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Abstract
Coreference resolution plays an important role in
text understanding. In the literature, various neu-
ral approaches have been proposed and achieved
considerable success. However, structural infor-
mation, which has been proven useful in corefer-
ence resolution, has been largely ignored in pre-
vious neural approaches. In this paper, we focus
on effectively incorporating structural information
to neural coreference resolution from three aspects.
Firstly, nodes in the parse trees are employed as a
constraint to filter out impossible text spans (i.e.,
mention candidates) in reducing the computational
complexity. Secondly, contextual information is
encoded in the traversal node sequence instead of
the word sequence to better capture hierarchical in-
formation for text span representation. Lastly, ad-
ditional structural features (e.g., the path, siblings,
degrees, category of the current node) are encoded
to enhance the mention representation. Experimen-
tation on the data-set of the CoNLL 2012 Shared
Task shows the effectiveness of our proposed ap-
proach in incorporating structural information into
neural coreference resolution.

1 Introduction
Coreference resolution aims to identify mentions in a text that
refer to the same real world entity. It has been one of the
key areas in NLP for two decades [Soon et al., 2001; Ng and
Cardie, 2002; Yang et al., 2004; Lee et al., 2013; Kummerfeld
and Klein, 2013; Wiseman et al., 2015; Clark and Manning,
2016b; Zhang et al., 2018].

Recently, Lee et al. [2017] proposed the first state-of-the-
art end-to-end neural coreference resolution system. They
consider all text spans as potential mentions and therefore
eliminate the need of carefully hand-engineered mention de-
tection systems. The experiment results show that their sys-
tem significantly outperforms all previous work in English
language. However, there still exist two issues to be ad-
dressed. On the one hand, whether the scheme of taking all
text spans as potential mentions is better than traditional rule-
based mention extraction schemes, especially for other lan-
guages? On the other hand, syntactic information has been

proven useful in many natural language understanding tasks
including coreference resolution. Whether introducing syn-
tactic information can further improve the performance of
neural coreference resolution?

For the first issue, after duplicating the neural coreference
resolution system proposed by Lee et al. [2017] using py-
torch 1.01, we replace the neural span pruning based men-
tion extraction model with the traditional rule-based mention
extraction model which extracts mentions directly from syn-
tactic parse trees2. Experimentation with the same setting
in English shows that the overall performance reduces from
65.89% to 63.50%, i.e., with the performance gap of about
2.39% in F1. While for Chinese language, the performance
increases from 58.41% to 60.06%. Further experimentation
shows that considering all text spans as potential mentions
can ensure the recall, however may bring a lot of noise as
well as increase the computational intensity. This indicates
that, the neural span pruning scheme achieves more effective
mention collections for English language, while for Chinese,
the traditional rule-based mention extraction model performs
better than the span pruning scheme.

For the second issue, although structural information has
been largely ignored in neural coreference resolution, struc-
tural embedding approaches have been explored in various
NLP tasks and achieved considerable improvements [Liu et
al., 2017; Tymoshenko et al., 2017; Zhu et al., 2018]. In-
tuitively, neural coreference resolution should benefit from
effective structural information.

In this paper, we incorporate structural information from
three aspects.

• Firstly, we take the nodes of the parse trees as a con-
straint of mention candidates, and filter out those text
spans without any exactly-matched node to reduce the
computational complexity.

• Secondly, we propose a novel contextual encoding ap-
proach based on the traversal node sequence instead of
the word sequence. By traversing the parse tree, we can
achieve a node sequence implying the hierarchical infor-
mation. Furthermore, we use the representation of child
nodes to refine the parent node representation. In this

1https://pytorch.org/
2https://nlp.stanford.edu/software/dcoref.html
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way, structural information can be well incorporated in
text span representation.
• Finally, we encode additional structural features (e.g.,

the path, siblings, degrees, category of the current node)
to improve the mention representation.

Experimentation on the data-set of the CoNLL 2012
Shared Task shows the effectiveness of our proposed ap-
proach in incorporating structural information into neural
coreference resolution.

2 Related Work
Previous studies have shown that structural information
played an important role in coreference resolution. For ex-
ample, [Hobbs, 1978] proposed a parse tree-based pronoun
resolution algorithm. By traversing the corresponding parse
tree in the breadth-first way, the algorithm selected the appro-
priate noun phrase as the antecedent of a given pronoun from
the resulting node sequence according to the dominance and
government binding relationship in the grammatical struc-
ture. [Lappin and Leass, 1994] proposed the RAP algorithm
for both third person pronoun and reflexive pronoun resolu-
tion. The algorithm first calculated the prominence of the
candidate antecedent by manually weighting various linguis-
tic features, and then determined the antecedent using vari-
ous filtering rules. [Kong and Zhou, 2012] proposed a tree-
kernel based approach to pronoun resolution for both English
and Chinese languages. After dynamically expanding and
pruning the parse tree based on the centering theory, com-
petitor information and predicate-argument information, the
algorithm used a convolution tree kernel function to directly
calculate the similarity between the resulting structures and
determine the coreferential relationship.

Due to the outstanding performance of neural networks in
various NLP tasks during the last few years, researchers be-
gan to apply various neural network models to coreference
resolution. For example, [Wiseman et al., 2015] used neural
networks to pre-train two separate subtasks, i.e., anaphoric-
ity determination and antecedent ranking, in learning various
feature representations for coreference resolution. [Wise-
man et al., 2016] used recurrent neural networks to learn
global representations of entity clusters. [Clark and Man-
ning, 2016a] employed reinforcement learning to directly op-
timize a neural mention-ranking model for coreference eval-
uation metrics, and achieved the best known performance on
Chinese portion of the CoNLL 2012 Shared Task. [Lee et al.,
2017] proposed the first end-to-end neural coreference reso-
lution system. They used a bi-directional LSTM and a Head-
finding attention mechanism to represent the mentions, and
exploited a mention-ranking model to determine coreference
clusters. [Zhang et al., 2018] proposed to use a biaffine at-
tention model to get antecedent scores and jointly optimized
the two sub-tasks to improve the performance of neural coref-
erence resolution. [Lee et al., 2018] proposed an approxima-
tion of higher-order inference using the span-ranking archi-
tecture from Lee et al. [2017] in an iterative manner.

From the above we can find that, although structural infor-
mation has been proven very useful to coreference resolution,
it has been largely ignored in neural coreference resolution

Embedding layer

Contextual embedding layer

Span representation layer

Span pruning layer

Antecedent Identification

Coreference resolution results

text Text span

Mention 
detection

Figure 1: Our neural mention-ranking model.

systems. In this paper, we focus on effectively incorporating
structural information into neural coreference resolution.

3 Baseline: Neural Coreference Resolution
Following the work of [Lee et al., 2017], our neural corefer-
ence resolution model adopts the mention-ranking approach.
Such a model scores pairs of mentions for their coreferential
likelihood rather than comparing partial coreference clusters.
Hence it operates in a simple setting where coreference deci-
sions are made independently. Figure 1 shows the framework
of our baseline system, which consists of two components,
i.e., mention detection and antecedent identification.

3.1 Mention Detection
In the mention detection stage, we first combine character-
level, word-level and context-level information with an atten-
tion mechanism to represent each possible mention candidate
(text span). Then, we use some scoring mechanism to rank
the prominence of the text spans. Finally, we select a certain
proportion of text spans as the set of mentions to be resolved.
The detailed procedure of mention detection is shown as the
part enclosed by the dotted line in Figure 1.

For a given text D = {w1, w2, . . . , wND
}, the mention

detector extracts all possible mentions S = {s1, s2, . . . , sn}
where ND means the number of words in the document,
si = {wbi , wbi+1, . . . , wei} means a mention, bi and ei are
the start and end index of mention si, 1 ≤ bi ≤ ei ≤ ND.

• In the embedding layer, for ∀wi ∈ D, by combin-
ing character and word embeddings, we achieve xi =
[wi, ci] ∈ Rdx , where dx = dw + dc, wi ∈ Rdw means
the word embedding of the word wi, and ci ∈ Rdc
means the character embedding vector, which can be
achieved using a Character CNN or a Character LSTM.
In this way, we can get the embedding representation of
the document D

X = [x1,x2, . . . ,xND
] ∈ RND×dx (1)

• In the contextual embedding layer, we use bidirectional
LSTM as the contextual encoder to model the dependen-
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cies between words. For the input xi ∈ Rdx , we can get
the contextual representation hi ∈ Rdh .
• In the span representation layer, we represent a given

text span si = {wbi , wbi+1, . . . , wei} as

si = [hbi ,hei , x̂i,fi] (2)

where, si ∈ Rds , fi is the additional feature vector to
encode the span width, and x̂i is the weighted sum of the
representations of all the words contained in si, which
are learned using the Head-finding attention mechanism.

αt = v>αFFNNα(ht) (3)

ai,t =
exp(αt)∑ei
k=bi

exp(αk)
(4)

x̂t =

ei∑
t=bi

ai,t · xt (5)

• In the span pruning layer, we first use a multi-layer feed-
forward neural network to score the spans according to
their representation. Then, we sort the spans by their
scores, and select a certain part of spans with higher
scores as the mention candidates.

scoremi = FFNNm(si) (6)

3.2 Antecedent Identification
In the antecedent identification stage, the basic idea is to find
the best antecedent in a search space. Similar to traditional
Mention-Pair models, we do mention pairing from the back
to the front in a certain search space according to the mention
appearing order. For each mention-pair instance, we calculate
its score using a feedforward neural network.

scoreai,j = FFNNa([si, sj , si � sj ,fi,j ]) (7)
where fi,j encodes speaker,genre and distance features. In
the coreference scoring layer, we combine the scores of two
mentions si and sj , and the score of the mention-pair instance
(si, sj) to achieve the final coreferential score.

scorei,j =

{
0, sj = ε
scoremi + scoremj + scoreai,j , sj 6= ε

(8)
where, j = ε means the case that the ith mention has no an-
tecedent (i.e., non-anaphoric). At this point, the coreferential
score is 0. For each mention, we choose the mention with the
highest score in the search space as its antecedent.

4 Incorporating Structural Information
In this paper, we incorporate structural information from
three aspects, i.e., taking nodes in the parse trees to filter out
impossible text spans, encoding contextual information with
the traversal node sequence, and encoding additional struc-
tural features (e.g., the path, siblings, degrees, category of the
current node) to enhance the text span representation.

IP-22

VP-20NP-2 PU-21

NN-1

NGO

VC-3 NP-19

QP-7 CP-16

NP-18CD-4 CLP-6

M-5

CP-15

IP-13 DEC-14

VP-12

ADVP-9 VP-11

AD-8 VA-10

很 好

的

NN-17

切入点

。

TOP-23

是

一

个

NGO/是/一/个/很/好/的/切入点/。
NGO is a good entry point.

Figure 2: An example of a parse tree.

4.1 Taking Nodes as a Filter Constraint
Same as [Lee et al., 2017], our baseline system takes all text
spans within a certain length limit as potential mentions. That
is, the only limit is the length of the mention (i.e., the number
of words making up a mention). Taking the sentence shown
in figure 2 as an example, when the length limit is no more
than 10, our baseline system can extract 45 mention candi-
dates (e.g., NGO, NGO是, NGO是一, NGO是一个, NGO是
一个很, NGO是一个很好, ...). Although all possible men-
tions can be covered, a large amount of noise is introduced
due to the neglect of lexical and syntactic information. This
greatly increases the computational burden of the baseline
system. To address this issue, we propose to take node as a fil-
ter constraint. The motivation behind is that each valid men-
tion naturally corresponds to a node in the parse tree. This is
also different from the traditional rule-based mention extrac-
tion schemes, which extract possible mentions directly from
the parse trees ignoring the length limit. After listing all text
spans within the length limit, we look for the corresponding
node for each text span and only keep the text spans having
the node in the parse tree. For the example shown in Figure 2,
for the extracted 45 mention candidates, we can get 15 men-
tions (e.g., 9 words corresponding to leaf nodes, “NGO是一
个很好的切入点。”,“是一个很好的切入点”, “一个”, “一
个很好的切入点”, “很好”, “很好的”) after filtering with the
node constraint.

4.2 Using the Traversal Node Sequence to Encode
Context

Just as noted in 3.1, our baseline system uses a bidirectional
LSTM as the contextual encoder to model the dependencies
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between words. That is to say, the context information is rep-
resented as the dependencies between linear words. In fact,
structural information between constituent words in a men-
tion and between multiple mentions in a sentence is very im-
portant to coreference resolution. In this paper, we propose
a node-based contextual encoder to better concentrate on the
presentation of such information.

Our node-based contextual encoder is performed in three
steps, i.e., contextualizing leaf nodes, updating non-terminal
node representations, and re-contextualizing all nodes.

Contextualizing Leaf Nodes
By traversing the parse tree, we can achieve the node
sequence3. In particular, we traverse the given parse
tree t in post-order to get the node sequence O(t) =

[o
(t)
1 , o

(t)
2 , . . . , o

(t)
nt ], where nt means the number of the nodes

in parse tree t without the leaf nodes. In order to get the rep-
resentation of the vector O(t), we first initialize it with zero
vectors.

O(t) = [0
(t)
1 ,0

(t)
2 , . . . ,0(t)

nt
] ∈ Rnt×dx (9)

Then, we replace the representations of the leaf nodes with
the corresponding word embedding representation.

o
(t)
i =

{
xj if o(t)i is a leaf and t.leaves[j] = o

(t)
i

0 otherwise
(10)

We take the result representation vector o(t) as the input of
the contextual embedding layer instead of the original word
embedding matrix. In this way, the contextual embedding
layer can learn both linear information and hierarchical struc-
ture representation implied in node sequence. So far, we can
achieve the context representations H(t).

H(t) = [h
(t)
1 ,h

(t)
2 , . . . ,h(t)

nt
] ∈ Rnt×dh (11)

Updating Non-terminal Node Representations
For non-terminal nodes, we exploit the representations of
theirs child nodes to refine their representations. The basic
strategy is to form a new representation for each non-terminal
node by using an attention mechanism to transform the vector
representation of their children into a fixed dimension vec-
tor, and a gating mechanism to combine the representation of
child nodes with the original representation. The shaded part
in Figure 3 shows the details.

For the node sequence o(t), we have got the contextual rep-
resentations H(t). For any non-terminal node o(t)i , the se-
quence of its child nodes is marked as O(t)

i .children, and we
can get the fixed dimension vector of the child nodes using
Eq 12. For leaf nodes, we let a(t)

i = h
(t)
i .

a
(t)
i = Γ([h

(t)
j | o

(t)
j ∈ o

(t)
i .children]) (12)

Using a gated mechanism, we can update the representa-
tion of the node o(t)i .

scoregi = σ(Wg[h
(t)
i ,a

(t)
i ]) (13)

3Word nodes are not considered
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Figure 3: The node-based contextual encoder.

h
′(t)
i = scoregi ∗ h

(t)
i + (1− scoregi ) ∗ a

(t)
i (14)

Obviously, when o(t)i .children = ∅,

h
′(t)
i = scoregi ∗ h

(t)
i + (1− scoregi ) ∗ a

(t)
i

= scoregi ∗ h
(t)
i + (1− scoregi ) ∗ h

(t)
i

= h
(t)
i

(15)

In the meanwhile, we use a attention mechanism to imple-
ment the function Γ. Suppose that node o(t)i has child node
o
(t)
j , i.e., o(t)j ∈ o

(t)
i .children, and the contextual representa-

tions of these two nodes are h
(t)
i and h

(t)
j , respectively. We

aim to get a(t)
i using the attention mechanism. In this paper,

we use both dot attention and bilinear attention [Luong et al.,
2015] to compute the correlation between the representation
of child nodes and the given node, with score functions de-
fined as follows:

score(h
(t)
j ,h

(t)
i ) =


h
(t)
j

>
h
(t)
i dot

h
(t)
j

>
Wah

(t)
i bilinear

(16)

After using a softmax function to normalize
score(h

(t)
j ,h

(t)
i ), we can get the final child nodes’ rep-

resentations of node oi.

ai,j =
exp(score(h

(t)
j ,h

(t)
i ))∑

ok∈oi.children exp(score(h
(t)
k ,h

(t)
i ))

(17)

ai =
∑

oj∈oi.children

ai,j · h(t)
j (18)
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Parameter Description Value
Degrees the number of child nodes 3
Siblings the number of left siblings

and right siblings
[1,0]

Category the syntactic category in the
parse tree

NP

Path the path from current node
to the root of the parse tree

[NP,VP,IP,TOP]

Table 1: Additional features.

Re-contextualizing All Nodes
After updating the representations of non-termination nodes,
we feed the achieved representation vector to the contextual
embedding layer again, and take the output H(t) as the final
contextual encoding results.

4.3 Encoding Additional Structural Features
Some additional wide-used structural features as shown in
Table 1 are extracted to enhance the representation of span
texts. The third column lists the values associated with the
node “NP-19” in the example shown in Figure 2.

For the feature pathi = [labelroot, . . . , labeli], we first
use a method similar to Character LSTM to represent it as
a vector, pathi = [flabel,root, . . . ,flabel,i] ∈ Rdepthi×df .
and then take it as the input of a Bi-LSTM. In this way,
we can achieve hlabel,i = Bi − LSTM(flabel,i) =

[~hlabel,i, ~hlabel,i]. and take Eq (19) as the final representa-
tion of path feature.

fpath = [~hlabel,root, ~hlabel,i] (19)

5 Experimentation
In this section, we systematically evaluate our proposed ap-
proach to neural coreference resolution.

5.1 Experimental Settings
All experiments are conducted in the data from the CoNLL-
2012 shared task [Pradhan et al., 2012]. The English part of
this corpus contains 2802 training documents, 343 develop-
ment documents, and 348 test documents. Accordingly, the
Chinese part contains 1810 training documents, 252 develop-
ment documents, and 218 test documents.

Our English models reuse the hyperparameters from Lee et
al. [2017] with the difference between Chinese and English
languages as shown in Table 2. We report the precision, re-
call, and F1 for the standard MUC, B3, and CEAFφ4 met-
rics using the official CoNLL-2012 evaluation scripts, with
the average F1 of the three metrics as main evaluation stan-
dard.

5.2 Experimental Results
Table 3 compares our model with several start-of-the-art sys-
tems for English and Chinese languages, such as [Clark and
Manning, 2016b], which presented a neural cluster-ranking
model for coreference resolution benefiting from entity-level
information, [Clark and Manning, 2016a], which employed

reinforcement learning to directly optimize a neural mention-
ranking model for coreference evaluation metrics, [Lee et al.,
2017], which introduced the first end-to-end coreference res-
olution system with no external resources, and [Lee et al.,
2018], which refined the span-ranking architecture as pro-
posed in Lee[2017] by modeling higher order interactions be-
tween spans in predicted clusters and achieved a significant
improvement. 4

For fair comparison, our baseline duplicate the neural
coreferece resolution system proposed by [Lee et al., 2017]
using pytorch 1.0. Comparing the results of our baseline and
Lee’s[2017], there exists a performance gap of 1.3%in av-
erage F1. This is caused by much less fine-tuning of vari-
ous layers in mention detection due to GPU-resource limita-
tion and time efficiency considerations. On one hand, [Lee
et al., 2017] use the Dropout strategy proposed by [Gal
and Ghahramani, 2016]. Instead, we use the official bidi-
rectional LSTM provided in pytorch. On the other hand, we
re-implement some time consuming processes, such as text
span pruning, in batch form. This significantly reduce the
training time of our baseline to only 1/6 as of Lee’s[2017] on
the same hardware environment.We can find that,

• In comparison with our baseline, our improved model
with structural information significantly outperforms the
baseline in all metrics for both Chinese and English lan-
guages. This indicates the effectiveness of our incorpo-
rated structural information.

• For Chinese, our improved model achieves competitive
results with the two start-of-the-art systems. Especially,
our model outperforms them in precision in all metrics.
This is due to our incorporation of richer structural in-
formation representations.

• For English, our model outperforms [Clark and Man-
ning, 2016b] and [Clark and Manning, 2016a] in all met-
rics. Comparing the results of our model with [Lee et al.,
2017]’s, we can find that the most significant gains come
from the improvement in precision. This indicates the
effectiveness of our introduced structural information.
There is still a big performance gap between our pro-
posed model with [Lee et al., 2018]. This is largely due
to the employment of ELMo[Peters et al., 2018]. More-
over, in this paper, we focus on incorporating structural
information. In the future, we will explore more strate-
gies to improve our system.

To show the contribution of each structural information to
our proposed model, we take the system without any struc-
tural information as the baseline, and incorporate structural

4It is worth noting that, [Luo and Glass, 2018] presented a word
embedding model to learn cross-sentence dependency. Integrat-
ing this model into the coreference resolution system proposed by
Lee[2017] improved the average F1 by 0.6% from 67.2 to 67.8.
[Peters et al., 2018] introduced a new type of deep contextualized
word representation ELMo(Embeddings from Language Models).
Integrating ELMo into the coreference resolution system proposed
by Lee[2017] improved the average F1 by 3.2% from 67.2 to 70.4.
However, these two studies mainly focus on the more effective word
representation approaches rather than coreference resolution itself.
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Language Component Value Parameters

English
Word Embedding 300D Glove[2014] & 50D Turian[2010] trainable=false
Character Embedding 8D random embedding trainable=true

Character Encoder Character CNN window sizes=[3,4,5],
each consisting of 50 filters

Chinese
Word Embedding 300D Qiu[2018] & 64D Polyglot[2013] trainable=false
Character Embedding 64D Polyglot[2013] trainable=false
Character Encoder Character LSTM hidden size=100

Table 2: Difference of Word and Character Embeddings between Chinese and English Languages.

MUC B3 CEAFφ4 CoNLL
Systems P(%) R(%) F P(%) R(%) F P(%) R(%) F Avg.F1

Chinese

[Clark and Manning, 2016b] 73.85 65.42 69.38 67.53 56.41 61.47 62.84 57.62 60.12 63.66
[Clark and Manning, 2016a] 73.64 65.62 69.40 67.48 56.94 61.76 62.46 58.60 60.47 63.88

Our baseline 74.54 60.35 66.70 66.79 49.94 57.15 61.01 48.62 54.11 59.32
Our model 76.95 64.58 70.21 70.58 54.68 61.60 64.92 55.36 59.75 63.85

English

[Clark and Manning, 2016b] 78.93 69.75 74.06 70.08 56.98 62.86 62.48 55.82 58.96 65.29
[Clark and Manning, 2016a] 79.19 70.44 74.56 69.93 57.99 63.40 63.46 55.52 59.23 65.73

[Lee et al., 2017] 78.40 73.40 75.80 68.60 61.80 65.00 62.70 59.00 60.80 67.20
[Lee et al., 2018] 81.40 79.50 80.40 72.20 62.30 70.80 68.20 67.10 67.60 73.00

Our baseline 78.80 70.76 74.57 69.87 58.44 63.65 62.16 56.97 59.45 65.89
Our model 80.52 73.92 77.08 71.17 61.48 65.97 64.26 61.13 62.66 68.57

Table 3: Performance of the start-of-the-art systems on the test set from the CoNLL-2012 shared task.

Chinese English
Systems Avg.F1 ∆ Avg.F1 ∆
Baseline 60.82 66.01

+S1 62.71 1.89 66.42 0.41
+S2 63.02 2.20 66.93 0.92
+S3 62.00 1.18 66.51 0.50

+S1+S2 63.67 2.85 67.11 1.1
+S1+S3 63.03 2.21 66.77 0.76
+S2+S3 63.53 2.71 67.04 1.03

+S1+S2+S3 64.00 3.18 67.27 1.26

Table 4: Performance of our model on the development set from
the CoNLL-2012 shared task using automatic parse trees (S1 - node
constraint, S2 - node-based contextual encoder, S3 - additional struc-
tural features).

information one by one. Table 4 shows the average F1 on the
development data set using automatic parse trees5 for both
English and Chinese languages.

From the results we can find that,

• The results on independent integration of the three
schemes show that the second scheme (i.e.,the node-
based contextual encoder) performs the best in both Chi-
nese and English languages. It contributes about 2.20
and 0.92 F1 to the final results for Chinese and English,
respectively. This indicates that the proposed node-
based contextual embedding approach can well enhance
the representation of the mentions and contribute much
to coreference resolution.

5The automatic parse trees are provided by the CoNLL-2012
shared task.

• The combination of the three schemes achieves the best
performance in both English and Chinese languages.
This indicates the effectiveness of the incorporating
structural information.

6 Conclusion

In this paper, we focus on effectively incorporating various
kinds of structural information into neural coreference resolu-
tion. In particular, three schemes are exploited. First, we take
nodes in the parse trees as a constraint to filter out impossible
text spans in reducing the computational complexity. Sec-
ond, we present a node-based contextual encoding scheme
to capture hierarchical information in enriching the text span
representation. Last, we encode additional structural features
in enhancing the mention representation. Experimentation on
the data-set of the CoNLL 2012 Shared Task shows the effec-
tiveness of the structural information. Although our model
much improves the performance of coreference resolution,
there still exists much improvement room, such as the em-
ployment of ELMo. In the future work, we will pay more
attention to antecedent identification.
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