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Abstract
Aspect-based sentiment analysis (ABSA) is a fine-
grained task. Recurrent Neural Network (RNN)
model armed with attention mechanism seems a
natural fit for this task, and achieves the state-
of-the-art performance recently. However, previ-
ous attention mechanisms proposed for ABSA may
attend irrelevant words and thus ruin the perfor-
mance, especially when dealing with long and com-
plex sentences with multiple aspects. In this pa-
per, we propose a novel architecture named Hierar-
chical Gate Memory Network (HGMN) for ABSA:
firstly, we employ the proposed hierarchical gate
mechanism to learn to select the related part about
the given aspect, which can keep the original se-
quence structure of sentence at the same time.
After that, we apply Convolutional Neural Net-
work (CNN) on the final aspect-specific memory.
We conduct extensive experiments on the SemEval
2014 and Twitter dataset, and results demonstrate
that our model outperforms attention based state-
of-the-art baselines.

1 Introduction
Aspect-based sentiment analysis (ABSA) is an important sub-
task in sentiment classification, and has attracted much atten-
tion in recent years [Pontiki et al., 2014; Liu, 2012]. The main
task is to identify the sentiment polarity (i.e., positive, neu-
tral, or negative) expressed towards the given aspect. Given
that the polarities could be same or opposite when different
aspects are considered, in order to predict sentiment polarity
correctly, an essential step is to select aspect-specific effective
text spans1.

Considering have achieved great success in many areas,
Recurrent Neural Networks (RNNs) armed with attention
mechanism, proposed in machine translation [Bahdanau et
al., 2014], seem a natural solution for this problem, and ac-
tually achieve the state-of-the-art performance recently. For
example, recent works [Wang et al., 2016; Tang et al., 2016b;

1In this paper, we call the related part about the given aspect of
the sentence as aspect-specific effective text spans, or effective text
spans shortly.

Chen et al., 2017; Liu and Zhang, 2017; Ma et al., 2017] ap-
ply attention mechanism to enforce the model to pay more at-
tentions on the related part of the sentence about the given as-
pect, and finally get a weighted contextual representation for
sentiment prediction. However, these attention-based meth-
ods have some drawbacks. Firstly, the attention mechanism
can be viewed as the process of one-shot soft selection in gen-
eral and thus may attend irrelevant words and introduce noise
in predicting the sentiment polarity of the specific aspect es-
pecially when dealing with long and complex sentences with
multiple aspects. Secondly, the aggregated contextual repre-
sentation obtained by the attention mechanism is usually used
as input of following fully connected layer. We conjecture
that this simple fully connected layer may not have enough
capacity to learn to distinguish complex linguistic structures
such as negation sentence, comparative sentence and even
the noise introduced by the attention mechanism effectively.
Moreover, after such one-shot soft selection, the original se-
quence structure of sentence is destroyed and a lot of useful
information such as word order is lost, which prevents the use
of more effective text classifier. We show such drawbacks
by several misclassified examples by ATAE-LSTM [Wang et
al., 2016], let us consider the following sentences with atten-
tion scores shown in Figure 1 (The color depth represents the
attention scores and the given aspects are in bold): In sen-

Figure 1: Attention Visualization.

tence (1), ATAE-LSTM attends the incorrect words “worst”;
while in sentence (2), although ATAE-LSTM learns to attend
the correct words “not” and “dissapointed”, the prediction is
still wrong mainly because the model can’t learn a meaning-
ful semantic combination of different parts mainly due to the
mentioned simple fully connected layer.

In this paper, we propose a new architecture, named
Hierarchical Gate Memory Network (HGMN), to solve the
above issues based our observations. Firstly, we introduce
a novel Hierarchical Gate Mechanism (HGM) to distill out
aspect-specific effective text spans to construct an aspect-
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specific memory representation layer by layer. For example,
in the sentence “Granted the space is smaller than most, it
is the best service you will find in even the largest of restau-
rants.”, the sentiment polarity about aspect space can be de-
termined by “Granted the space is smaller than most,” only.
The goal of HGM is to distill out such aspect-specific effec-
tive text spans in sentence instead of only the aggregated con-
textual representation. During the process of selection, HGM
also builds the contextualized memory with RNNs model on
effective text spans per layer, and the process can be repeated
by the hierarchical structure to generate a dynamically ad-
justable aspect-specific memory representation. As we men-
tion earlier, the main advantage is that it can keep the se-
quence structure while selecting the aspect-specific effective
text spans. After that, we apply Convolutional Neural Net-
work (CNN) on the final aspect-specific memory for senti-
ment prediction.

Meanwhile, we also make some attempts to enhance the
selective ability of HGM. Intuitively, the part-of-speech tag
(POS tag) information could be helpful for this task, that is,
words with different POS tag such as “food” and “the” should
play different roles in determining the final sentiment polar-
ity. Similarly, the relevant distance between the aspect and
the context word may also have different roles. Therefore,
we leverage the POS tag and position information to enhance
the selective capacity.

2 Related Work

Aspect-based sentiment analysis (ABSA) can be considered
as a fine-grained sentiment analysis task which aims at iden-
tifying the sentiment polarity of a sentence expressed towards
a specific aspect [Pontiki et al., 2014]. The traditional meth-
ods for aspect-based sentiment analysis mostly rely on rich
manual features and syntactic dependencies [Nasukawa and
Yi, 2003; Pang et al., 2002; Turney, 2002], which are labor
intensive and can’t model the relatedness between the aspect
and context words. Jiang et. al [Jiang et al., 2011] first em-
phasize the importance of targets according to their manual
evaluation results that 40% of sentiment classification errors
are caused by not considering aspects. Since then, research
on ABSA has focused on how to better take aspect informa-
tion into account, some related works are described below.

2.1 Neural Network for Aspect-based Sentiment
Analysis

Neural Networks have achieved competitive result on ABSA
in recent years [Dong et al., 2014; Tang et al., 2016a;
Xue and Li, 2018; Li et al., 2018]. For example, Dong et
al. [Dong et al., 2014] propose an Adaptive Recursive Neu-
ral Network (AdaRNN) to model the adaptive propagations
of the sentiment words to specific aspect which totally rely
on syntactic dependency tree. Tang et al. [Tang et al., 2016a]
divide a sentence into two parts and use two LSTMs to model
the relatedness of a target with its left context and right con-
text respectively.

2.2 Attention and Memory Network for
Aspect-based Sentiment Analysis

Attention mechanism has been successfully used in ABSA.
Wang et al. [Wang et al., 2016] first introduce attention mech-
anism to attend the important parts of a sentence about spe-
cific aspect and indeed achieve state-of-the-art performance
at that time. To emphasize the importance of separate mod-
eling of aspect, Ma et al. [Ma et al., 2017] design an inter-
active attention network (IAN) which use two attention net-
works to model the aspect and context interactively, they ar-
gue that the aspect and context can be modeled separately but
learned from their interaction and their experimental results
also prove this point. All these attention-based models have
the same problem that they eventually generate a weighted
contextual representation which may involve irrelevant noise
and destroy the sequence structure of the sentence.

Memory Network is first proposed for question answering
and language modeling by Weston et al. [Weston et al., 2014].
Tang et al. [Tang et al., 2016b] first introduce deep memory
network to ABSA task by applying multi-attentions on the
memory consisted of stacked context word vectors. Based on
Tang et al. [Tang et al., 2016b]’s work, Chen et al. [Chen et
al., 2017] develop a tailor-made memory which is first pro-
duced by a bidirectional LSTM and then take the position
information into consideration, after that they pay multiple
attentions on the memory and combine the results of atten-
tions by GRU to promote the power of handling complicated
sentences. But their memory built for specific aspect sim-
ply use the shallow representation of the sentence and merely
consider the position information without aspect information.

3 Proposed Model
Aspect-based sentiment analysis task can be formulated as
follows: given a sentence S with n words {w1, w2, . . . , wn}
and an aspectAwithmwords {wa

1 , w
a
2 , . . . , w

a
m}, where the

sentence contains the aspect, the task aims at predicting the
sentiment polarity y ∈ {positive, neutral, negative} ex-
pressed on the aspect by the sentence. In this section, we de-
tailedly describe our proposed model designed for this prob-
lem. The architecture of our model is shown in Figure 2.

3.1 Input
In our model, the inputs have four kinds of representation:
word embedding, POS tag embedding, position embedding
and aspect encoding2.

Word embedding. For each wordwi in the considered sen-
tence, we create a word representation xi ∈ Rdw . The con-
sidered sentence is denoted as X = {x1, x2, . . . , xn}, which
is viewed as the initial memory block. In a similar way, for
each word wa

i in the considered aspect, we also create a word
representation xai ∈ Rdw and the considered aspect is denoted
as Xa = {xa1 , xa2 , . . . , xam}.

2One natural extension is taking the dependency parsing trees
into consideration to model the relationship between the aspect and
context words. Here for the simplicity of our model, we leave that
for the future work.
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Figure 2: Model architecture. The yellow and red blocks represent the POS tag and position embedding respectively.

POS Tag embedding. Here the main idea of POS tag em-
bedding is to map each POS tag type into a real-valued vector.
For each wordwi in the considered sentence, we create a POS
tag embedding ti ∈ Rdt based on its POS tag. The POS tag
embedding matrix of the considered sentence is denoted as
T = {t1, t2, . . . , tn}. The POS tag embedding is fine-tuned
during the training phase to learn a tailor-made representa-
tion.
Position embedding. For each word wi in the considered
sentence, we create a position embedding pi ∈ Rdp based
on the relevant distance vi between wi and aspect terms and
the position embedding matrix of the considered sentence is
denoted as P = {p1, p2, . . . , pn}. The position embedding
is fine-tuned during the training phase to learn a tailor-made
representation. Specifically, we calculate vi as follows3:

vi =

{
0, if l ≤ i ≤ r or i > n

min(abs(i− l), abs(i− r)), otherwise
where l, r is the index of the first and the last aspect word
respectively and abs (·) means absolute value function.
Aspect Encoding. Here we employ a bidirectional GRU
model to learn a meaningful aspect representation instead of
simply using vanilla word embedding. For the considered
aspect, we create the aspect representation va ∈ R2dh by av-
eraging the hidden states of bidirectional GRU run on the as-
pect word embeddings Xa = {xa1 , xa2 , . . . , xam}, where dh

3The index i may be bigger than the length n of the sentence due
to sentence padding.

denotes the dimension of the hidden state of the bidirectional
GRU here.

3.2 Gate Layer
In order to select the aspect-specific effective text spans and
keep the sequence structure of the sentence, we propose to
design a gate layer instead of previous attention-based ap-
proaches.

The gate layer is composed of n gate units. The gate units
take the word embeddings X = {x1, x2, . . . , xn}, aspect en-
coding va, POS tag embedding T = {t1, t2, . . . , tn} and
position embedding P = {p1, p2, . . . , pn} as inputs, then
they output scalar gate values G = {g1, g2, . . . , gn} for ev-
ery word in the sentence4. Here we combine the position and
POS tag embedding to calculate gate value. After the gate
layer, the new memory representation for wi is calculated as
xnewi = gi ⊗ xi, where the ⊗ operation means elementwise
multiplication and G is computed as follows:

H = [X;T;P; va � eN ] (1)
M =Wmtanh (WhH+ bh) (2)

G = σ(M) (3)

where va is the aspect representation. The � operation
means: va � eN = [va, va, . . . , va], that is, the operator re-
peats va for n times. σ denotes the logistic sigmoid func-
tion. tanh (·) means the hyperbolic tangent function. eN
is a column vector with n 1s, and parameter matrix Wh ∈
Rdw×(dw+dt+dp+2dh), Wm ∈ R1×dw , bh ∈ Rdw .

4We call G gate values in the remainder of this paper.
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3.3 Gate Layer with Context-Aware Memory
The gate layer takes the vanilla pre-trained word embed-
ding as the initial memory representation, similar to the
MemNet[Tang et al., 2016b] which utilizes the pre-trained
word embeddings as memory block. In this way, although
the word vector can reveal the words’ similarity in the orig-
inal embedding space, it can’t obtain the context-aware rep-
resentation, which is very important for text classification in-
tuitively. It is straightforward to tackle the drawback with
powerful deep recurrent models, in particular their gated ver-
sions, Long Short-Term Memory (LSTM) networks [Hochre-
iter and Schmidhuber, 1997] and Gated Recurrent Units
(GRU) [Cho et al., 2014], as done in [Chen et al., 2017;
Li et al., 2018]. We employ bidirectional GRU to obtain
the context-aware memory representation. We denote bidi-
rectional GRU here as two GRUs: the forward one GRUf

and the backward one GRUb. Take GRUf as an example,
the backward one does the same thing, except that its input
sequence is reversed, at time step t, the GRUf observes an
tth element xt of X and the update process of its internal hid-
den state ht is as follows:

rt = σ (Wrxt + Urht−1) (4)
zt = σ (Wzxt + Uzht−1) (5)

h̃t = tanh (Whxt + Uh (rt ⊗ ht−1)) (6)

ht = zt ⊗ ht−1 + (1− zt)⊗ h̃t (7)

where Wr ∈ Rdh×dw , Ur ∈ Rdh×dh , Wz ∈ Rdh×dw ,
Uz ∈ Rdh×dh , Wh ∈ Rdh×dw , Uh ∈ Rdh×dh are weight
parameters and σ denotes the logistic sigmoid function. The
update gate rt controls the update extent of the output from a
new hidden state h̃t and the reset gate zt controls how much
information from the previous hidden state is allowed to be
kept.

The forward one GRUf outputs a hidden state list Hf =

{hf1 , h
f
2 , . . . , h

f
n}, similarly, the backward one GRUb also

outputs another hidden state list Hb = {hb1, hb2, . . . , hbn}. We
concat two hidden state lists to produce the final context-
aware memory representation H = {h1, h2, . . . , hn}, where
hi =

[
hfi ;h

b
i

]
∈ R2dh . The final context-aware memory rep-

resentation is used as the input to gate units to calculate gate
values, as described in Section 3.2.

3.4 Hierarchical Gate Memory Network
Considering the advantage that the gate layer can keep the se-
quence structure of sentence while selecting the effective text
spans, it’s natural to extend the single gate layer into hier-
archical structure. Intuitively the selective ability of the gate
layer can be enhanced through hierarchical structure, because
such hierarchical structure can shorten the length of the ef-
fective text spans layer by layer, that is, the higher layer can
benefit from the output of the lower layer given that the lower
layer may have filtered out some unrelated parts and short-
ened the length of the effective text spans, which is helpful
for handling the long and complex sentences.

The structure of HGMN is shown in Figure 2 (bottom
right). As we can see, the output of previous gate layer l

is Xl = {xl1, xl2, . . . , xln} is used as the input to the next gate
layer to do further selection and the gate layer l + 1 output
Xl+1 = {xl+1

1 , xl+1
2 , . . . , xl+1

n } similarly. The internal struc-
ture of each gate layer here is described in Section 3.3, which
is context-aware. Specifically, the first gate layer after input
layer doesn’t employ bidirectional GRU for memory build-
ing5.

3.5 CNN
CNN should be a suitable method for feature extractor, whose
capability for extracting informative n-gram features as sen-
tence representations has been verified in [Kim, 2014]. The
final gate layer’s output is fed into a CNN layer to extract the
most informative n-gram features as sentence representation.
Specifically, a filter wc ∈ R2kd is applied to k concatenated
consecutive hidden states hi:i+k−1 ∈ R2kd to compute ci,
one value in the feature map corresponding to the filters:

ci = f
(
wT

c hi:i+k−1 + b
)

(8)
where f is the rectified linear unit function and b ∈ R is a bias
term. A max-pooling operation is further applied over the
feature map c = (c1, c2, . . . , cN−k+1), to capture the most
important semantic feature c̃ in each feature map:

c̃ = max{c} (9)
and c̃ is the feature generated by filter wc. We denote the
extracted vector representation as vc ∈ Rs, where s is the
number of feature map.

3.6 Model Training
The final representation of the sentence about specific aspect,
v is obtained as follows:

v =W [vc; va] + b (10)

where parameter matrix W ∈ Rr×(s+2dh), b ∈ Rr, then it
serves as the feature and is fed into a softmax layer to predict
the aspect sentiment distribution ỹ.

The model is trained by minimizing the cross entropy using
back propagation algorithm, the loss function is defined as
follows6:

L = −
∑

(x,y)∈D

∑
c∈C

yc log ỹc (11)

where C is the sentiment label set, y ∈ R‖C‖ is a one-hot
vector where only the element for the true label is 1, ỹ ∈
R‖C‖ is the predicted sentiment distribution.

4 Experiments
4.1 Experimental Setup
We conduct experiments on three open standard datasets. The
restaurant and laptop dataset are from SemEval 2014 [Pontiki

5Under such setting, the experiment results are usually better.
6One natural extension of our model is to add some regulariza-

tion terms in order to guide the hierarchical gate mechanism to select
more accurately, and actually we have tried to add a heuristic one to
encourage the model to select less parts as the layer gets higher,
which only improves the performance slightly. Here for simplicity,
we omit such regularization terms and leave how to design better
regularization terms for a future work.
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Dataset Postive Negative Neutral Total

Laptop Train
Test

994
341

870
128

464
169

2328
638

Restaurant Train
Test

2164
728

807
196

637
196

3608
1120

Twitter Train
Test

1561
173

1560
173

3127
346

6248
692

Table 1: Statistics of the experiments datasets.

et al., 2014]. Twitter dataset is a collection of tweets, intro-
duced by [Dong et al., 2014]. For the first two datasets, fol-
lowing [Tang et al., 2016b]’s setting, we remove the training
examples with the “conflict” label. All of the three datasets
have three labels: positive, negative, and neutral. The detailed
statistics of the datasets are shown in Table 1.

We first obtain the POS tag results from Stanford
Parser [Manning et al., 2014] and we use pre-trained GloVe
vectors [Pennington et al., 2014] to initialize the word embed-
dings, the dimension is 300 and the vocabulary size is 2.2M7.
For out-of-vocabulary words, we randomly initialize their
embeddings from the uniform distribution U (−0.01, 0.01).
The convolutional kernel size k and the number of feature
map s here we adopt is 3 and 50. The hidden state size,
postion and POS tag embedding dimensions, i.e., dh, dp, dt
are set to 50. To ease overfitting, we apply dropout on the
input word embeddings of the bidirectional GRU and the
final sentence representation v with dropout rate 0.5. All
weight matrices are initialized with the uniform distribu-
tion U (−0.01, 0.01) and the biases are initialized as zeros.
Adam [Kingma and Ba, 2014] is adopted as the optimizer
here. The batch size is set to 25 and the learning rate is set
to 0.001. Specifically, all hyperparameters are tuned on 20%
randomly held-out training data and the hyper-parameter col-
lection producing the highest accuracy score is used for test-
ing.

4.2 Compared Methods
HGMN is compared with the following methods:

• AdaRNN [Dong et al., 2014]: It employs an Adap-
tive Recursive Neural Network (AdaRNN) to model the
adaptive propagations of the sentiment words to specific
target which rely on dependency tree;

• ATAE-LSTM [Wang et al., 2016]: It uses attention
mechanism to capture the key part of the sentence about
a given aspect and incorporates the aspect embedding
with each word embedding as input to make the better
use of aspect information at the same time;

• IAN [Ma et al., 2017]: It utilizes two attention blocks to
model the target and context interactively and uses one’s
representation to help better generate the representation
of the other;

• TD-LSTM [Tang et al., 2016a]: It uses two LSTMs to
model the relatedness of the target with its left context

7https://nlp.stanford.edu/projects/glove/

and right context respectively, and then concatenates the
left and right target-dependent representation for senti-
ment prediction;
• MemNet [Tang et al., 2016b]: It applies multiple atten-

tions on the memory consisted of stacked context word
vectors and uses the result of previous attention to help
the next attention attend more accurate information;
• RAM [Chen et al., 2017]: It uses multiple attentions on

a tailor-made memory which first produced by a bidi-
rectional LSTM and then take the position information
into consideration, different hops’ attention results are
nonlinearly combined by GRU;
• GCNN [Xue and Li, 2018]: It is a model based on con-

volutional neural networks and gate mechanism, which
proposes a Gated Tanh-ReLU Unit to select the senti-
ment features about specific aspect;
• TNet [Li et al., 2018]: It first applies a target specific

transformation component to better integrate target in-
formation into the word representation and then uses
CNN classifier for sentiment classification;
• HGM-MLP: HGMN-MLP is the same model as

HGMN described in Section 3 except that the CNN layer
in HGMN is replaced by a fully connected layer. The av-
erage word representations is fed into the layer, which is
similar to the way the attention mechanism works.

All of the neural approaches are implemented in Pytorch8,
and we adopt the parameters in corresponding reference pa-
per.

4.3 Results and Analysis
Main experiment results can be seen in Table 2. The
main evaluation metrics are Accuracy and Macro-averaged
F1-score. Generally speaking, Our model outperforms all
the attention-based models such as ATAE-LSTM, IAN, and
RAM, which verifies the effectiveness of our HGMN model.
TNet-AS achieves best performance among all baseline
methods on Laptop and Twitter due to its target-specific trans-
formation component. Our HGMN model achieves 1.83%
and 1.16% improvements on Restaurant and Twitter dataset
compared with TNet-AS.

On the other hand, HGM-MLP, HGMN model with the
CNN layer replaced by a fully connected layer, also outper-
forms all the attention based models, the main difference be-
tween HGM-MLP and attention-based models is the differ-
ence between the hierarchical gate mechanism and the atten-
tion mechanism, which shows the effectiveness of the for-
mer in soft selection. HGM-MLP improves the performance
about 3% on Laptop and Restaurant dataset compared with
ATAE-LSTM. Moreover, Our HGMN model outperforms
HGM-MLP further, which verifies the advantage of keeping
the sequence structure of sentences and utilizing CNN as the
feature extractor.

4.4 Impact of the Number of Gate Layer
To investigate the impact of the number of gate layers, we
evaluate our model with 1 to 3 gate layers. As shown in Ta-

8https://pytorch.org/
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Model Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

AdaRNN [Dong et al., 2014] N/A N/A N/A N/A 66.30∗ 65.90∗
TD-LSTM [Tang et al., 2016a] 72.10 64.03 78.66 67.84 70.38 68.07
ATAE-LSTM [Wang et al., 2016] 72.22 66.98 78.12 64.14 71.24 69.92
IAN [Ma et al., 2017] 73.33 65.00 79.41 68.50 71.82 69.57
MemNet [Tang et al., 2016b] 71.47 65.34 78.57 67.33 70.38 68.35
RAM [Chen et al., 2017] 74.29 70.26 79.64 68.43 71.97 69.73
GCNN [Xue and Li, 2018] 72.84 59.70 79.31 65.55 72.11 70.09
TNet-AS [Li et al., 2018] 76.79 71.75 80.50 70.60 72.83 71.49
HGM-MLP 75.08 70.19 81.08 71.79 72.54 70.56
HGMN w/o POS tag 75.71 71.80 81.17 71.29 72.69 71.41
HGMN w/o position 74.29 68.47 80.72 69.85 72.69 70.83
HGMN w/o both 73.70 69.90 80.27 68.22 71.99 70.00
HGMN 76.67 72.22 82.33 73.34 73.70 72.89

Table 2: Experimental results(%). Those with symbol ∗ are from [Dong et al., 2014]. N/A means not available. The best results are in bold.

Model Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

HGMN-1GL 76.03 71.48 80.99 72.71 72.98 71.76
HGMN-2GL 76.67 72.22 82.33 73.34 73.70 72.89
HGMN-3GL 75.24 70.36 81.26 72.20 74.86 72.78

Table 3: Experimental results of different gate layers setting. Specially, for the HGMN-1GL model, differnet from the first gate layer
introduced in Section 3.4, here we employ the Bi-GRU to build memory instead of feeding original word embedding into following gate unit.

ble 3, in general, our model with 2 gate layers works better,
but the advantage is not always there for different datasets.
For example, on the Twitter dataset, our model with 3 gate
layers performs the best in terms of Accuracy. We can con-
clude that using 1 gate layer is generally not as good as using
more, which shows the effectiveness of the proposed hier-
archical gate mechanism, on the other hand, as the model’s
layer increases, the complexity of model increases and be-
comes more difficult to train and less generalizable.

4.5 Impact of POS Tag Embedding and Position
Embedding

To investigate the impact of position embedding and POS tag
embedding, we perform some ablation studies. HGMN w/o
sth represents the HGMN model with sth removed. As shown
in Table 2, we can see that both Accuracy and F1-score of
HGMN w/o both drop significantly. However, even in this
way, HGMN w/o both outperforms most of attention-based
models such as ATAE-LSTM and IAN, which verifies the ef-
fectiveness of our hierarchical gate mechanism. While re-
moving position embedding only, HGMN w/o position drops
about 2% on all the datasets but still performs better than
HGMN w/o both. On the other hand, HGMN w/o POS tag
drops about 1% on all the datasets but still performs better
than HGMN w/o both, from which we can conclude that both
position embedding and POS tag embedding are beneficial
for HGMN, i.e. both can help the gate mechanism select more
accurately.

however ,
being

foodies ,
we

were
utterly

disappointed
with the

food .

0
1

0.0 0.2 0.4 0.6 0.8 1.0

(a) An test example with single aspect only: “however ,
being foodies , we were utterly disappointed with the food
.”, where the “food” is the given aspect term.

the
menu is

interesting
and

quite

reasonably
priced .

0
1

0.0 0.2 0.4 0.6 0.8 1.0

(b) An test example contains more than one aspect: “the
menu is interesting and quite reasonably priced .”, where
the “menu” is the given aspect term.

the
menu is

interesting
and

quite

reasonably
priced .

0
1

0.0 0.2 0.4 0.6 0.8 1.0

(c) Same test example as previous figure, where the
“priced” is the given aspect term here.

Figure 3: Gate visualization.
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Sample Sentences ATAE-LSTM RAM HGMN

1. would you ever believe that when you complain about over
an hour waitN , when they tell you it will be 20-30 minutes , the
managerN tells the bartenderO to spill the drinksO you just paid for
?

(N, N, N, O) (N, N, N, N) (N, N, O, O)

2. how can they survive serving mediocre foodO at exorbitant
pricesN ? ! (N, N) (N, N) (O, N)

3. the decorP is what initially got me in the door . (N) (N) (P)
4. priceN was higher when purchased on mac when compared to
priceP showing on pc when i bought this product . (O, O) (P, P) (N, P)

5. yes , they ’re a bit more expensive then typical , but then again ,
so is their foodP . (N) (N) (P)

6. new hamburger with special sauceP is ok - at least better than
big macN! (O, O) (O, O) (O, N)

Table 4: Some test examples and predictions of ATAE-LSTM, RAM and HGMN, aspect terms are underlined with the true labels given as
subscripts. Incorrect predictions are highlighted in red color.

4.6 Visualization
We randomly pick some examples from test set and visualize
the gate values obtained by Equation (3) to check whether
the proposed hierarchical gate mechanism conforms with our
intuition. The visualization results are depicted in Figure 3.

Figure 3 presents several examples with only one aspect
(Figure 3(a)) or multiple aspects (Figure 3(b) and 3(c)). As
shown in Figure 3, generally speaking, the lower gate layer
trends to select the meaningful parts, then the higher gate
layer distills out effective text spans further and concentrates
on the most related part the given aspect. For example, in
Figure 3(a), the first gate layer selects the major part such as
“however”, “foodies”, and “disappointed”, then the second
gate layer focuses on the really related part such as “utterly”,
and “disappointed”.

4.7 Case Study
We pick some test examples from test set to convince the per-
formance of HGMN further. Two attention-based models,
i.e., ATAE-LSTM and RAM, are compared with HGMN in
Table 4. Generally speaking, our HGMN is better at handling
long and complex sentence structures. For example, sentence
(1)(2)(4) are typical long reviews and mention multiple aspect
terms. When facing with such long sentences, attention-based
models usually can’t attend to the related part well, ATAE-
LSTM and RAM both make wrong prediction on some as-
pects, while our HGMN still can make correct predictions on
all four aspect terms due to the hierarchical gate mechanism.
What’s more, when facing the cases where the semantics of
the whole sentence needed to be understood, HGMN works
pretty well. For example, sentence(3)(5) contain no obvious
sentiment words about the given aspect but the whole sen-
tence indeed expresses positive polarity on the given aspect,
the model needs to capture the semantics in whole to correctly
predict the sentiment. On the other hand, there are some cases
HGMN struggles with. For example, HGMN misclassify sen-
tence(6) as neutral, so do ATAE-LSTM and RAM. Actually
most of error cases are similar, that is, misclassification be-
tween neutral and postive/negtive, as future work, we can

consider improving the accuracy in such cases.

5 Conclusions and Future Work
In this paper, to solve some drawbacks of previous attention-
based approaches for ABSA, we propose a novel architecture
named Hierarchical Gate Memory Network (HGMN) which
can keep the sequence structure of sentence instead of obtain-
ing the aggregated contextual representation merely when se-
lecting the effective text spans. At first, HGMN employs the
hierarchical gate mechanism to filter out the unrelated part of
sentences to build the dynamically adjustable aspect-specific
memory by taking the aspect representation, word representa-
tion, POS tag and position information into consideration si-
multaneously. After that, we apply the effective CNN layer to
extract the most informative n-gram features as sentence rep-
resentation. Extensive experiments on the SemEval 2014 and
Twitter dataset demonstrate that our model outperforms sev-
eral attention-based state-of-the-art baselines. How to lever-
age dependency parsing trees and design better regularization
terms to guide the hierarchical gate mechanism would be our
future work.
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