Building Personalized Simulator for Interactive Search

Qianlong Liu1, Baoliang Cui2, Zhongyu Wei1*, Baolin Peng3, Haikuan Huang2, Hongbo Deng2, Jianye Hao4, Xuanjing Huang1 and Kam-fai Wong3

1Fudan University, China
2Alibaba Group, China
3The Chinese University of Hong Kong, Hong Kong
4Tianjin University, China

liuql17@fudan.edu.cn, moqing.cbl@taobao.com, zywei@fudan.edu.cn, blpeng@se.cuhk.edu.hk, haikuan.hhk@alibaba-inc.com, dhb167148@alibaba-inc.com, jianye.hao@tju.edu.cn, xjhuang@fudan.edu.cn, kfwong@se.cuhk.edu.hk

Abstract

Interactive search, where a set of tags is recommended to users together with search results at each turn, is an effective way to guide users to identify their information need. It is a classical sequential decision problem and the reinforcement learning based agent can be introduced as a solution. The training of the agent can be divided into two stages, i.e., offline and online. Existing reinforcement learning based systems tend to perform the offline training in a supervised way based on historical labeled data while the online training is performed via reinforcement learning algorithms based on interactions with real users. The mis-match between online and offline training leads to a cold-start problem for the online usage of the agent. To address this issue, we propose to employ a simulator to mimic the environment for the offline training of the agent. Users’ profiles are considered to build a personalized simulator, besides, model-based approach is used to train the simulator and is able to use the data efficiently. Experimental results based on real-world dataset demonstrate the effectiveness of our agent and personalized simulator.

1 Introduction

Online shopping platforms, such as Amazon, Taobao, and eBay, have dramatically changed people’s living style. The volume of products on these platforms has grown tremendously in recent years, which escalate the need for personalized products recommendation. Extensive machine learning algorithms have been studied [Li et al., 2011; Clark, 2015; Yin et al., 2016; Liu et al., 2017] for automatic product retrieval and recommendation. However, existing research tends to treat the problem as a static one without modeling interactions with users. The shopping process is complicated because users might not be certain with their need in the beginning, therefore, a single-step solution might not be enough to meet users’ requirement. In order to improve the shopping experience and help users identify their need quickly, interactive search is emerging. An illustration of interactive search can be seen in Figure 1. At each turn, the system presents a set of tags related to the product together with search results based on user queries. A user can either type new keywords or click any tag provided to update the request. Based on users’ feedback, a new set of ranked products and tags would be returned.

It usually involves several steps for users to identify their need. Therefore, interactive search can be naturally formulated as a sequential decision problem. Recently, researchers have explored to utilize Reinforcement Learning (RL) based agent for product recommendation and information retrieval [Taghipour and Kardan, 2008; Zhao et al., 2018; Zheng et al., 2018; Choi et al., 2018]. The training of these models can be divided into two stages, namely, online and offline. Existing research usually trains the model in a supervised fashion offline based on historical data while the online learning is performed by interacting with real users via RL algorithms. Though promising results have been reported, the
optimization objectives of offline training and online learning are different, which leads to a cold-start problem for the online usage of the agent. In order to address this issue, we propose to design a simulator to interact with the agent for its offline training.

Designing an environment simulator for online shopping platform is challenging for two reasons. First, different users have different preferences. Second, the labeled data for the offline training is usually limited. How to train the agent efficiently becomes a problem. In order to tackle these two challenges, we introduce a personalized, model-based environment simulator, which takes the users’ profiles into consideration when mimicking the behavior of real users. In summary, our contribution is three-fold:

- We propose to employ an environment simulator for the offline training of the agent in interactive search.
- We propose a multi-task learning approach to model personalized user preferences based on real user profiles. Besides, we utilize a model-based RL algorithm to make full use of limited labeled data.
- Experimental results on a real-world dataset show the effectiveness of our simulator. By estimating the state transition probability, the collected dataset can be used efficiently via our simulator and the agent converges faster.

2 Task Formulation

2.1 Task

In interactive search (Figure 1), a search session is initialized by a user with his/her first query. At each turn t, the agent returns a set of ranked products (lower part) based on query q_t. Meanwhile, the agent receives a set of candidate tags $T_t = \{t_1, \cdots, t_{n_t}\}$, where n_t is the number of candidate tags at turn t, and a subset of K (where $K \leq |T_t|$) ranked tags (middle part) are recommended to help user search desired products. If the displayed products cannot meet the user’s demand, the user can either click on one of the displayed tags or type keywords to update his/her query for a better search result. Here are some notations used in this paper:

- User u. To model different preferences of users, each user is represented as a vector $u \in \mathcal{U}$ with three features, i.e., the age, gender and purchase power.
- Query q. Each query is represented as a sequence of words $q = (w_1, \cdots, w_{n_q}) \in \mathcal{Q}$, where w_i is the i-th word in q and n_q is the number of words in q.
- Tag t. Each tag $t = (w_1, \cdots, w_{n_t})$ is also a sequence of words, where n_t is the number of words in tag t.

2.2 MDP Formulation

We cast this problem as a Markov Decision Process (MDP) from the agent’s perspective. An MDP consists of a tuple of five elements $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$ which are defined as follows:

- State space \mathcal{S}. A state $s_t = (u, q_t) \in \mathcal{S}$, where $u \in \mathcal{U}$ is the user who initialized this session and q_t is the query at turn t. After the user clicks on a tag or types several new keywords, the state will be updated to $s_{t+1} = (u, q_{t+1})$, where the q_{t+1} is updated by appending the new keywords or the words of the clicked tag to q_t.
- Action space \mathcal{A}. At turn t, an action $a_t = (a_{t,1}, \cdots, a_{t,K}) \in \mathcal{A}(s_t)$ is a sequence of K tags displayed to the user at turn t. Given a set of candidate tags T_t at turn t, the action space $\mathcal{A}(s_t)$ is the set of all permutations of K tags chosen from T_t.
- Reward \mathcal{R}. After the agent takes an action a_t, given a state s_t, i.e., displaying a sequence of tags to the user, the user can click one of the tags or type in several keywords. The agent will receive an immediate reward $r_t = \mathcal{R}(s_t, a_t)$ according to the feedback of the user u.
- Transition probability \mathcal{P}. $p(s_{t+1}|s_t, a_t)$ is the probability of state transition from s_t to s_{t+1} after the agent takes an action a_t at state s_t.
- Discount factor γ, $\gamma \in [0,1]$ defines the discount factor when we measure the present value of future reward.

In RL, the policy π describes the behavior of an agent, which takes the state s_t as input and outputs the probability distribution over all possible actions $\pi(a_t|s_t)$, $\forall a_t \in \mathcal{A}(s_t)$. The agent can be trained via RL-based algorithms, where its goal is to find an optimal policy π which maximizes the discounted cumulative reward.

3 Environment Simulator

In our task, there are three tasks that the environment needs to consider at each turn, i.e., returning a feedback to the agent, terminating or continuing the current session and transiting to a new state. Our simulator is thus designed as Figure 2 that combines three sub-tasks:

- Click: This sub-task predicts whether one of displayed tags will be clicked by the real user or not. According to the predicted result, the immediate reward will be returned to the agent.
- Terminate: This sub-task decides to terminate or continue this current search session.
- Transition: At each turn, the state will transit to a new state and this sub-task models the transitions between states.

As shown in Figure 2, the lower layers are shared across all three tasks, while the top layers are task-specific.

![Figure 2: Our multi-task model-based simulator, including three sub-tasks of clicking (binary classification), terminating (binary classification) and transition (multi-classes classification).](image-url)
Abstract query
Query
RewardAction
+User

Shared layer. At each turn, the simulator takes the state \(s = (u, q) \) and last agent action \(a = (t_1, \ldots, t^K) \) as input. Considering that the query \(q \) and all tags are a sequence of words respectively, we first use a bidirectional LSTM to encode the query and tags. Then, the order information between tags in action \(a \) is also important, so another bidirectional LSTM is employed to extract the order information between tags. The tags \(u, q \) and action \(a \) are encoded as \(h^{s,u}, h^{s,q} \) and \(h^{s,a} \) via a shared layer of our simulator.

Task-specific layer. The task-specific layer of each sub-task is a two fully connected layers with LeakyReLU as activation function. It takes \(h^{s,u}, h^{s,q}, h^{s,a} \) as input and outputs the result of corresponding sub-task. Considering that all the three sub-tasks are classification problems, we use cross entropy as the loss function for all the three sub-tasks. Now, we can write the total loss function of our simulator as:

\[
L^s(\theta^s) = L^s_{\text{click}}(\theta^s) + L^s_{\text{trmt}}(\theta^s) + L^s_{\text{tr}}(\theta^s)
\]

where \(L^s_{\text{click}}(\theta^s), L^s_{\text{trmt}}(\theta^s) \) and \(L^s_{\text{tr}}(\theta^s) \) are the losses of clicking, terminating and transition sub-tasks respectively.

Transition Probability Approximation
In order to use the collected data efficiently, we approximate the transition probability matrix of states. Inspired by Serban et al. [2018], rather than estimating the full transition probability \(p(s'|s,a) \) directly, we approximate it with:

\[
p(s'|s,a) = p(u, q', u, q, a) = p^u(q'|q, a) \\
\approx \sum_{z' \in Z} p^u_{abs}(z'|q, a)p^u_{abs}(q'|z')
\]

where \(u \) is the user that interacts with the agent in current session, and \(Z \) is a discrete abstract query space which meets the condition of \(|Z| \ll |Q| \). In other word, we estimate a user-specific transition probability matrix for each user \(u \). In this way, the size of original transition probability matrix \(|A||S|^2 \), where \(|S| = |U||Q| \), will be reduced to \(|A||U||Q||Z|^2 \). Further more, by introducing the abstract query space \(Z \), it will be further reduced to \(|U||A||Q||Z| + |Q||Z| \). After the above two steps, the sample complexity for accurately estimating the transition probability will be reduced greatly.

The transition is illustrated in Figure 3. Given a user \(u \), a state \(s_t = (u, q_t) \) is sampled with the probability \(p^u_{abs}(q_t|z_t) \) conditioned on an abstract query \(z_t \in Z \). Then the agent takes an action \(a_t \in A(s_t) \) according to its policy \(\pi \) and receives the immediate reward \(r_t \) from the environment. Conditioned on the query \(q_t \) and action \(a_t \), the next abstract query \(z_{t+1} \) is sampled with the probability \(p^u_{abs}(z_{t+1}|q_t, a_t) \).

Algorithm 1: Building real experience buffer with abstract query.

1. initialize \(D', D'^u, D^u_z \) with empty set;
2. for \(i \leftarrow 1 \) to \(N \) do
3. get \(i \)-th transition \((u, q, a, r, q', trmt)\) from \(D' \) and \(s = (u, q), s' = (u, q') \);
4. \(z \leftarrow f_{q\rightarrow z}(q); \)
5. \(z' \leftarrow f_{q\rightarrow z}(q'); \)
6. append \((s, z, a, r, s', z', trmt)\) to \(D', D'^u, D^u_z \) respectively;
7. end

The transition distribution of \(z \) is approximated via transition sub-task of our simulator, i.e., \(p^u_{abs}(z_{t+1}|q_t, a_t) \approx p^u_{abs}(z_{t+1}|u, q_t, a_t; \theta^u) = \tilde{p}^u_{abs}(z_{t+1}|s_t, a_t; \theta^u) \). In terms of the transition from \(z_t \) to \(q_t \), with the probability \(p^u_{abs}(q_t|z_t) \), we just sample a \(q \) as \(q_t \) uniformly from the pre-built buffer \(D^u_z \) (see Algorithm 1), where \(f_{q\rightarrow z} \) is a known surjective function mapping from \(Q \) to \(Z \). And this will lead to:

\[
p^u_{abs}(q|z) = 0 \quad \forall q \in Q, \ z \in Z \text{ if } f_{q\rightarrow z}(q) \neq z.
\]

4 RL-based Agent
In our scenario, an action \(a_t = (t_1, \ldots, t^K) \) is a sequence of \(K \) tags (or sub-actions), and the number of candidate tags \(T_i \) is varying at different turns. This makes \(A(s_t) \) a discrete dynamic combinatorial action space. Thus, the traditional architecture of DQN that takes the state as input and outputs Q-values for each action at the output layer, is not suitable for this problem. We consider another architecture of Q-learning, named DRRN [He et al., 2016], which takes the pair of state and action \((s_t, a_t) \) as input and outputs the Q-value for this pair. The architecture of our agent is similar to the shared layer of our environment simulator. The user \(u \), query \(q \) and action \(a \) are encoded as \(h^{s,u}, h^{s,q} \) and \(h^{s,a} \) respectively. Then \(h^{s,u}, h^{s,q} \) and \(h^{s,a} \) are concatenated as \(h^s \).

The transition from \(s_t \) to \(q_t \) with the probability \(p^u_{abs}(q_t|z_t) \), we just sample a \(q \) as \(q_t \) uniformly from the pre-built buffer \(D^u_z \) (see Algorithm 1), where \(f_{q\rightarrow z} \) is a known surjective function mapping from \(Q \) to \(Z \). And this will lead to:

\[
p^u_{abs}(q|z) = 0 \quad \forall q \in Q, \ z \in Z \text{ if } f_{q\rightarrow z}(q) \neq z.
\]
Algorithm 2: Rollout Simulation

input : Agent(s; θa), Simulator(s, a; θs), U, Nz, T, Dα, Dα*, Dβ, ∀ z ∈ Z, ∀ u ∈ U
output: Updated simulated experience buffer Dα
1 for i ← 1 to Nα do
 2 sample a user u from U;
 3 sample non-terminal transition (s, a, z, r, s′, trmt) from Dα;
 4 si ← s;
 5 for t ← 1 to T − 1 do
 6 at ← argmaxq∈A(s; θa) q(s, trmt) // greedy
 7 at ← argmaxq∈A(s, at; θa) q(s, at, trmt) // greedy
 8 sample zi+1 with probability pabs(zi+1|si, at);
 9 rt ← getReward(zi);
 10 sample s uniformly as st+1 from Dαs+1;
 11 if trmt is true then break;
end

Algorithm 3: Training Algorithm

input : Dα, fα→z(s, T, Nz, C, m
output: Agent(s; θa)
1 build Dα, Dα*, Dα+, ∀ z ∈ Z, ∀ u ∈ U with Algorithm 1;
2 initialize Agent(s; θa), Agent(s; θα−);
3 pre-train the Simulator(s, a; θs) randomly;
4 pre-train the Simulator(s, a; θa) with Dα via supervised
 learning to minimize Eq. 1;
5 initialize the simulated experience buffer Dα (fixed length)
 via Algorithm 2;
6 for i ← 1 to ∞ do
 7 get m minibatches from Dα;
 8 update θα with m minibatches to minimize Eq. 4;
 9 rollout simulation and update Dα with Algorithm 2;
 10 sample m minibatches from Dα;
 11 update θα with m minibatches to minimize Eq. 4;
 12 reset θα− = θa every C steps;
 13 if θα are converged then break;
end

Figure 4: The distribution of transitions over different user groups.

1 − ε and takes an action a ∈ A(s) randomly with probability ε. The training procedure of our agent and simulator is described in Algorithm 3. The simulator is pre-trained to minimize the total loss via supervised learning firstly (line 3) and then minimize the losses of three sub-tasks respectively (line 4). At each step, the agent is first trained with real experience replay (line 8). Then, the agent interacts with the simulator (line 9) and simulated experience replay is performed on the simulated experiences buffer (line 11).

5 Experiments

5.1 Dataset and Abstract Query

Our dataset is derived from the log of Taobao APP, which is processed into a transition tuple, i.e., (s, a, z, r, s′, trmt). The user feature u ∈ R9 is the concatenation of three one-hot vectors, namely, age (3 categories), gender (3 categories including null value) and purchase power (3 categories). And the data distribution is shown in Figure 4. For a transition, if a user clicked on one of the recommended tags, the reward r = 1, otherwise r = 0. We have 17,979 transitions with

Table 1: Description of our dataset, of which 60% for training, 20% for testing, 20% for validation.

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>10,788</td>
<td>3,595</td>
<td>3,596</td>
</tr>
<tr>
<td>Terminate</td>
<td>16,182</td>
<td>5,393</td>
<td>5,394</td>
</tr>
<tr>
<td>Ave. # of tags</td>
<td>3.93</td>
<td>5.97</td>
<td>3.98</td>
</tr>
<tr>
<td>Ave. length of tags</td>
<td>2.56</td>
<td>2.56</td>
<td>2.56</td>
</tr>
<tr>
<td>Ave. length of query</td>
<td>5.55</td>
<td>5.20</td>
<td>5.22</td>
</tr>
</tbody>
</table>

The largest E-commerce platform in China.
(i.e., $K = 3$). The target network of the agent is updated every 200 steps. The hidden size (both bidirectional LSTM and fully connected layers) of simulator and agent is 5 and 10. The length of simulated experiences buffer D^s is 1000.

Evaluation Metrics
We evaluate our agent for both offline and simulated online setting and compare it with different training modes. For offline evaluation, we treat the tag clicked by real user as the positive one. We borrow metrics from information retrieval, including Mean Average Precision at n (MAP@n), Normalized Discounted Cumulative Gain at n (NDCG@n) and Recall at n (Recall@n)\(^3\). Assuming that the number of the clicked tag is 1, we have MAP@1 = NDCG@1 = Recall@1 and only Recall is reported at position 1. It’s worthy noting that only transitions with a clicked tag is used for offline evaluation.

For simulated online evaluation, we let agents trained to interact with our simulator. The metrics used include average cumulative reward and average number of turns per session. In the scenario of online shopping, it is better that users spend more time on the platform, so a larger average turn is preferred.

Baselines
We compare our model with some baselines:

- **Random**: Given a state s, the random agent always takes an action $a \in A(s)$ randomly.
- **DQN**: The agent is trained with real experiences replay without interacting with the simulator (Algorithm 3 without lines 9-11).
- **DQN-Sim**: The agent is trained via interacting with the simulator only (Algorithm 3 without lines 7-5).
- **DQN-Both**: The agent is trained with both real experiences replay and the simulator (Algorithm 3).

At each training step, DQN-Both is updated with $2m$ batches (both real and simulated experiences), while both DQN and DQN-Sim are updated with m batches, i.e., real and simulated experiences respectively.

5.3 Experimental Results
In this section, we first compare our DQN agent with Random agent to evaluate the performance of our RL-based agents. Then, we compare the DQN agent with both DQN-Sim agent and DQN-Both agent to show that the training of the agent is converged faster and its performance is better with the assistance of the simulator.

Figure 5 shows the Recall of different agents at position 1, 2 and 3. We can see that all the RL-based agents outperform the random agent greatly on all metrics, which demonstrates the performance of our RL-based agents.

Table 2 shows the simulated online performance of different agents at training step $\in \{4K, 10K\}$. As we can see, the two simulator-involved agents outperform the DQN agent in terms of both reward gained and number of turns lasted

$\text{Table 2: The performance of different agents at training step $\in \{4K, 10K\}$ on 1K simulated sessions.}$

<table>
<thead>
<tr>
<th>Step</th>
<th>Agent</th>
<th>Reward</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K</td>
<td>DQN</td>
<td>4.147</td>
<td>9.358 ± 1.072</td>
</tr>
<tr>
<td></td>
<td>DQN-Sim</td>
<td>5.721</td>
<td>12.284 ± 1.011</td>
</tr>
<tr>
<td></td>
<td>DQN-Both</td>
<td>6.398</td>
<td>13.510 ± 0.347</td>
</tr>
<tr>
<td>10K</td>
<td>DQN</td>
<td>6.266</td>
<td>13.287 ± 0.288</td>
</tr>
<tr>
<td></td>
<td>DQN-Sim</td>
<td>6.432</td>
<td>13.640 ± 0.152</td>
</tr>
<tr>
<td></td>
<td>DQN-Both</td>
<td>6.395</td>
<td>13.544 ± 0.238</td>
</tr>
</tbody>
</table>

\(^3\)Considering that there exists only one positive tag for one query (i.e., one transition), we use Recall@n rather than Precision at n (Recall@$n=1 \times P@n$ in this work).

Figure 5: Learning curve of different agents on Recall. The \triangle, \times and \circ marked lines are the metrics at position 1, 2 and 3 respectively. The performance of different agents are evaluated on validation set (only transitions with click = 1) during the training of agents. The NDCG and MAP curve have similar trends with Recall curve due to the high relevance.

\(\text{(the higher the better). At training step } = 4K, \text{ the DQN-Both outperforms the two other agents. However, at training step } = 10K, \text{ DQN-Sim agent reaches the best performance. The reason is that our environment simulator cannot mimic the behavior of real environment perfectly, which results in a dynamic environment for DQN-Both agent when replaying both real experiences and simulated experiences, making it difficult for DQN-Both agent to learn an optimal policy for both the real environment and simulated environment.}

Table 3 shows the offline performance of different agents at training step $= \{2K, 4K, 10K\}$. At training step $= 2K$, 4K, both DQN-Sim agent and DQN-Both agent outperform DQN agent in a large margin. As the training continues, the gap between the DQN agent and the two simulator-involved agents is decreasing. The DQN-Sim agent, accessing the real data indirectly through our simulator, achieves comparable performance to DQN agent which indicates the effectiveness of our simulator.

More importantly, the DQN-Sim agent converges much faster than DQN agent during the training. We attribute this to the trade-off between exploration and exploitation. In other words, the real experiences buffer collected in advance is fixed during the training of the agents. Thus, the DQN agent is trained with a fixed buffer and there is no exploration of action space and state space. While the DQN-Both agent and DQN-Sim agent are trained via interacting with the simulator, during which they can have a better exploration.
As shown in Table 4, we can see that only 3.9% of actions equals to 1, it is the same as DQN with fixed real experiences. When the number of rollouts can be enforced with the assistance of our simulator. We further analyze shows that agent is able to explore larger action space with experiences generated by the simulator. In future, we will explore to investigate how the exploration can be enforced with the assistance of our simulator. We present the percentage of action space explored by the agent in terms of number of rollouts. When the number of rollouts equals to 1, it is the same as DQN with fixed real experiences. As shown in Table 4, we can see that only 3.9% of actions can be visited without experiences generated by the simulator. While the percentage of visited actions increases greatly when the simulator generated experiences are involved. The number increases with the number of rollouts.

Performance of environment simulator
This performance of our simulator on three sub-tasks is explored in Table 5. We use three metrics including recall, precision and F1 score.

6 Related Work
RL-based algorithms have been applied to different scenarios of recommendation. [Zhao et al., 2018] applies actor-critic algorithm to solve items recommendation involving the 2-D order between items in one page. [Zheng et al., 2018] integrates user behavior and profile information into state representation for online news recommendation with RL-based agent. [Choi et al., 2018] introduces an RL-based framework for recommendation where states are represented as grid-world obtained from bi-clustering to reduce the state space and action space. [Chen et al., 2018] employed stratified sampling and regret approximation to stabilize the learning of agent for recommendation.

To our knowledge, the agenda-based simulator [Schatzmann et al., 2007] is the first simulator for RL-based tasks, and have been widely applied in dialogue system [Wei et al., 2018; Li et al., 2017; Peng et al., 2017]. It is rule-based, where the handcrafted action space of environment simulator should be pre-defined and cannot be generalized to complex tasks (e.g., online shopping). From the perspectives of simulator and agent, the interacting process can both be treated as a sequential decision problem respectively. Thus, a simulator could be learned via inverse reinforcement learning based on experts’ (users’) demonstrations [Chandramohan et al., 2011]. What’s more, the sequence-to-sequence architecture could also be employed to model the user simulator [Asri et al., 2016]. [Peng et al., 2018] propose a multi-task user simulator to interact with the agent. Instead of transitioning into next state directly, it selects one of the pre-defined user actions and an additional state tracker is needed to update the state.

How to train the agent with collected data efficiently has attracted a lot of research. [Lu et al., 2018] introduce two approaches for data augmentation in task-completion tasks so that the agent could be trained more efficiently. Considering the model-based RL algorithms could learn a better policy from less data, state abstraction have been used to reduce the complexity of model-based RL methods [Serban et al., 2018; Jiang et al., 2015].

7 Conclusion and Future Work
In this work, we introduce a multi-task model-based environment simulator for online shopping platform to train the RL-based agent via interactions. Experimental results on real-world dataset demonstrate that the agent can converge faster with the assistance of the simulator. Further analysis shows that agent is able to explore larger action space with experiences generated by the simulator. In future, we will explore to improve the performance of the simulator to provide a better simulation of the environment.

Acknowledgments
This work is partially funded by National Natural Science Foundation of China (No. 61751201), National Natural Science Foundation of China (No. 61702106) and Shanghai Science and Technology Commission (No. 17JC1420200, No. 17YF1427600 and No. 16JC1420401).
References

