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Abstract
Image-text matching is a vital cross-modality task
in artificial intelligence and has attracted increas-
ing attention in recent years. Existing works have
shown that learning semantic concepts is useful
to enhance image representation and can signifi-
cantly improve the performance of both image-to-
text and text-to-image retrieval. However, exist-
ing models simply detect semantic concepts from
a given image, which are less likely to deal with
long-tail and occlusion concepts. Frequently co-
occurred concepts in the same scene, e.g. bedroom
and bed, can provide common-sense knowledge to
discover other semantic-related concepts. In this
paper, we develop a Scene Concept Graph (SCG)
by aggregating image scene graphs and extract-
ing frequently co-occurred concept pairs as scene
common-sense knowledge. Moreover, we propose
a novel model to incorporate this knowledge to im-
prove image-text matching. Specifically, seman-
tic concepts are detected from images and then ex-
panded by the SCG. After learning to select rele-
vant contextual concepts, we fuse their representa-
tions with the image embedding feature to feed into
the matching module. Extensive experiments are
conducted on Flickr30K and MSCOCO datasets,
and prove that our model achieves state-of-the-art
results due to the effectiveness of incorporating the
external SCG.

1 Introduction
Image and text matching is an important vision-language
cross-modality task for many real-world applications includ-
ing image retrieval [Xie et al., 2016; Huang et al., 2018] and
caption [Karpathy and Fei-Fei, 2015; Lin and Parikh, 2016].
Before calculating the similarity between images and text, a
matching model needs to obtain a rich representation of the
images first. Inspired by the achievements of computer vi-
sion tasks, most of the current image-text matching models
∗ This work was done during the first author’s intership in MSR

Asia
† Corresponding Author

utilize pre-trained neural networks to extract mid-level fea-
ture embeddings as the representations of images. Although
these representations can obtain global visual information of
the images, they fail to extract high-level semantic informa-
tion. So the semantic gap between images and language is not
well addressed and it leads to the limited performance when
matching an image with text.

Recently, some works have tried to learn semantic en-
hanced image representations for the image-text matching
task. For example, [Karpathy and Fei-Fei, 2015] proposed to
align image region with text words for image caption. [Huang
et al., 2018] exploited a multi-label CNN detection model
to extract semantic concepts and then fused these concepts
with global context of images, which has made significant
improvement in image-text matching. However, these meth-
ods are limited to small size of detected concepts, since they
depend on existing detection models normally dealing with
common concept candidates. Therefore, these methods per-
form poorly if the concepts mentioned in the text cannot be
detected via pre-trained detection models.

We argue that it is necessary to detect more accurate con-
cepts from an image to help obtain a richer image represen-
tation. Take the example of Figure 1 as an example, current
detection models (e.g. [Wang et al., 2017]) could only de-
tect related concepts cat and laptop from the given image. If
the concept candidates are expanded to include more specific
concepts like calico and keyboard, we can get higher seman-
tic similarity score between the image and text. However, it is
challenging to detect long-tail, even absent concepts based on
existing detection models. These models are usually trained
on a small-size concept vocabulary to avoid a sharp decrease
of detection performance with a extended vocabulary. As
shown in the Figure 1, the concept calico in the query text
is a long-tail concept which is absent in the ldetection con-
cept vocabulary and thus cannot be detected.

To address this issue, we incorporate external scene knowl-
edge to privilege the imagination to the model. In this work,
we mainly focus on utilizing co-occurrence common-sense
knowledge which can be extracted from a large number of
images. E.g. laptop and keyboard; sky and cloud; boat and
water; tree and leaves are frequently appear in the same im-
age. We define this common-sense knowledge as Scene Con-
cept Graph (SCG). It provides rich prior scene information
to expand more semantic concepts of images which are often
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Figure 1: An example of image-retrieval by scene concept graph:
semantic concepts {cat, laptop} are extracted, but the occluded con-
cept keyboard and the long-tail concept calico cannot be detected.
The scene concept graph can provide extra scene information which
indicates that a laptop has a keyboard and calico is a breed of cat.
These two concepts are the key for matching the query text and can
be expanded.

noticed and described in query text. We directly use human
annotated scene graphs from Visual Genome [Krishna et al.,
2017]. Scene graph of an image is a graph consisting of con-
cepts and relationships between them. It can be represented as
a set of triplets of <subject, relation, object>, where subject
and object are concepts, and relations are the interactions and
relationships between them. Then we aggregate co-occurred
<subject, object> pairs from scene graphs of all images. Af-
ter that, we clean the co-occurrence pairs by considering the
appearance times and construct the SCG. After that, we can
utilize this knowledge to infer more concepts. Figure 1 is an
intuitive example of image-retrieval by SCG. In this case, the
Scene Concept Graph provides common-sense information to
expand the occluded concepts keyboard in the image. Since
laptop and keyboard frequently appeared together, although
the keyboard is occluded by the cat, it still can be inferred
by co-occurrence pair in SCG. Furthermore, in order to avoid
noisy concepts expanding, we used a neural network to select
the semantic concepts related to the image. By introducing
the SCG, the performance of our model outperforms state-of-
the-art models.

Our contributions are summarized as below:

1. We build a Scene Concept Graph by considering co-
occurrence pairs of semantic concepts in scene graph of
images, which incorporate common-sense information.

2. We propose a novel model to expand more semantic con-
cepts by the Scene Concept Graph and selectively fuse
them to enhance image representation semantically.

3. We conduct extensive experiments and the results show
that our model achieves state-of-the-art performance.

2 Related Work
Embedding based methods. DeViSE [Frome et al., 2013]
is the first embedding based method which projected image
features and skip-gram word features by a linear mapping and
calculated similarity accordingly. [Faghri et al., 2017] intro-
duced a simple modification on the loss function. [Kiros et
al., 2014] adopted a sequence to sequence pipeline to learn
joint embedding space with a language model. [Wang et
al., 2016] proposed DSPE, a structured preserving network
match image and text embeddings. [Zheng et al., 2017] pro-
posed using a dual task to embed image and text to a shared

visual-textual space discriminatively. [Wang et al., 2018] in-
troduced two-branch embeddings and considered the novel
neighborhood constraints. Cross-modality joint embedding
is a baseline model but lack of semantic understanding.

Semantic knowledge based methods. [Karpathy and Fei-
Fei, 2015] took advantage of R-CNN to detect local regions
from an image and aligned them to each word. [Huang et
al., 2018] proposed learning semantic concepts and orders to
improve image representation. This work is most similar to
ours. The main difference is that we incorporate common-
sense scene information to expand more contextual semantic
concepts precisely. Many recent state-of-the-art models are
attention based models. [Lee et al., 2018b] proposed SCAN
to use stacked cross attention to align image and text in a
finer-grained model. Different from previous models, our
work incorporated external common-sense scene information
to enhance the representation of image and the experiment
results showed a significant improvement.

Knowledge for image/text tasks. Combining a knowledge
graph with deep learning for image-text tasks is related to
our work. Knowledge can be used for image tasks like im-
age classification [Marino et al., 2017], zero shot classifi-
cation [Lee et al., 2018a] and for text tasks [Zhou et al.,
2018]. There are also several image and text tasks incorporat-
ing external knowledge like image captioning [Mogadala et
al., 2017]and VQA [Wu et al., 2016]. For cross modality im-
age and text match, [Wang et al., 2006] used multi-modality
ontology to retrieve images. [Belilovsky et al., 2016] aligned
scene graphs with images by the algorithms of bag-of-words,
subpath representations and neural network. The difference is
that we utilized the Scene Concept Graph which captures the
co-occurred object pairs in the same scene as common-sense
knowledge to expand more occluded and long tail concepts.

Our work starts from embedding based methods and uti-
lized semantic concepts by incorporating Scene Concept
Graph to enhance the representation of image/text embed-
ding.

3 Scene Concept Graph Based Image-Text
Matching

We formulate the image-text matching problem as a ranking
model similar to [Wang et al., 2018] and our model is de-
picted in Figure 2. Given the input image and the query text,
the output is the similarity score of matching two modalities.
We generate the pre-trained query text encoding and image
encoding separately and jointly embed them into the same
space by maximizing the margin of positive and negative im-
age and text pairs. As shown in Figure 2, in order to incor-
porate contextual concepts to enhance image representation,
we first adopt a Concept Detection Module to extract accurate
concepts on a small vocabulary. Then we use the assembled
Scene concept Graph to expand more contextual concepts by
Concept Expansion Module and learn to predict more accu-
rate semantic concepts by the Concept Prediction Module.
Next we fuse whole-image encoding generated by Vision Fea-
ture Module with learned concepts to generate an enhanced
image representation by the Image-Concept Fusion Module.
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Figure 2: Main structure of our model: we extract semantic concepts first by (1) Concept Detection Module and then use Scene Concept
Graph to expand more undetected concepts by (2) Concept Expansion Module. However, the expanded semantic concepts contains many
unwanted noise, so we use (3) Concept Prediction Module to predict reliable concepts which are prone to efficiently enhance the image
representation based on the visual feature (orange arrow). After the prediction, these filtered semantic concepts are fused with the vision
feature and generate a enhanced representation of an image. Finally, we use cosine distance between enhanced image feature and text feature,
extracted by (4) Sentence Encoder, as the similarity score and optimize parameters of the prediction model.

Finally we calculate the cosine similarity score with text en-
coding by Text Encoding Module and optimize the triplet loss
function [Schroff et al., 2015].

In the rest of this section, we first introduce the input text
encoding. And then we describe the pre-trained whole-image
encoding and the semantic-image feature encoding in details.
The final loss function will be presented in the last part of this
section.

3.1 Text Feature Encoding
We adopt LSTM [Hochreiter and Schmidhuber, 1997] as our
text encoder to acquire the representation of text. For each
word wi in query text with N words, we train an embedding
of xi from scratch and input a token in text S = {xi|xi ∈
Rk}i=1...N at each time step t to the LSTM model. We use
the hidden state after feeding the last token as the representa-
tion of text ft.

3.2 Image Feature Encoding
Visual Feature Module
For the whole-image representation (denoted as fi ∈ Ri),
we directly use a ImageNet [Deng et al., 2009] pre-trained
VGG19 [Simonyan and Zisserman, 2015] network and take
the output of the last convolutional layer (16th layer) as the
image feature: we first resize each image to 256 × 256 and
conduct a 5-cropping1. A left-right mirror flipping on each
image is also applied to get 10 different pre-processed copies.
Then, we feed this 10×224×224×3 (RGB 3-channel) image
data matrix into the feature extractor and obtain a 10× 4096-
dimensional output of the model’s first FC layer. After that,
we average these feature vectors as the whole-image repre-
sentation: fi ∈ R4096.

1Top-left, top-right, bottom-left, bottom-right and center.

Concept Detection Module
In order to bridge the semantic gap of text and image, we need
to detect semantic concepts first. We use a multi-label images
classification model [Wang et al., 2017] to detect whether a
concept appears in an image. The detection model aims to
produce a multi-hot vector gd ∈ [0, 1]|Vd| as the detected con-
cepts of the image, where Vd is the vocabulary of detectable
concepts and Vc is the vocabulary of all semantic concepts;
Vd ⊆ Vc (mostly, |Vd| � |Vc|). For each i-th concept, we
used 1 or 0 on i-th of vector to indicate existence or absence
respectively. E.g. if the Vd = {people, cat, laptop, cake}, and
gd of Figure 1 would be [0, 1, 1, 0]. After that, we can directly
fuse gd with its whole-image feature encoding fi to enhance
image representation.

According to our experiment, although the detection model
using the small concept vocabulary can guarantee the accu-
racy of concept detection, it will neglect long-tail but infor-
mative concepts. However, the performance of the detection
model will drop significantly when using a large concept vo-
cabulary. This motivates us to come up with a method to
discover as many concepts as possible without accuracy loss.
Therefore we introduce the Scene Concept Graph to expand
more frequently queried concepts based on images and their
description.

Concept Expansion Module
To learn to expand the concepts, we first build a common-
sense Scene Concept Graph using Visual Genome [Krishna
et al., 2017], which is a dataset consisting of human-labeled
scene graphs. We aggregate all co-occurring concept pairs
in scene graphs of images to build a Scene Concept Graph:
KSCG = {t|t =< cs, co >; cs, co ∈ Vc} where Vc is the con-
cept vocabulary including all concepts. Figure 3 illustrates
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Figure 3: Scene Concept Graph Construction. We aggregate all
Scene Graph triples of Visual Genome and # stands for the num-
ber of times triple appearance. We extracted <head, tail> pairs of
triples which # > k to construct the Scene Concept Graph.
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Figure 4: Procedure of Concept Expansion. We iterate semantic
concepts detected in previous stage and use Scene Concept Graph to
expand more concepts to which directly connected.

the construction of SCG. The SCG can provide strong con-
textual signals for semantic image understanding. For exam-
ple, House can be found frequently in the pair <House, Win-
dow> and Tree always accompanies with Leaves in the pair
<Tree, Leaves>. After we detect House and Tree from an
image, expansion model will predict neglected concepts Win-
dow and Leaves by the common-sense scene information.

We formulate the concept expansion model as the algo-
rithm 1. In this algorithm, we iterate all concepts gd detected
by the concept detection module as a seed to retrieve from
the SCG. For each concept c, we extract all co-occurred con-
cepts and aggregate all these concepts as expanded semantic
concepts ga ∈ [0, 1]|Vc|. This procedure is depicted in figure
4.

Concept Prediction Module
Although we can expand a lot of undetected semantic con-
cepts by SCG, it is obvious that some noisy concepts irrel-
evant to the image will also be expanded, leading to even
worse performance. How to selectively learn relevant con-
cepts of the image is a challenge to us. For example, with a
high probability, laptop co-occurred with mouse, which is a
noisy for the example in Figure 1. So we propose a mech-
anism to selectively learn and predict whether a concept is
relevant to the image or not.

To learn relevant concepts, we construct a prediction model
which takes the whole-image encoding fi; the detected con-

Algorithm 1 Concept Expansion

Require: detected concepts of an image Ld ⊆ {c|c ∈ Vd}
Require: Scene Concept Graph KSCG

Ensure: expanded concept vector ga ∈ [0, 1]|Vc|

1: La ← Ld

2: for c in Ld do
3: Lsubject ← {cs| < cs, co >∈ KSCG, co = c}
4: Lobject ← {co| < cs, co >∈ KSCG, cs = c}
5: La ← La ∪ Lsubject ∪ Lobjects

6: end for
7: convert concept list La to a multi-hop concept vector

ga ∈ [0, 1]|Vc|.

cept vector gd and the expanded concept vector ga as input
and output the relevant concept vector ĝc ∈ [0, 1]|Vc|, where
1 indicates the corresponding concept is in the image and 0
otherwise.

In order to predict whether concepts are relevant or not, we
first fuse expanded concepts ga and whole-image representa-
tion fi by:

gf = ELU (fi ×Mi + bi)× ELU (ga ×Mg + bg) (1)

Then, we construct a model to predict gc directly:

ĝc = σ (gf ×Mc + bc) (2)

where Mi ∈ Ri×k; Mg ∈ R|Vc|×k; Mc ∈ Rk×|Vc|;
bi,bg ∈ Rk; bc,bm ∈ R|Vc|, σ is the sigmoid function and
◦ is the element-wise product. ĝc ∈ R|Vc| is the prediction
of ground-truth gc ∈ [0, 1]|Vc|. ELU is Exponential Linear
Units [Clevert et al., 2016].

To train this prediction model, we use description text of
images to build a pseudo labels by matching the concepts with
text literally. We heuristically label concept vector using 0, 1
as gc ∈ [0, 1]|Vc|, where 1 means the concept appeared in
the description text literally and 0 means the concept is in the
text.

During training procedure, First, we use the text to label
the expanded concepts ga to generate the expected concepts
gc. Then we train the prediction model to make the learned
concept vector ĝc similar to expected concept vector gc. We
use the log-exponential objective function to train this predic-
tion model:

Lcp =
1

|Vc|

|Vc|∑
k=1

log (1 + exp(−gc,k × ĝc,k)) (3)

Our overall model is trained by an end-to-end pipeline, and
we add this prediction loss Lcp to the final loss function. Af-
ter training, we fix the prediction model and directly run the
model on inference phase.

Image-Concept Fusion Module
In this section, we will describe how we conduct image-
concept fusion.

We fuse the predicted concept vector ĝc ∈ R|Vc| with
whole-image encoding fi ∈ R4096 to get a final image rep-
resentation fci ∈ Re where e is the dimension of embedding
vector. In this paper, we use two different fusion methods.
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The baseline fusion method named element-wise product.
First we map each of these two modality inputs into the same
embedding space by projecting with Wg ∈ R|Vc|×e and
Wf ∈ Ri×e respectively. Then, we normalize these two
mapped embeddings by L2-normalization and combine them
by element-wise product and f

(mul)
ci ∈ Re is the enhanced

image representation.
The second fusion method is called gated fusion [Huang

et al., 2018], which selectively fuses concepts and efficiently
parameterizes interactions between two modalities. We use
a gated mechanism to learn to fuse those two vectors by the
following equations:

g̃c = ||ĝc ×Wg||2 (4)

f̃i = ||fi ×Wf ||2 (5)
t = σ (ĝc ×Ug + fi ×Uf ) (6)

f
(sco)
ci = ||t ◦ g̃c + (1− t) ◦ f̃i||2 (7)

where Wg,Ug ∈ R|Vc|×e; Wf ,Uf ∈ Ri×e and the f (sco)ci ∈
Re is the concept-enhanced image feature.

3.3 Loss Function of Joint Learning
To learn image and text matching as well as image-relevant
semantic concepts jointly, our loss function consists of two
parts: prediction loss Lcp and image-text matching loss Lm

so as to train the model in an end-to-end style. As for the loss
Lm, we use cosine similarity to calculate the score. After
generating the representation of image and text, we embed
them jointly into the same space by maximizing the margin
of positive and negative samples. We use triplet loss [Schroff
et al., 2015] for two modality encodings:

frank(x, y) =
∑

y′∈Nx

[γ + d(x, y)− d(x, y′)]+ (8)

where x and y are encodings of two modality, N (x) is the
set of negative samples of x, d(·) is the similarity function
and [x]+ = max(0, x).

In order to train a discriminative model, we also adopt
a neighborhood constraint [Wang et al., 2018; Kiela et al.,
2018]:

f̂rank(x) =
∑

∀xj∈P(xi)
∀xk /∈P(xi)

[γ + d(xi, xj)− d(xi, xk)]+ (9)

where P(xi) is the set of positive samples for xi (e.g. all
descriptions of the image that described by xi).

Finally, we merge these ranking constraints into one loss
function with the semantic concept prediction loss Lcp as we
discussed before:

L = λ1Lcp + λ2
∑
I,D

frank(I,D) + λ3
∑
I,D

frank(D, I)

+ λ4
∑
D

f̂rank(D) (10)

where I is the image set and D is the descriptions of all im-
ages.

4 Experiments
We conducted extensive experiments to evaluate the perfor-
mance of our model and compared different settings of our
method to state-of-the-art algorithms. We also conducted ab-
lation studies to analyze the effectiveness of incorporating
different vocabulary size of semantic concepts for the final
image-text matching task.

4.1 Datasets
Visual Genome [Krishna et al., 2017] is a structured
dataset that contains hundreds of thousands of dense anno-
tated images. It has 2.3M human annotated scene graphs for
108,077 images, which is represented as a set of triplets in-
cluding concepts and relationships. After the normalization
by synsets of each object and the clearing of tailed triplets,
we collected 7,699 different concepts as our vocabulary to
construct a dataset for training the concept detection module.
We aggregated the triplets, which appear at least 1000 times,
to build the Scene Concept Graph which includes 121,307
concept pairs.

MSCOCO [Lin et al., 2014] is a large-scale dataset which
contains 123,287 images (the combination of train2014 and
val2014), each accompanied with 5 captions which are the
text used to query the image. We follow [Karpathy and
Fei-Fei, 2015] to prepare the training, validation and test
dataset by splitting all images to 113,287 (for training), 5,000
(for validation) and 5,000 (for test). For the evaluation on
MSCOCO 5K setting, we used all these 5K testing images
and their captions (25K). We used 1/5 of these testing dataset
(1K images, 5K captions) for MSCOCO 1K evaluation in or-
der to compare with some algorithm which report their result
only on MSCOCO 1K dataset.

Flickr30K [Young et al., 2014] is a dataset that consists of
31,783 images of events, activities and scenes and 158,915
captions which are used to query the image. We followed
the split in [Karpathy and Fei-Fei, 2015] and [Faghri et al.,
2017] that used 1,000 images for testing and 1,000 images for
validation and the rest of them (28,783 images) for training.

4.2 Evaluation Metrics
For the evaluation metric, we adopt the widely used measure-
ment recall at K (R@K) for both sentence retrieval and im-
age retrieval task. To be specific, each image in MSCOCO
and Flickr30K dataset has 5 sentences as ground-truth, and
each sentence has 1 corresponding image. Take image re-
trieval as an example, we rank the similarity scores of all im-
ages and select top K candidates. We regard the query as a
“successful query” if the target image presents in these can-
didates. And the R@K is the proportion of success in all
queries.

4.3 Implementation Details
In our two-modality joint embedding network, we used
LSTM with 1024 hidden units to encode text of images and
a VGG19 [Simonyan and Zisserman, 2015] pre-trained by
ImageNet as our image feature extractor. The dimension of
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Methods
MSCOCO 1K MSCOCO 5K

Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DVSA [Karpathy and Fei-Fei, 2015] 38.4 69.9 80.5 27.4 60.2 74.8 11.8 32.5 45.4 8.9 24.9 36.3
VQA-ICR [Lin and Parikh, 2016] 50.5 80.1 89.7 37.0 70.9 82.9 23.5 50.7 63.6 16.7 40.5 53.8

DSPE [Wang et al., 2016] 50.1 79.7 89.2 39.6 75.2 86.9 - - - - - -
VSE++ [Faghri et al., 2017] 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4
TBNN[Wang et al., 2018] 54.0 84.0 91.2 43.3 76.8 87.6 - - - - - -
DPC [Zheng et al., 2017] 65.6 89.8 95.5 47.1 79.9 90.0 41.2 70.5 81.1 25.3 53.4 66.4

DXN [Gu et al., 2018] 68.5 - 97.9 56.6 - 94.5 42.0 - 84.7 31.7 - 74.6
SCO [Huang et al., 2018] 69.9 92.9 97.5 56.7 87.5 94.8 42.8 72.3 83.0 33.1 62.9 75.5
SCAN [Lee et al., 2018b] 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4

Ours (Prod) 73.4 94.8 97.6 56.3 85.6 93.5 49.9 78.9 88.1 33.2 62.4 74.7
Ours (Gated) 76.6 96.3 99.2 61.4 88.9 95.1 56.6 84.5 92.0 39.2 68.0 81.3

Table 1: Experimental results on MSCOCO 1K and 5K. The sentence retrieval is to retrieve the correct sentence given an input image as a
query. And the image retrieval is to search the specific image given a sentence as a query.

Methods
Flickr30K

Sentence Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

DVSA 22.2 48.2 61.4 15.2 37.7 50.5
VQA-ICR 33.9 62.5 74.5 24.9 52.6 64.8

DSPE 40.3 68.9 79.9 29.7 60.1 72.1
VSE++ 41.3 69.0 77.9 31.4 59.7 71.2
TBNN 37.5 64.7 75.0 28.4 56.3 67.4
DPC 55.6 81.9 89.5 39.1 69.2 80.9
DXN 56.8 - 89.6 41.5 - 80.1
SCO 55.5 82.0 89.3 41.1 70.5 80.1

SCAN 67.4 90.3 95.8 48.6 77.7 85.2
Ours (Prod) 57.2 85.1 92.1 40.1 69.5 79.5
Ours (Gated) 71.8 90.8 94.8 49.3 76.4 85.6

Table 2: Experimental results on Flickr30K

whole-image representation is i = 4096 (fi ∈ R4096). The di-
mension of concept-enhanced image representation and text
representation is e = 512 (ft, fci ∈ R512).

In order to study the effectiveness of the concept detection
model, we tried several different size of vocabularies by pick-
ing up the most frequent concepts in all images. The vocab-
ulary sizes various from 256, 512 to 1024. Experiments in-
dicated that we can get the best results by setting vocabulary
size to |Vd| = 512. Extensive experiments were conducted
and will be explained in the ablation study section later. For
the expansion and prediction module, we used all 7,699 con-
cepts as Vc, i.e. |Vc| = 7699.

We used λ1 = 5.0, λ2 = 1.0, λ3 = 1.5 and λ4 = 0.05
as the hyper-parameters of loss function. An Adam Opti-
mizer was adopted to optimize model’s parameters. We also
utilized batch normalization before non-linear activation and
the dropout mechanism after non-linear activation in order to
promote speed of training.

4.4 Comparison with State-of-the-Art Models
Table 1 lists the experiment results on MSCOCO dataset and
a comparison with other methods. We tried two different eval-
uation datasets that using 1,000 and 5,000 test images respec-
tively. Prod (Element-wise production) and Gated Fusion are
the two different fusion methods. From the table we can see
that our algorithm outperforms all of the previous state-of-
the-art methods on both 1K and 5K splits and Gated setting
except R@5 result on image retrieval for the 5K dataset. SCO
[Huang et al., 2018] is our baseline which also learned the se-
mantic concepts from an image to facilitate this task. From
the result, we can see our method significantly improved the
matching performance on all datasets and settings over SCO

which demonstrates Scene Concept Graph provides effective
semantic information to understand the image. SCAN [Lee
et al., 2018b] is the most recent report on this task which is
using stacked co-attention on a finer-grained level. Although
our work and SCAN follow different research directions, our
model can still get better results in most cases. Another
conclusion is that Gated Fusion consistently outperforms the
Production Fusion, which proved that the carefully designed
mechanisms fuse better.

Table 2 shows the experiment results on the Flickr30K
dataset. Our model with Gated Fusion can achieved the best
results on most cases which is similar to the experiment con-
clusion of MSCOCO.

Ablation Methods
(All used SCO fusion)

MSCOCO 1K
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10
128 Concepts 48.5 78.4 88.1 37.0 71.9 83.8
256 Concepts 49.2 79.6 89.0 39.1 72.2 83.6
512 Concepts 50.1 79.1 89.0 39.4 72.9 84.4
768 Concepts 50.0 80.9 90.4 39.3 72.9 84.3
1024 Concepts 49.1 79.0 88.4 36.4 71.2 82.9
Expansion Only 49.6 78.9 88.5 38.7 72.6 84.6

Our Best (Gated Fusion) 76.6 96.3 99.2 61.4 88.9 95.1
Ground-Truth 92.4 99.6 100 75.9 95.2 97.8

Table 3: Ablation experiment results

4.5 Ablation Studies
We also investigated the effectiveness of detection, expan-
sion, and prediction models by several ablation experiments.
Table 3 shows the results of matching. First, we tried to ex-
plore the impact of different vocabulary sizes of the detection
model. The vocabulary sizes are set to 129, 256, 512, 768
and 1024 separately. From the result, we can see that either
small the size or the large size got worse results than the mid-
dle size 512, which demonstrated the existing shortcoming of
the detection model. We set the vocabulary size to 512 in the
rest of the experiments.

We conducted another experiment on semantic concepts
generated using different methods. Since Gated Fusion al-
ways achieved the best results, we used all Gated Fusion
mechanisms in the rest of the experiments. First, SCO
[Huang et al., 2018] in Table 1 shows our baseline result with-
out expansion. Other results are shown in Table 3. Next we
used the detected concepts gd ∈ R512 to expand more con-
cepts ga ∈ R7699 by Scene Concept Graph without prediction
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Concepts annotated in Visual Genome
[apparel, bag, bed, blanket, bottom, cat, cupboard, device, ear, electric_refrigerator, episode, eye, hair-
breadth, hanger, laptop, logo, magnet, nose, screen, sheet, shelf, shirt, surface, tail, wall, window] (26 
concepts)

Concepts detected by multi-label image classification model (threshold=0.5)
[bed, blanket, cat, ear, eye, laptop, logo, nose, screen, tail, wall] (11 concepts)

Concepts expanded by Scene Concept Graph (from detected concepts)
[bed, blanket, body, brand, calico, cat, computer, cover, ear, eye, keyboard, kitten, lap, laptop, logo, man, 
mouse, nose, pillow, screen, sitting, sun, tail, touchpad, wall, white, … (some are omitted)] (273 concepts)

Concepts expanded by Scene Concept Graph and filtered by caption (used for training stage only)
[bed, blanket, calico, cat, computer, ear, eye, keyboard, kitten, lap, laptop, logo, nose, screen, sitting, sun, 
tail, wall] (18 concepts)

Concepts predicted by our model (Gated Fusion, threshold=0.9):
[bed, blanket, calico, cat, computer, ear, eye, keyboard, kitten, laptop, nose, screen, tail, wall] (14 concepts)

Figure 5: A real showcase of intermediate result of our expansion model: the image is annotated by human in Visual Genome with 26
concepts, and the detection model only extracted 11 concepts using vocabulary size 512. The expansion model discovers more concepts
including occluded concept keyboard and long-tail concept calico etc. Finally, our model predicted 14 concepts for further process.

(Expansion Only) which got a worse result than our baseline.
This is caused by introducing many noisy concepts. Then
our best model (Gated Fusion) achieved a much better result.
We also conducted an experiment on a ground-truth dataset,
which we used to train our prediction model. This is the up-
per bound of our algorithm and shown that there is still a gap
to predict the semantic concept well.

4.6 Statistics of Concept Expansion

# Min # Max # Average
Detected Concepts 1 23 10.66
Expanded Concepts 0 392 107.56

Ground-truth Prediction Concepts 1 34 17.71

Table 4: Statistics of intermediate results of semantic concepts

Table 4 presents a statistics of concepts of the dataset. De-
tected Concepts indicates the numbers of semantic concepts
that extracted by multi-label image classification model. The
second row is the numbers of concepts that expanded by
Scene Concept Graph. The third row is the numbers of se-
mantic concepts expanded by SCG and filtered by caption
tokens, which is the ground-truth label for training prediction
model.

4.7 Case Study and Analysis
We ran our model on the real case in Figure 1 and inspected
all intermediate results of semantic concept detection, expan-
sion, and prediction models. The results are shown in Figure
5. Although some noisy concepts were introduced, our model
can discover the concepts mentioned in text. Besides, we also
presented several real showcases of retrieval using different
methods. Because of the limited space, please check out this
link: https://goo.gl/izcSN9.

5 Conclusion and Future Work
In this paper, we proposed learning semantic concepts using
co-occurred common-sense knowledge for image-text match-
ing. Our main contribution is to utilize the Scene Concept
Graph we extracted by Scene Graph of Visual Genome to ex-
pand more semantic concepts, which can deal with the chal-
lenges of detecting occluded and long-tailed concepts. Ex-

periment results demonstrated that our method can achieve
state-of-the-art results. We also conducted intensive ablation
studies which showed the effectiveness of incorporating the
Scene Concept Graph.

In the future, we will consider using triplets in scene graphs
by taking the relationship between concepts into account. We
would also like to extend our scene knowledge aware model
for more cross-modality tasks.
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