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Abstract
Financial risk, defined as the chance to deviate from
return expectations, is most commonly measured
with volatility. Due to its value for investment
decision making, volatility prediction is probably
among the most important tasks in finance and risk
management. Although evidence exists that enrich-
ing purely financial models with natural language
information can improve predictions of volatility,
this task is still comparably underexplored. We in-
troduce PRoFET, the first neural model for volatil-
ity prediction jointly exploiting both semantic lan-
guage representations and a comprehensive set of
financial features. As language data, we use tran-
scripts from quarterly recurring events, so-called
earnings calls; in these calls, the performance of
publicly traded companies is summarized and prog-
nosticated by their management. We show that our
proposed architecture, which models verbal context
with an attention mechanism, significantly outper-
forms the previous state-of-the-art and other strong
baselines. Finally, we visualize this attention mech-
anism on the token-level, thus aiding interpretabil-
ity and providing a use case of PRoFET as a tool
for investment decision support.

1 Introduction
Financial risk, most commonly measured with volatility, is
one of the most prominent drivers of company value; its ac-
curate assessment plays a key role in making investment deci-
sions. Consequentially, assessing and predicting volatility is
probably among the most important tasks in finance and risk
management [Andersen et al., 2006, p. 789].

Despite their natural applications in finance (e.g. algorith-
mic trading), solutions for volatility prediction do not only
benefit this domain. Rather, they hold merit across all settings
in which the effect of newly disclosed language information
on public perceptions of risk needs to be quantified. Such
settings include for example crisis management or social me-
dia analysis. On a general level, tools for volatility prediction
have proven useful for tasks as manifold as presidential ap-
proval prediction, weather forecasting, and neuro-muscular
activation modeling [Andersen et al., 2006].

Traditionally, financial risk prediction has solely been
based on historic financial data. As of recently however,
an increasing number of finance papers also analyzes textual
data, for example by quantifying the sentiment of financial
disclosures.1 Perhaps not surprisingly, risk prediction has
also started to attract interest in the Natural Language Pro-
cessing (NLP) community. Leveraging the content of finan-
cial disclosures, a small but growing number of papers per-
forms a text-based prediction of volatility [Wang et al., 2013;
Tsai and Wang, 2014, inter alia].

In this paper, we combine established knowledge from the
financial domain with recent advancements in NLP to cre-
ate PRoFET, the first neural model jointly exploiting finan-
cial and textual data for volatility prediction. We collect a
comprehensive set of historic financial data and enrich it with
natural language information revealed in recurring events, so-
called earnings calls; in these calls, the performance of pub-
licly traded companies is summarized and prognosticated by
their management. We then train a joint model to predict
short-term risk following these calls.

Earnings calls are a rather underexplored type of disclosure
for risk prediction—despite their unique and interesting prop-
erties: After a scripted presentation by the company manage-
ment, they contain an open questions-and-answers session, in
which banking analysts can pose challenging questions to the
executives. Hence, different to already well-explored disclo-
sures like the uniform and formal annual report 10-K, this al-
lows for an unscripted, spontaneous interaction [Larcker and
Zakolyukina, 2012] of high authenticity.

Introducing PRoFET, we present the following contribu-
tions to the academic community:

Model. Our neural architecture, which jointly learns from se-
mantic text representations and a comprehensive set of finan-
cial features, significantly outperforms the previous state-of-
the-art and other baselines. In an ablation study, we further
show that the joint model significantly outperforms models
using either of both feature types alone and inspect the per-
formance impact of different document sections.

Data. We present a new dataset of 90K earnings call tran-
scripts and address the task of text-based risk prediction at a
large scale.

1See e.g. Loughran & McDonald [2016] for an overview.
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Interpretability. The performance increases provided by
neural models often come at the cost of interpretability. We
address this issue by visualizing the predictive power of con-
textualized tokens with a heatmap. This demonstrates a use
case of PRoFET as a tool for investment decision support.

2 Related Work
Stock movement prediction—a related, yet distinct task to
volatility prediction—has attracted increasing interest in the
NLP community. Most recently, Xu & Cohen [2018] present
a deep generative model for a binary classification of stock
price movement based on tweets and historic prices. Duan et
al. [2018] learn sentence representations over tree structures
for a binary classification task of stock return movement in
reaction to financial news. Note that different to these stud-
ies, we perform the prediction of a continuous feature, i.e. a
regression. Furthermore, we predict volatility (the possible
spread of returns) instead of price or return movement.

More closely aligned with our task, Kogan et al. [2009]
collect a corpus of 60K annual reports 10-K and predict stock
return volatility in the year after the filing date with a lin-
ear Support Vector Regression (SVR). They report a signifi-
cant performance increase of a model incorporating bags-of-
words over a baseline consisting only of the volatility in the
preceding year. Wang et al. [2013] use the same dataset and
regression model; however, they perform a sentiment analysis
task using the Loughran & McDonald [2011] lexicon.

Tsai & Wang [2014] increase the performance by extend-
ing the lexicon with similar terms retrieved from word em-
bedding models. Rekabsaz et al. [2017] further improve upon
this by contrasting different term weighting and feature fu-
sion methods; in addition to past volatility, they consider a
GARCH model, and a sector variable. Note that all of these
studies, although predicting volatility, investigate annual re-
port 10-K which differs largely from earnings calls in terms
of form (formal, written instead of spontaneous, spoken lan-
guage) and content (legally required vs. voluntary and less-
restricted information). Furthermore, given their focus on
NLP, these papers include no or only few financial features.

Wang & Hua [2014] explore a prediction of stock return
volatility using earnings call transcripts. They use a semipara-
metric Gaussian copula to predict the volatility in the week
following the call and consider uni-/bigrams, POS tags, NE
tags as well as frame-level semantic annotations. They show a
significant performance increase of the Gaussian copula over
the second-best model, a linear regression.

We present a new dataset of 90K calls and thus re-assess
this task at a large scale. Moreover, we propose a model
jointly learning from both semantic text representations and
a comprehensive set of financial features. Given the ad-
vancements of neural networks and their capabilities in au-
tomatic feature learning [Baroni et al., 2014], we were moti-
vated to apply such methods instead of a traditional, feature-
engineered approach. Lastly, since performance gains by
neural networks have “typically come at the cost of our under-
standing of the system” [Linzen et al., 2018, p. iii], we were
interested in obtaining humanly interpretable results by visu-
ally explaining volatility fluctuations in a sample use case.

Part # Sentences # Tokens

Presentation 12.5M 276.3M
Q&A 22.6M 398.9M

Total 35.1M 675.2M
Per document 0.4K 7.7K

Table 1: Surface features for our dataset of 90K documents.

3 Dataset
We collect 90K earnings call transcripts from the database
Thomson Reuters Eikon.2 The data covers ca. 4.3K distinct
companies and spans the years 2002–2017. The approximate
numbers of tokens and types are 675M and 200K, respec-
tively. We divide all transcripts into the Presentation and the
Questions-and-Answers (Q&A) section; Table 1 describes
this dataset in terms of surface features. As can be seen, the
average transcript contains 400 sentences and 7.7K tokens.

We retrieve all utterances except technical remarks (e.g.
closing the call) by the teleconference Operator and tokenize
the documents with SpaCy. We identify dates, points of time,
percentages, monetary values, measurements (as of weight
or distance), and cardinal numbers with SpaCy’s named en-
tity recognizer and replace them with uniform placeholder to-
kens, e.g. “{PERCENTAGE}” or “{CARDINAL}”. Since
the transcribed text data is intellectual property of Thomson
Reuters, we are legally not allowed to share it in its raw form.
However, our word embedding models and the financial data
(as defined in Section 4) can be found online.3

To prevent look-ahead bias, we use a temporal 80/10/10
percentage split to divide the 90K instances into separate
training, validation, and test sets. The training data spans
from Jan. 2002 to Aug. 2015, validation from Aug. 2015 to
Nov. 2016, and test from Nov. 2016 to Dec. 2017.

4 Methodology
Given a firm’s transcript and a set of financial features, we
perform the prediction of a continuous label (volatility) in the
week following the firm’s earnings call.

4.1 Label: Volatility
Volatility, the most common financial risk measure, indicates
the possible spread of stock prices or returns. Concisely put,
a “stock will have a high volatility when its price fluctuates
widely and a low volatility when its price stays more or less
constant” [Kogan et al., 2009, p. 273]. Volatility is defined as
follows: Let rt = pt

pt−1
− 1 be the return of a stock with price

pt on day t. Then the volatility between days t and t + τ is
the sample standard deviation of stock returns in this period:

v[t,t+τ ] =

√√√√ 1

τ − 1

τ∑
i=0

(rt+i − r̄)2 (1)

2https://eikon.thomsonreuters.com/index.html
3https://www.uni-mannheim.de/dws/people/researchers/

phd-students/christoph-kilian-theil/
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Here, r̄ is the sample mean of rt over the period. We use the
volatility v[1,5] in the business week after the call as label.

4.2 Features
Our model jointly learns from various textual and financial
features which are defined as outlined below.

Textual Features
We segment the transcripts into three sections: presentation,
questions, and answers. Each of these sections is repre-
sented by a vector t, i.e. tP, tQ, tA: the tokens w1, w2, ..., wn
of the transcript sections are represented with embeddings
w(1),w(2), ...,w(n), and two distinct model variants compose
those tokens in into a representation t (see Section 4.3). Word
embeddings with dimensions d ∈ {100, 200} are trained with
fastText [Bojanowski et al., 2017] on our dataset of 90K tran-
scripts, 675M tokens, and 200K types.

Financial Features
For each call, we retrieve a comprehensive set of financial
features. If not stated otherwise, we obtain all data from the
databases CRSP and CRSP/Computstat Merged which we ac-
cess via the WRDS platform.4
Past volatility should expectedly be a strong predictor of fu-
ture volatility [Kogan et al., 2009], which is why we add the
volatility v[−64,−1] (see Eq. 1) in the business quarter before
the call as feature.
Market volatility as aggregated by the CBOE Volatility Index
(VIX),5 has been shown to be a predictor of volatility [Blair
et al., 2001]. We retrieve the VIX value at the day before the
call to factor in market moves affecting all companies.
Size is represented by the total market value of equity (or:
“market capitalization”), which is defined as the number of
outstanding shares times stock price. We include the firm size
on the day before the call as feature, since it is a well-known
driver of risk [Fama and French, 1993].
Book-to-market is the ratio of firm value according to its bal-
ance sheet (“book value”) over market value (see above) and
measures the current degree of over- or undervaluation. This
ratio is a well-proven risk factor [Fama and French, 1993],
which is why we incorporate it in our model.
Earnings surprise is the difference between the actual and the
expected earnings per share (i.e. the profit allocated per indi-
vidual stock) and obtained from the WRDS database I/B/E/S.
Empirical findings suggest that high surprises are also fol-
lowed by a high volatility [Price et al., 2012], which is why
we were interested to include it as a feature.
Industry-specific characteristics have been shown to be an im-
portant risk driver [Fama and French, 1997]. To account for
them, we categorize each firm according to the Fama–French
12-industry scheme,6 which distinguishes between twelve in-
dustries (e.g. “energy” or “healthcare”).

4.3 Proposed Model: PRoFET
PRoFET is a neural model incorporating word embed-
dings, LSTMs [Hochreiter and Schmidhuber, 1997], and an

4https://wrds-web.wharton.upenn.edu/wrds
5http://www.cboe.com/vix
6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data library.html

attention-based text representation. Our implementation (as
elaborated below) can be found online.7

Architecture
Figure 1 provides a sketch of PRoFET’s architecture. For
each section, a representation t is computed: Each token
w(i) is transformed into a contextualized representation c(i)
with a BiLSTM by concatenating the a left-to-right and a
right-to-left LSTM’s hidden state vector of w(i), i.e. c(i) =
[−−−→BiLSTM(w(1), ...,w(i)),←−−−BiLSTM(w(n), ...,w(i))]. An attention
score s(i) is computed for each of these contextualized rep-
resentations with a learned attention vector a, where s(i) =

exp(aT c(i))∑
j exp(aT c(j))

[Bahdanau et al., 2015]. A separate a is
learned for presentations, questions, and answers (i.e. aP, aQ,
and aA) and the BiLSTM weights are shared among these sec-
tions. Finally, each section is represented as weighted sum:

t :=
n∑
i=1

s(i)c(i) (2)

The such obtained text representations tP, tQ, and tA are
concatenated and fed into a feed-forward network (FNN) with
k hidden layers (with k being a hyperparameter). Each of its
layers uses dropout, batch normalization [Ioffe and Szegedy,
2015], and a ReLU [Nair and Hinton, 2010] activation func-
tion. Thus, a single distributed text representation tdist is cre-
ated. A separate FNN with the same architecture calculates a
distributed representation fdist from the financial data. Both of
these representations are summed up yielding a single vector
(tdist + fdist) which is fed into a final hidden layer with batch
normalization. The output of this layer is a prediction of the
continuous label v, i.e. volatility in the week after the call.

Optimization
The performance of neural architectures is influenced by
a range of hyperparameters. To choose a set of hy-
perparameters for our FNN, we explore: the number of
hidden layers k ∈ {1, 2, 3}, hidden layer sizes n ∈
{128, 256, 512, 1024, 2048}, and whether to use batch nor-
malization for layers lin = 0, 1 ≤ lhid < k and lout = k.
For the BiLSTM, we consider: the number of hidden lay-
ers k ∈ {1, 2, 3}, hidden layer sizes n ∈ {50, 100}, learn-
ing rate λ ∈ {10−1, 10−2}, dropout δ ∈ {0.0, 0.1, . . . , 0.5},
weight decay ω ∈ {10−4, 10−5, 10−6}, embedding size d ∈
{100, 200}, and whether the embeddings are adjusted.

To find a good configuration of hyperparameters, we per-
form a Bayesian optimization minimizing MSE on the val-
idation set.8 We start the search with 10 random samples
from the hyperparameter grid and then alternate between: (1)
choosing the next unseen set yielding the lowest loss minus
one standard deviation; or (2) sampling a new configuration
from the grid. In total, we evaluate 60 hyperparameter config-
urations. We train a model for up to 20 epochs with Adagrad
[Duchi et al., 2010] and a batch size of 112. We determine
the best model with early stopping and use its hyperparameter
configuration for subsequent training.

7https://github.com/samuelbroscheit/neural-profet
8The Bayesian optimization is implemented with sklearn

0.20.1’s GaussianProcessRegressor with RBF kernel and 20 restarts.
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Figure 1: PRoFET’s architecture. Representations of Presentation,
Questions, and Answers are weighted averages of the token embed-
dings, which are contextualized by a BiLSTM and then weighted by
an attention score. Text representations are fed into the left FFN, the
financial features into the right FFN. Both FFNs are executed k + 1
times, with k being a hyperparameter. In the last layer, both feature
sets are fused for the final prediction.

4.4 Baselines
Average Pooling
As a simple neural benchmark, we train an average pooling
model which obtains the text representations t by averaging
all contextualized token representations c(i):

t :=
1

n

n∑
i=1

c(i) (3)

GARCH
As one of the most popular econometric models for volatility
prediction, GARCH [Bollerslev, 1986] is considered to per-
form well in various settings [Hansen and Lunde, 2005]. For
each call, we train such a model as baseline that our joint
models should exceed to provide real value. We use all avail-
able historic return data up to the call date to perform a pre-
diction of volatility in the week following the call.

Sparse Methods
From the related domain of risk prediction based on an-
nual report 10-K, we replicate the sparse methods9 by
Kogan et al. [2009], Wang et al. [2013], Tsai & Wang [2014],
and Rekabsaz et al. [2017]. All of them use different variants
of bag-of-words (BoW) vectors and past volatility10 as fea-
tures in a prediction based on the SVR model. Our findings

9See Section 2 for an overview.
10To provide a fair comparison to our approach, we additionally

use the comprehensive set of financial features proposed by us (see
Section 4.2) in all replication experiments.

confirm that among these approaches, the most recent one by
Rekabsaz et al. [2017] performs best in our domain as well.

This approach consists of training a word embedding
model to expand a financial sentiment dictionary [Loughran
and McDonald, 2011] with similar terms; this expanded dic-
tionary is used to filter and retain the matching terms in
BM25-weighted BoW vectors. Vector sparsity is reduced
with Principal Component Analysis (PCA) and separate SVR
models with RBF kernel are learned on both the financial
and the textual data. The results of these models are fused
(“stacked”) in a final prediction with an additional SVR. To
set PRoFET’s performance in relation to the previous state-
of-the-art, we report the results of this method on ten folds of
our test set.

4.5 Evaluation Metrics
To evaluate the predictive performance, we analyze the fol-
lowing metrics: the linear correlation coefficient Pearson’s r,
the non-linear rank correlation coefficients Spearman’s ρ and
Kendall’s τ used in the previous literature [Wang and Hua,
2014], and the MSE. Optimizing the models on our validation
set, we noticed consistently higher values for the rank corre-
lation coefficients over r. This indicates a monotonic but non-
linear relationship between the predicted values ŷ and the ac-
tual values y. An inability to capture non-linear relationships
and a proneness to outliers are well-known undesirable prop-
erties of r [Anscombe, 1973]. To obtain more robust corre-
lation estimates in such settings, a log-transformation can be
applied to ŷ and y. Hence, we report rlog which is the linear
correlation measured on the log-transformed data.

5 Results and Discussion
We start by demonstrating that a neural model performs com-
petitively to the previous state-of-the-art, even when using
previously proposed data and features (Section 5.1). We con-
tinue by benchmarking the performance of different models
on our new dataset (Section 5.2), proceed with an ablation
study (Section 5.3), and conclude with a showcase of the vi-
sualized attention mechanism of PRoFET (Section 5.4).

5.1 Comparison to Previous Work
We compare the best-performing previously researched
model, a Gaussian Copula regression, with a set of regression
models selected by us: a Ridge regression, a Huber regres-
sion, and a simple feed-forward neural network (FNN). The
goal of this comparison is not to present a model which out-
performs the previous state-of-the-art, but is to show that an
FNN poses a competitive alternative to the model proposed
by Wang & Hua [2014], which is not publicly available. To
stay comparable, we use the dataset published by them.11

This dataset contains 11K instances with 500 language fea-
tures (as specified in Section 2) and volatility in the week fol-
lowing the call as a label. We explored several neural network
architectures with different hyperparameters using a random-

11https://www.cs.ucsb.edu/∼william/data/earningscalls.zip
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Model rlog ρ τ MSE

Copula — 0.407 0.302 —
Ridge 0.326 0.356 0.245 0.976
Huber 0.346 0.382 0.262 0.926
FNN 0.395 0.446 0.309 0.829

Table 2: Performance of an FNN compared to different regression
models on the dataset of Wang & Hua [2014] in terms of Pearsons
rlog, Spearman’s ρ, Kendall’s τ , and MSE multiplied by 100.

ized search with 3-fold cross validation on the full dataset.12

Table 2 provides an overview over the performance across
all regression models. As can be seen, the neural network
performs competitively to the Gaussian Copula, especially in
terms of Spearman’s ρ.

5.2 Model Benchmark
Table 3 summarizes PRoFET’s performance in terms of the
evaluation metrics described in Section 4.5. All values are
averages of ten runs on our test set. If applicable, we perform
(paired) t-tests with α ∈ {0.05, 0.01, 0.001} to test for sig-
nificant performance increases over the baselines described
in Section 4.4: the econometric model GARCH; the best-
performing sparse method [Rekabsaz et al., 2017]; and the
average pooling model.

As can be seen, the approach by Rekabsaz et al. [2017] out-
performs the econometric model GARCH, which indicates
that: (1) it should pose a competitive reference for our neural
models; and (2) even sparse methods without a representation
of semantic context can lead to considerable performance in-
creases over purely financial models.

The average pooling model and the previous state-of-the-
art reach a similar performance with insignificant differences
across all metrics apart from MSE. For this metric, the aver-
age pooling models falls behind by a highly significant mar-
gin (0.870 vs. 0.504, p ≤ 0.001), albeit with a compara-
bly high standard deviation (0.209 vs. 0.084). In summary,
these results indicate that a simple averaging of the word em-
beddings does not appropriately reflect the complexity of the
problem.

Our proposed model PRoFET exceeds both the average
pooling model as well as the previous state-of-the-art across
all evaluation metrics. This improvement is highly signifi-
cant (p ≤ 0.001) in terms of the linear correlation, and very
significant (p ≤ 0.01) in terms of the rank correlation coef-
ficients. Moreover, PRoFET’s performance also exhibits the
largest robustness in terms of standard deviation out of all ap-
proaches which we consider. In conclusion, our findings sug-
gest that for the given task, a fine-grained modeling of seman-
tic context—in our case, with a separate attention mechanism
weighting the contextualized token representations—leads to
profound performance increases over both traditional econo-
metric as well as state-of-the-art sparse NLP models.

12The highest performance was achieved with three hidden layers
(with 500, 250, and 150 neurons), a logistic activation function, and
an L2 penalty parameter of 10−3.
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Figure 3: Comparison of PRoFET trained on only the presentation,
only the Q&A, and both the presentation + Q&A in terms of Pear-
son’s rlog, Spearman’s ρ, Kendall’s τ , and MSE.

5.3 Ablation Study
We continue by performing a systematic ablation study to an-
swer the questions: How do textual and financial features in-
fluence the prediction? What is the influence of the scripted
presentation and the spontaneous Q&A?

Feature Ablation
We start by comparing the performance of a purely finan-
cial model to both a purely textual model and a joint model.
The results of this ablation are depicted in Figure 2. Using
only textual features yields to noticeable performance drops
in terms of rlog, ρ, and τ compared to both the financial fea-
tures as well as a joint model; however, using textual features
alone yields the lowest MSE out of all models that we con-
sider. Although seemingly small, the performance increase
of a joint model over a purely financial model is highly sig-
nificant (p ≤ 0.001) in terms of rlog and very significant
(p ≤ 0.01) in terms of ρ and τ . In summary, this experi-
ment exemplifies that for the given task, the performance of
textual features can only be assessed meaningfully in con-
junction with financial features.

Section Ablation
We proceed by comparing the influence of different sections
on the predictive power. It could be expected that the pre-
sentation and the Q&A as structurally different sections also
differ with regard to their informativeness to the market. Our
results (see Figure 3) show that using only the presentation
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Model rlog ρ τ MSE

Mean SD Mean SD Mean SD Mean SD

GARCH 0.437 — 0.531 — 0.368 — 7.236 —
Rekabsaz [2017] 0.560 0.024 0.596 0.020 0.422 0.017 0.504 0.084
Average Pooling 0.571 0.017 0.598 0.018 0.419 0.015 0.870 0.209
PRoFET 0.622 0.013 0.641 0.013 0.454 0.011 0.485 0.086

Table 3: Performance of PRoFET compared to the baseline GARCH, the best-performing sparse method [Rekabsaz et al., 2017], and the
average pooling model on our test set in terms of Pearson’s rlog, Spearman’s ρ, Kendall’s τ , and MSE.

yields better results than using only the Q&A. While the joint
model still performs best in terms of rlog, ρ, and τ , it is the
model trained on the presentation alone, which achieves the
lowest MSE; this difference is insignificant, however. In sum,
these results show that the transcripts have to be analyzed in
their entirety to achieve the best performance.

5.4 Attention Visualization

As a concluding use case, we show how the attention mecha-
nism (see Section 4.3) can be visualized on the token-level as
a tool for investment decision support. In Figure 4, we present
three real-data text snippets to which PRoFET assigned a no-
ticeably above-average attention per token.

As the first snippet indicates, PRoFET allocates a high at-
tention to “uncertainties” created by the “Brexit vote”. The
latter collocation appears in the top-10 percentile of tokens
when ordered according to their average attention which in-
dicates a strong correlation with risk. The second snippet,
taken from the Q&A answers given by company executives,
is about short-term fluctuations and their implications for in-
vestment risk. Notably, the term “outlook” gets assigned
slightly different attention levels depending on the verbal con-
text. The last snippet covers severe environmental conditions,

namely “heavy rainfall” and “subsequent flooding” with the
latter displaying the highest allocated attention.

6 Conclusion
In this paper, we exploited natural language information re-
vealed in recurring events (so-called earnings calls) for a
volatility prediction task. We introduced PRoFET, the first
neural model for risk prediction jointly learning from both se-
mantic text representations and a comprehensive set of finan-
cial features. We have shown that our proposed method out-
performs the previous state-of-art and other strong baselines.
PRoFET’s architecture leverages an attention mechanism to
model verbal context which leads to significant performance
increases over simpler sparse or average pooling models. We
concluded by showcasing how this attention mechanism can
be visualized on the token-level, thus providing interpretable
results and offering a tool for investment decision support.
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And finally , the uncertainties created by the Brexit vote are likely to enhance the US commercial
industry 's attractiveness across the majority of overseas investors . Given the aforementioned volatility
we believe it is important to reiterate a few key themes relative to the HFF business model .

And I guess as we think about the timing of you making these investments , I understand that despite
short - term fluctuations the long - term outlook is strong for capital markets . But the long - term outlook
has probably been good for a while .

Unfortunately , weather was again a major headwind for our business with the heavy rainfall and
subsequent flooding in South Texas and Louisiana . Despite this headwind , we maintained strong
utilization at {PERCENT} based on OEC , down {CARDINAL} basis points from {DATE} ..

Figure 4: Exemplary text snippets from the validation data with visualized attention per token according to PRoFET. Increasing intensity of
red indicates a higher attention (i.e. a higher predictive power for risk).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5216



References
[Andersen et al., 2006] Torben G. Andersen, Tim Bollerslev,

Peter F. Christoffersen, and Francis X. Diebold. Volatil-
ity and Correlation Forecasting. In G. Elliot, C. W. J.
Granger, and A. Timmermann, editors, Handbook of Eco-
nomic Forecasting, chapter 15, pages 778–878. North-
Holland, Amsterdam, 2006.

[Anscombe, 1973] Francis J. Anscombe. Graphs in Statis-
tical Analysis. The American Statistician, 27(1):17–21,
1973.

[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. In Proceedings
of ICLR, 2015.

[Baroni et al., 2014] Marco Baroni, Georgiana Dinu, and
Germán Kruszewski. Don’t Count, Predict! A Systematic
Comparison of Context-Counting vs. Context-Predicting
Semantic Vectors. In Proceedings of ACL, pages 238–247,
2014.

[Blair et al., 2001] Bevan J. Blair, Ser-Huang Poon, and
Stephen J. Taylor. Forecasting S&P 100 Volatility: The In-
cremental Information Content of Implied Volatilities and
High-Frequency Index Returns. Journal of Econometrics,
105(1):5–26, 2001.

[Bojanowski et al., 2017] Piotr Bojanowski, Edouard Grave,
Armand Joulin, and Tomas Mikolov. Enriching Word Vec-
tors with Subword Information. Transactions of ACL,
5:135–146, 2017.

[Bollerslev, 1986] Tim Bollerslev. Generalized Autoregres-
sive Conditional Heteroskedasticity. Journal of Economet-
rics, 31(3):307–327, 1986.

[Duan et al., 2018] Junwen Duan, Xiao Ding, and Ting Liu.
Learning Sentence Representations over Tree Structures
for Target-Dependent Classification. In Proceedings of
NAACL, pages 551–560, 2018.

[Duchi et al., 2010] John C. Duchi, Elad Hazan, and Yoram
Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. In Proceedings of COLT,
pages 257–269, 2010.

[Fama and French, 1993] Eugene F. Fama and Kenneth R.
French. Common Risk Factors in the Returns on Stocks
and Bonds. Journal of Financial Economics, 33(1):3–56,
1993.

[Fama and French, 1997] Eugene F. Fama and Kenneth R.
French. Industry Costs of Equity. Journal of Financial
Economics, 43(2):153–193, 1997.

[Hansen and Lunde, 2005] Peter R. Hansen and Asger
Lunde. A Forecast Comparison of Volatility Models:
Does Anything Beat a GARCH(1,1)? Journal of Applied
Econometrics, 20(2):873–889, 2005.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 1997.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.
In Proceedings of ICML, pages 448–456, 2015.

[Kogan et al., 2009] Shimon Kogan, Dimitry Levin,
Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith.
Predicting Risk from Financial Reports with Regression.
In Proceedings of NAACL, pages 272–280, 2009.

[Larcker and Zakolyukina, 2012] David F. Larcker and
Anastasia A. Zakolyukina. Detecting Deceptive Dis-
cussions in Conference Calls. Journal of Accounting
Research, 50(2):494–540, 2012.

[Linzen et al., 2018] Tal Linzen, Grzegorz Chrupała, and
Afra Alishahi. Introduction. In Proceedings of the 2018
EMNLP Workshop BlackBoxNLP, 2018.

[Loughran and McDonald, 2011] Tim Loughran and Bill
McDonald. When Is a Liability Not a Liability? Tex-
tual Analysis, Dictionaries, and 10-Ks. The Journal of
Finance, 66(1):35–65, 2011.

[Loughran and McDonald, 2016] Tim Loughran and Bill
McDonald. Textual Analysis in Accounting and Finance:
A Survey. Journal of Accounting Research, 54(4):1187–
1230, 2016.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E. Hinton.
Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of ICML, 2010.

[Price et al., 2012] S. McKay Price, James S. Doran,
David R. Peterson, and Barbara A. Bliss. Earnings Confer-
ence Calls and Stock Returns: The Incremental Informa-
tiveness of Textual Tone. Journal of Banking and Finance,
36(4):992–1011, 2012.

[Rekabsaz et al., 2017] Navid Rekabsaz, Mihai Lupu, Artem
Baklanov, Allan Hanbury, Alexander Duer, and Linda An-
derson. Volatility Prediction Using Financial Disclosures
Sentiments with Word Embedding-Based IR Models. In
Proceedings of ACL, pages 1712–1721, 2017.

[Tsai and Wang, 2014] Ming-Feng Tsai and Chuan-Ju
Wang. Financial Keyword Expansion via Continuous
Word Vector Representations. In Proceedings of EMNLP,
pages 1453–1458, 2014.

[Wang and Hua, 2014] William Yang Wang and Zhenhao
Hua. A Semiparametric Gaussian Copula Regression
Model for Predicting Financial Risks from Earnings Calls.
In Proceedings of ACL, pages 1155–1165, 2014.

[Wang et al., 2013] Chuan-Ju Wang, Ming-Feng Tsai, Tse
Liu, and Chin-Ting Chang. Financial Sentiment Analy-
sis for Risk Prediction. In Proceedings of IJCNLP, pages
802–808, 2013.

[Xu and Cohen, 2018] Yumo Xu and Shay B. Cohen. Stock
Movement Prediction from Tweets and Historical Prices.
In Proceedings of ACL, pages 1970–1979, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5217


