preliminary experiment
showed that sharing vocabulary and using BPE substantially
improve the performance on the development set from 64.8
in F1 to 71.4, revealing that they are two effective ways to
address the issue of data sparsity [Peng et al., 2017].

In the sequence-aware linearization approach, it will un-
avoidably increase the length of an input sentence. Statistics
on training data shows that the averaged length for input se-
quence increases from 17, to 48 with syntactic labels, 27 with
semantic labels, and 52 with both types of labels. Fortunately,
it does not bring extra parameters since though the input be-
comes longer, we set the same number of BPE coding opera-
tion as baseline, resulting negligible changes in vocabulary.

In the structure-aware encoding approach, we choose the
40K most frequent SynP features, and map all other features

4https://github.com/tensorflow/tensor2tensor
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Metric Baseline Sequence-Aware Linearizing Structure-Aware Encoding
+Syntax +Semantics +Both +SynP +SynD +SemR +All

Smatch 70.9 73.2 72.4 74.1 73.8 73.6 72.7 74.3
Unlabeled 74.3 75.9 75.4 77.3 76.5 76.3 75.5 77.3
No WSD 71.6 73.4 72.5 74.7 74.0 73.8 72.8 74.8

Reentrancy 54.5 56.9 56.1 57.4 56.7 56.8 55.7 58.3
Concepts 82.1 82.5 82.2 84.2 83.0 82.4 82.1 84.2

NER 80.4 80.9 81.2 83.2 81.3 82.2 80.8 82.4
Wiki 69.2 71.7 71.2 72.7 72.0 72.6 72.4 71.3

Negations 60.2 65.0 63.3 64.2 63.5 64.1 61.3 64.0
SRL 66.8 68.9 68.0 70.3 69.2 69.0 68.7 70.4

Table 1: F1 scores of our two approaches on Smatch and other fine-grained metrics. Significant test by bootstrap resampling [Koehn, 2004]
shows that +Both is significant over +Semantics at p = 0.01 while it is not over +Syntax. Similarly, +All is significant over +SemR at
p = 0.05 and is not over +SynP and +SynD.

into either→UNK or←UNK. For SynD and SemR features,
we do not do feature selection since the two sets of features
are limited in size.

5.2 Experimental Results

Table 1 shows the performance of our two approaches on the
test set. Overall, modeling source syntax or semantics in our
two approaches benefits AMR parsing in Smatch and all other
fine-grained metrics.

Comparing the systems of linearizing approach against the
baseline, we see that modeling source syntax (+Syntax) out-
performs the baseline by 2.3 in F1 scores while modeling se-
mantics (+Semantics) outperforms the baseline by 1.5 in F1
scores. Besides, in the presence of source syntax, integrating
semantics results in further improvement of 0.9 in F1 scores
(e.g., 73.2 vs. 74.1). This observation suggests that there ex-
ist both complementarity and overlapping between syntactic
and semantic information. The gain achieved by modeling
semantics is limited in the presence of syntax. Interestingly,
this performance trend is similar to that of modeling source
syntax and semantics for machine translation [Li et al., 2014].

Similar conclusion could be drawn when comparing the
systems of structure-aware approach against the baseline.
With all the three types of syntactic and semantic features,
it achieves 3.4 F1 score improvement over the baseline.

Comparing the two proposed approaches, we see that
the sequence-aware linearization approach achieves slightly
lower performance than the structure-aware encoding ap-
proach. This suggests that even without manually designed
features, the linearization approach is capable of implicitly
learning useful structure information from linearized syntac-
tic and semantic sequence. This is very encouraging since this
approach does not require extra parameters and modification
to the seq2seq model itself. The structure-aware encoding ap-
proach, on the other hand, is extensible to incorporate more
word pair-related features.

Interestingly, modeling semantic structure from SRL out-
put helps for SRL subtask in AMR parsing (see the last line in
Table 1). This is probably due to the fact that the standalone
SRL labeler (i.e., the AllenNLP toolkit) achieves more accu-
rate semantic analysis than the AMR parsers.

5.3 Comparison with Other Systems
We also compare our performance with related studies on
LDC2017T10, as presented in Table 2. From the results we
can see that by modeling source syntax and semantics, our
parsers outperform all other seq2seq models, even with more
silver data [van Noord and Bos, 2017]. This indicates the ef-
fectiveness of our approaches in modeling source syntax and
semantics. Moreover, our parsers achieve better performance
than non-seq2seq models, except the graph prediction parser
in [Lyu and Titov, 2018].

Table 3 compares the detailed performance. We obtain rel-
atively high results for Reentrancies, Negations, and SRL,
most likely due to their close relevance to syntactic and se-
mantic structure. Compare to the state-of-the-art performance
in [Lyu and Titov, 2018], we achieve lower performance for
concepts, NER, and Wikification. This is probably due to that
seq2seq models tend to stop early for translating long sen-
tences, resulting in some source concept words not translated.

6 Related Work
We first group recent studies in AMR parsing into seq2seq
and non-seq2seq parsing. Then we discuss related studies
that employ either syntactic or semantic knowledge.
Seq2seq parsing. Seq2seq models generally require less
features and build the AMR graph in an end-to-end way.
However, previous models usually suffer from data sparsity
issue [Peng et al., 2017]. In order to address this issue,
[Barzdins and Gosko, 2016] and [van Noord and Bos, 2017]
translate char-based plain English sentences into char-based
AMR linearization while [Konstas et al., 2017] and [van No-
ord and Bos, 2017] utilize external training data. In this pa-
per, our baseline achieves comparable results to non-seq2seq
models, suggesting that segmenting words into word pieces
and sharing vocabulary on two sides are two effective ways
to handle data sparsity issue. Based on the strong baseline,
this paper presents two different approaches to explore syn-
tactic and semantic knowledge for seq2seq AMR parsing.

Non-seq2seq parsing. Most other AMR models can fur-
ther categorized into tree-based, graph-based, and transition-
based. Tree-based AMR models incrementally convert a de-
pendency tree into its corresponding AMR graph [Wang et
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Type Parser P R F1

Non-Seq2Seq
Graph Prediction [Lyu and Titov, 2018] - - 74.4
Transition [Guo and Lu, 2018] - - 69.8
Tree [Groschwitz et al., 2018] - - 71.0

Seq2Seq

Neural-Pointer [Buys and Blunsom, 2017] - - 61.9
charSeq [van Noord and Bos, 2017] - - 64.0
charSeq + 100K silver data [van Noord and Bos, 2017] 76.0 67.0 71.0
Baseline (This paper) 74.0 68.1 70.9
Sequence-Aware Linearization (This paper) 76.8 71.7 74.1
Structure-Aware Encoding (This paper) 77.7 71.1 74.3

Table 2: Comparison of our parser with other parsers on LDC2017T10.

Metric vN’17 L’18 G’18a G’18b Our1 Our2 Our3
Smatch 71 74.4 71 70 70.9 74.1 74.3
Unlabeled 74 77.1 74 73 74.3 77.3 77.3
No WSD 72 75.5 72 71 71.6 74.7 74.8
Reentrancy 52 52.3 49 49 54.5 57.4 58.3
Concepts 82 85.9 86 84 82.1 84.2 84.2
NER 79 86.0 78 80 80.4 83.2 82.4
Wiki 65 75.7 71 70 69.2 72.7 71.3
Negations 62 58.4 57 48 60.2 64.2 64.0
SRL 66 69.8 64 63 66.8 70.3 70.4

Table 3: Detailed F1 scores on the LDC2017T10 test set. Here,
vN’17 is for [van Noord and Bos, 2017] with 100K silver dataset,
L’18 for [Lyu and Titov, 2018], G’18a for [Groschwitz et al., 2018],
G’18b for [Guo and Lu, 2018]. Our1 is our baseline while Our2 and
Our3 are our two parsers of sequence-aware linearization approach
and structure-aware encoding approach.

al., 2015a]. Graph-based models calculate scores of edges
and then use a maximum spanning connected subgraph algo-
rithm to select edges that will constitute the graph [Werling et
al., 2015; Flanigan et al., 2014]. Besides, [Foland and Mar-
tin, 2017] adopt a pipeline approach, in which the concept
identification requires 5 different LSTMs based on carefully
designed features. Then they connect these components into
a single graph. [Lyu and Titov, 2018] treat the alignments
as latent variables in a joint probabilistic model. Transition-
based models converts the plain text sentence into its corre-
sponding graph via steps of transition [Damonte et al., 2017;
Ballesteros and Al-Onaizan, 2017; Peng et al., 2018; Vi-
lares and Gómez-Rodrı́guez, 2018; Guo and Lu, 2018]. Be-
sides the above categories, there exits other AMR models that
uses combinatory categorical grammar (CCG), or translation
grammar [Artzi et al., 2015; Pust et al., 2015].

Syntax and Semantics for AMR parsing. Most AMR
models incorporate additional features such as POS tags, de-
pendency trees, named entities, non-lexical role labels, etc.
Specifically, tree-based AMR models directly adopt depen-
dency tree as inputs. In translation-based models, different
features are exploited for better transition predicting, include
POS and syntactic features [Damonte et al., 2017; Ballesteros
and Al-Onaizan, 2017; Vilares and Gómez-Rodrı́guez, 2018;
Peng et al., 2018] and semantic features [Wang et al., 2015a;
Damonte et al., 2017]. In graph-based models, syntactic
information, including POS, NER and dependency struc-

tures, are widely used for concept identification [Flanigan
et al., 2014; Werling et al., 2015; Foland and Martin, 2017;
Lyu and Titov, 2018]. In seq2seq-based models, [van Noord
and Bos, 2017] and [Buys and Blunsom, 2017] incorporate
POS tags for encoding source sentences. To the best of our
knowledge, this paper is the first to explore syntactic and se-
mantic structures for seq2seq AMR parsing.

7 Conclusion
We propose two approaches to incorporate syntactic and se-
mantic information into seq2seq-based AMR parsing. The
first approach linearizes source syntax and semantic structure
into a mixed sequence which stitchingly consists of words,
syntactic labels, and semantic labels while the second ap-
proach uses structure-aware encoder to explicitly model syn-
tactic and semantic relations for word pairs. Experimental
results show that the two approaches are capable of model-
ing source syntax and semantics and achieve improvement of
3.1% and 3.4% F1 scores on the benchmark dataset over a
strong seq2seq baseline.
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