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Abstract
Relation extraction studies the issue of predicting
semantic relations between pairs of entities in sen-
tences. Attention mechanisms are often used in
this task to alleviate the inner-sentence noise by
performing soft selections of words independently.
Based on the observation that information perti-
nent to relations is usually contained within seg-
ments (continuous words in a sentence), it is pos-
sible to make use of this phenomenon for better
extraction. In this paper, we aim to incorporate
such segment information into neural relation ex-
tractor. Our approach views the attention mecha-
nism as linear-chain conditional random fields over
a set of latent variables whose edges encode the de-
sired structure, and regards attention weight as the
marginal distribution of each word being selected
as a part of the relational expression. Experimental
results show that our method can attend to continu-
ous relational expressions without explicit annota-
tions, and achieve the state-of-the-art performance
on the large-scale TACRED dataset.

1 Introduction
There has been significant historic interest in relation extrac-
tion (RE), which aims to extract semantic relationships be-
tween two target entities from plain text. Regarding such task
as a simple text classification problem is undesirable because
of the inner-sentence noise [Liu et al., 2018]. To explain the
influence of word-level noise, we consider the sentence in
Figure 1 as an example. The sub-sentence “Edsel Ford, the
only child of Henry Ford” keeps enough words to express the
relation children, and the other words could be regarded as
noise that may hamper the extractor’s performance.

To alleviate the influence of word-level noise within sen-
tences, many efforts have been devoted to get rid of irrele-
vant words [Xu et al., 2015; Zhang et al., 2017; Zhang et
al., 2018; Liu et al., 2018], especially the recent state-of-
the-art attention-based methods [Zhang et al., 2017; Lee et
al., 2019]. Specifically, current attention scheme used in RE
computes the attention score for each word to indicate how
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Edsel Ford, the only child ofHenry Ford, died in New York.

per:parents

Relational Expression

Relation Type

Figure 1: An example modified from the TACRED dataset. The
relational expression is highlighted with a box and points to its cor-
responding entity pair.

well the word can express the relation between the two en-
tities. This mechanism can be viewed as the process of per-
forming soft selections of individual words independently, re-
gardless of the rich dependencies among the words that de-
scribe the relation.

As we can see from the example given in Figure 1, the rela-
tional expression associated with target entities may be in the
form of a segment structure, where the segment refers to a
consecutive subsequence of words in sentence. The phrase
“child of ” is the relational expression of entity pair (Ed-
sel Ford, Henry Ford) and represents the relation “children”.
It is difficult for model to distinguish between “children” and
“parents” if its attention layer only focuses on the individual
word “child” rather than the segment “child of ”. Further-
more, we sample out 200 examples from the standard dataset
and annotate the relational expression of each sentence man-
ually. We find that half of the relational expressions are in the
form of segment and longer than 2 words, which means that
accurately extracting and modeling such segment information
can be extremely crucial. While one might argue that these
dependencies can be learned implicitly by a deep model with
substantial amount of data, we believe it is still useful to pro-
vide such shallow structural information as prior knowledge.

To capture such relational expressions, we incorporate a
layer that is analogous to conditional random fields (CRF)
[Lafferty et al., 2001] in the attention modeling process. As a
result, our attention mechanism could provide a probabilistic
framework for calculating the weights of words globally con-
ditioned on the full sentence. In other words, the weight of
one word is expected to impact on the weights of neighbor-
ing words. This can be viewed as an extension of the stan-
dard attention mechanism, and we call such a novel attention
mechanism segment attention in this paper.

Our approach views the attention mechanism as a linear-
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chain CRF over a set of latent variables whose edges encode
the desired structure. Concretely, we assume that there is a
one-to-one match between variables and words. Each binary
variable indicates whether its corresponding word is part of a
relational expression or not (two states in our problem: se-
lected word and non-selected word). Then we regard the
marginal distribution of each word being selected as the at-
tention weight. This distribution can be calculated efficiently
in linear-time using the forward-backward algorithm. Fur-
thermore, we introduce two additional regularizers to ensure
our model attends to continuous regions. The first regularizer,
which named as transition regularizer, discourages frequent
transitions between different states and aims to achieve con-
tinuous identical states. The second regularizer called sparse
regularizer tries to focus on few words that really matter and
return sparse weight distribution.

Specifically, our model consists of four layers: a position-
aware input layer aims to take position information into con-
sideration, a BiLSTM layer [Graves et al., 2013] that runs
through the words in the sentence sequentially to get contex-
tual information for each word, and a segment attention layer
works as parameterized pooling to distill the relation informa-
tion and learn a representation of the given sentence, which is
fed to the final classification layer.

To summarize, our contributions are as follows:

• We propose a novel segment attention based sequence
model (SA-LSTM) for RE task, which is capable of
learning relational expressions and capturing dependen-
cies between target entities and their relations.

• Experiments are conducted on the TACRED dataset. Re-
sults show that our model achieves the state-of-the-art
performance on the fully-supervised RE task.

• We conduct qualitative analyses to understand how our
model works with the help of segment attention, includ-
ing evaluation of the extracted relational expressions.

2 Related Work
There are several studies for solving relation extraction
task. Early methods used handcrafted features through a se-
ries of NLP tools or manually designing kernels [Rink and
Harabagiu, 2010]. These approaches use high-level lexical
and syntactic features obtained from NLP tools and manu-
ally designing kernels, but the classification models relying
on such features suffer from error propagation of the tools.

Recent studies have found neural models effective in re-
lation extraction, deep neural networks have outperformed
previous models using handcraft features. Zeng et al.[2014]
employed a deep convolutional neural network for extracting
lexical and sentence level features. Santos et al. [2015] pro-
posed model for learning vector of each relation class using
ranking loss to reduce the impact of artificial classes. Zhou
et al. [2016] used bidirectional recurrent neural network to
learn long-term dependency between entity pairs.

Apart from neural models over word sequences, incorpo-
rating dependency trees into neural models has also been
shown to improve relation extraction performance by captur-
ing long-distance relations. Xu et al. [2015] generalized the

idea of dependency path kernels by applying a LSTM net-
work over the shortest dependency path between entities. Liu
et al. [2015] first applied a recursive network over the sub-
trees rooted at the words on the dependency path and then
applied a CNN over the path. Zhang et al. [2018] applied
a combination of pruning strategy and graph convolutions to
the dependency tree. The resulting model achieved best per-
formance on the TACRED dataset.

More recently, some researchers have proposed attention-
based models which can focus to the most important semantic
information in a sentence. Zhou et al. [2016] combined atten-
tion mechanisms with BiLSTM. Xiao and Liu [2016] splited
the sentence into two entities and used two attention-based
BiLSTM hierarchically [21]. Wang et al. [2016] proposed
attention-based CNN using word level attention mechanism
that is able to better determine which parts of the sentence are
more influential. Zhang et al. [2017] employed a position-
aware attention mechanism over LSTM outputs, and showed
that it outperforms several CNN and dependency-based mod-
els by a substantial margin. Du et al. [2018] proposed a
2-D matrix-based attention mechanism, which contains mul-
tiple vectors, each focusing on different aspects of the sen-
tence. Our model is inspired by structural attention network
[Kim et al., 2017] which extends the standard attention to
directly model structural dependencies between nearby input
elements. Wang and Lu [2018] also applied this sort of ar-
chitecture to aspect-based sentiment analysis. Different from
previous attention model designed for relation extraction, our
model is capable of learning phrase-like features and capture
reasonable segments as relational expressions.

3 Methodology
Figure 2 gives an illustration of our SA-LSTM model. Next,
we detail all components sequentially from bottom to top.

3.1 Input Layer
The input layer of the sentence encoder aims to embed both
semantic information and positional information of words
into their input embeddings.

Word embedding is able to capture the meaningful seman-
tic regularities of words [Turian et al., 2010]. We use pre-
trained dw-dimensional word embeddings [Pennington et al.,
2014] as the basic features.

Position embedding is proposed by [Zeng et al., 2014],
which is used to embed the relative distances of each word
to the two entities into two dp-dimensional vectors. By con-
catenating the distance embeddings for the current word wi

to the both head and tail entities, we get a unified position
embedding pi ∈ Rdp×2.

For each word wi, we concatenate its word embedding wi

and position embedding pi to build its input embedding xi =
[wi;pi] ∈ Rdw+dp×2

3.2 BiLSTM Layer
A BiLSTM layer is adopted to capture the contextual infor-
mation for each word. For simplicity, we denote the operation
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Figure 2: Model architecture shown with an example sentence “Edsel Ford, the child of Henry Ford, died in New York”. The model encodes
the contextual information for each word using BiLSTM. Based on its hidden states, the internal segment attention layer performs soft
selections of a consecutive sequence of words by giving higher weights to more relevant contexts.

of an LSTM unit on xi as LSTM(xi). Thus, the contextual-
ized word representation is obtained as follows:

hi = [
−−−−→
LSTM(xi);

←−−−−
LSTM(xi)], i ∈ [1, n] (1)

where hi ∈ R2×dh and dh indicates the dimension of hid-
den state for LSTM. In doing so, we can efficiently make
use of past features (via forward states) and future features
(via backward states) for a specific time. Moreover, we use
H = {h1,h2, · · · ,hn} to denote all the word representations
generated for the input sentence.

3.3 Segment Attention Layer
Based on the observation that it is usually a segment rather
than individual words scattered in the sentence that form
meaningful information, we incorporate a segment attention
layer to perform soft selections of a sequence of words.

Similar to the standard attention used in RE, our segment
attention is also a linear combination of the input representa-
tions where the weight scalar is between [0, 1] and represents
how much attention should be focused on each input. The key
difference between our scheme and previous attention mech-
anism used in [Zhou et al., 2016] and [Zhang et al., 2017]
is the calculation of attention weights. Specifically, we in-
troduce a discrete latent binary variable z ∈ {0, 1} for each
word. This variable indicates whether its corresponding word
is part of a relational expression or not. Under this definition,
the representation of the given sequence m is defined as the
expectation of hidden states with the probability that its cor-
responding word is selected. Equation 2 gives a general form
of this function.

m =


i

p(zi = 1|H)hi (2)

In order to derive p(zi = 1|H), we incorporate linear-chain
conditional random fields (CRF) to specify the dependencies

between these latent variables. For a random variable over
data sequences H, and a random variable over correspond-
ing label sequences z, CRF provide a probabilistic frame-
work for calculating the probability of z globally conditioned
on H [Lafferty et al., 2001]. H and z may have a natural
graph structure. Formally, we use H = {h1,h2, · · · ,hn} to
represent a generic input sequence where hi is the BiLSTM
hidden state of the i-th word. z = [z1, · · · , zn] represents
a generic sequence of labels for H. The probabilistic model
for sequence CRF defines a family of conditional probability
p(z|H) over all possible label sequences z given H with the
following form:

p(z|H) =
1

Z(H)



c∈C
ψ(zc,H) (3)

Z(H) =


z′∈Z



c∈C
ψ(z′c,H) (4)

where Z denotes the set of possible label sequences z, Z(H)
is the normalization constant that makes the probability of all
state sequences sum to one, zc indicates the subset of z given
by individual clique c and ψ(zc,H) is the potential function
of this clique defined as:



c∈C
ψ(zc,H) =

n

i=1

ψ1(zi,hi)

n−1

i=1

ψ2(zi, zi+1) (5)

We define two types of feature functions: vertex feature ψ1

and edge feature ψ2. Vertex feature ψ1(zi,hi) represents the
mapping from the input hi to output zi through a single layer
neural network. Edge feature ψ2(zi, zi+1) models the tran-
sition from i-th state to i+1-th for a pair of consecutive time
steps. Note that this transition matrix is position independent.

ψ1(zi,H) = exp(Wv
zi · hi + b) (6)
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ψ2(zi, zi+1) = exp(Wt
zi,zi+1

) (7)

Here Wv ∈ R2×2dh maps context representation to the
feature score of each latent state, Wt ∈ R2×2 is a transition
matrix defined for each pair of latent state andWt

zi,zi+1
is the

transition score from zi to zi+1.
As mentioned above, our purpose is to compute the

marginal probability p(zi = 1|H) at each position in the se-
quence which can be computed by a dynamic programming
inference procedure similar to the forward-backward proce-
dure for HMM [Lafferty et al., 2001]. We can define the “for-
ward values” of the i-th timestep αi(z|H) by setting α1(z|H)
equal to the probability of starting with state z, z ∈ {0, 1},
and then iterate as follows:

αi+1(z|H) =


z′∈{0,1}

αi(z
′|H)ψ1(z,hi+1)ψ2(z

′, z) (8)

The “backward values” βi(z|H) can be defined similarly.
After that, we calculate the marginal probability of each word
being a part of the relational expression given the whole sen-
tence sequence by:

p(zi = 1|H) =
αi(1|H) ∗ βi(1|H)

Z(H)
(9)

Thus we can compute the final representation m used for
classification by combining both Equation 2 and Equation 9.
Furthermore, given the conditional probability of the state se-
quence defined by a CRF in Equation 3, we can also obtain
the most probable labeling sequence using a Viterbi decoding
algorithm, corresponding to the word sequence with a label of
1 denoting its corresponding word is part of a relational ex-
pression and 0 denoting the non-informative word. In other
words, the latent relational expressions can be extracted ex-
plicitly by maximizing Equation 3, which allows us to have
an intuitive understanding of our model behavior and evaluate
segment attention from another aspect.

3.4 Classification Layer
To compute the output distribution p(r) over relation labels, a
linear layer followed by a softmax is applied to the represen-
tation m, which represents a summary of the input sequence:

p(r|m) = softmax(Wr ·m+ br) (10)
whereWr ∈ R2×dhmaps the relation vectorm to the feature
score for each relation label and br is a bias term.

3.5 Objective Function
After incorporating the segment attention into the BiLSTM,
our final model is illustrated in Figure 2. The attention-based
BiLSTM component is associated with the cross entropy loss
of relation extraction. The loss function is given below:

J(θ) =
1

N

N

i=1

−yi log p(yi) (11)

In addition, based on the observation that relational expres-
sions are usually segments rather than disconnected words,

we hold that frequent transitions between different states
should be discouraged. Inspired by [Wang and Lu, 2018],
we introduce the transition regularizer to encourage the state
to stay the same.
Ωt = max(0,Wt

1,0−Wt
1,1)+max(0,Wt

0,1−Wt
0,0) (12)

Specifically, it enforces the transition feature value be-
tween different states to be smaller than the one between the
same state. The second regularizer tries to enforce the model
to attend to few words that really matter and return sparse
weight distribution:

Ωs =

n

i=1

p(zi = 1|H) (13)

The final objective function of our model is defined as:
L(θ) = J(θ) + λ1Ωt + λ2Ωs (14)

where λ1 and λ2 are hyperparameters that control the weights
of each regularizer.

4 Experiments
4.1 Dataset and Metric
We conduct experiments on the recently widely used bench-
mark TACRED dataset introduced in [Zhang et al., 2017],
which is the currently largest supervised dataset for relation
extraction. It contains over 106k entity pairs collected from
the TAC KBP evaluations 2009–2014. TACRED includes
41 relation types and a special no relation class indicating
that the relation expressed in the sentence is not among the
41 types. Entities in TACRED are replaced by correspond-
ing entity types, subjects classified into person and organiza-
tion, and objects categorized into 16 fine-grained classes (e.g.
date, location, title). We evaluate the models using the official
scorer in terms of the Macro-F1 score. For fair comparisons,
we report the test score of the run with the median validation
score among 5 randomly initialized runs following the evalu-
ation protocol used in [Zhang et al., 2017].

4.2 Implementation Details
Following popular choices and previous work, we employ the
“entity mask” strategy where we replace each subject (and
object similarly) entity with a special SUBJ-<NER> token.
we also adopt the “multi-channel” strategy by concatenating
the input word embeddings with part-of-speech (POS) and
named entity recognition (NER) embeddings. We run Stan-
ford CoreNLP [Manning et al., 2014] to obtain the POS and
NER annotations. These strategies are also used by the meth-
ods that we compare against.

We use the 300 dimension Glove embeddings [Penning-
ton et al., 2014] to initialize word embeddings. we randomly
initialize the POS, NER and position embeddings with 30-
dimension vectors, by drawing from a normal distribution
with µ = 0.0 and σ = 0.01. Dropout with p = 0.5 used
after the input layer and before the classifier layer. λ1 and
λ2 are chosen from [0,0.2] via grid search. For LSTM, we
set the hidden dimension size to 300 and use 2-layer stacked
BiLSTM. The model is trained using stochastic gradient de-
scent for 30 epochs with the initial learning rate of 1 and the
weight decay of 0.5. All the hyper-parameters are tuned on
the validation set.
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4.3 Comparison Models

We compare our model against the following baseline models
for relation extraction.

Pattern: The core component of TAC KBP 2015 winning
system, which uses a total of 4,528 surface patterns and 169
dependency patterns to extract relations [Angeli et al., 2015].

LR: It is trained on 2 million bootstrapped examples and
uses a comprehensive feature set [Zhang et al., 2017].

CNN-PE: It builds a convolutional model to learn sentence
features, and uses position vectors to indicate the relative dis-
tances of current word to two entities [Zeng et al., 2014].

PCNN: Based on CNN-PE, it replaces the max-pooling
operation with piece-wise max-pooling and achieves im-
proved results [Zeng et al., 2015].

SDP-LSTM: It applies a neural sequence model iteratively
along the shortest dependency path between target entities
[Xu et al., 2015].

Tree-LSTM: It is a recursive model [Tai et al., 2015] that
generalizes the LSTM to arbitrary dependency tree structures.

PA-LSTM: It employs a position-aware attention mecha-
nism over LSTM outputs, and outperforms several CNN and
dependency-based models [Zhang et al., 2017].

C-GCN: It applies a combination of pruning strategy and
graph convolutions to the dependency tree, which is a state-
of-the-art on the TACRED dataset [Zhang et al., 2018] .

SA-LSTM: Segment attention layer is employed on top of
the LSTM. This is the main model of this paper.

Note that C-GCN proposed a path-centric pruning strategy
to empirically remove irrelevant content [Zhang et al., 2018].
To fairly evaluate models, we also implement PA-LSTM aug-
mented with the shortened sentences used in C-GCN, namely
PA-LSTM+D. In a similar way, we can get the SA-LSTM+D.

4.4 Results

Experimental results are shown in Table 1. From the results,
we can observe that: (1) With the same pruned input, our
model outperforms state-of-the-art method with a relative im-
provement of 1.2%, which indicates that linear-chain CRF
can work well as a attention mechanism for relation extrac-
tion. (2) SA-LSTM achieves higher precision and recall than
PA-LSTM, which shows that modeling the dependencies be-
tween adjacent words can improve the model performance.
(3) Given more precise shortened sentences, our SA-LSTM
model still significantly outperforms the PA-LSTM, indicat-
ing that our proposed model can consistently benefits from
the more precise input. (4) Comparing SA-LSTM+D with C-
GCN, we can see that the gain mainly comes from improved
recall. We hypothesize that this is because the C-GCN may
suffer from the parser errors by modeling the tree structure
directly while SA-LSTM+D just use the dependency tree to
remove irrelevant words.

In addition, though pattern-based method also uses phrase
patterns to capture the relation expressions which is similar to
our motivation, SA-LSTM outperforms Pattern significantly.
It shows that human-designed features are very limited as
compared to neural models.

System P R F1

Pattern† [Angeli et al., 2015] 85.3 23.4 36.8
LR† [Zhang et al., 2017] 72.0 47.8 57.5
CNN-PE‡ [Zeng et al., 2014] 68.2 55.4 61.1
PCNN‡ [Zeng et al., 2015] 67.4 57.3 62.0
SDP-LSTM† [Xu et al., 2015] 66.3 52.7 58.7
Tree-LSTM† [Tai et al., 2015] 66.0 59.2 62.4
PA-LSTM† [Zhang et al., 2017] 65.7 64.5 65.1
PA-LSTM+D‡ 67.2 65.0 66.0
C-GCN† [Zhang et al., 2018] 69.9 63.3 66.4

SA-LSTM 68.1 65.7∗ 66.9∗
SA-LSTM+D 69.0 66.2∗ 67.6∗

Table 1: Results on TACRED test set. bold marks highest num-
ber among all models. † marks results reported in [Zhang et al.,
2017] and [Zhang et al., 2018]; ‡ marks results produced with our
implementation. ∗ marks statistically significant improvements over
C-GCN with p < 0.01 under a bootstrap test.

Model Dev F1

Best SA-LSTM 67.8
– Position embedding 64.5
– Transition regularizer 66.7
– Sparse regularizer 67.4
– Segment attention 57.1
– Pre-trained embeddings 65.3
– BiLSTM Layer 58.4

Table 2: An ablation study of the best SA-LSTM model on TACRED
dev set. Scores are median of 5 models.

5 Analyses
5.1 Ablation Study
To study the contribution of each component in the SA-LSTM
model, we run an ablation study on the TACRED dev set (see
also Table 2). From these ablations, we find that: (1) The
entire segment attention contributes about 10.7% F1 score.
(2) When we remove the position embedding and only use
word embedding as input, the score drops by 3.3%, which
indicates that it is important to let segment attention aware
of position information. (3) Removing the transition regular-
izer hurts the result by 1.1% F1 score. The performance also
slightly degrades without sparse regularizer. Intuitively, seg-
ment attention can naturally recall more instances since the
model captures a sequence of words rather than individual
words. However, high recall also results in low precision, so
these two regularizers can help model balance between preci-
sion and recall. (4) Segment attention usually performs better
when coupled with BiLSTM since it is easier to model the
interactions if contextual information is encoded in hidden
representation.

5.2 Case Study
We compare our method with PA-LSTM on some cases, as
shown in Table 3. As demonstrated by the first example, PA-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5405



Example Predicted relation True relation

PA-LSTM SUBJ-PER SUBJ-PER, the son of Israel’s first astronaut, OBJ-PER
OBJ-PER, died in his home yesterday. children

parents
SA-LSTM SUBJ-PER SUBJ-PER, the son of Israel’s first astronaut, OBJ-PER

OBJ-PER, died in his home yesterday. parents

PA-LSTM Prosecutors had accused SUBJ-PER, 22, then a student at OBJ-
ORG OBJ-ORG, and her boyfriend Raffaele. employee of

schools attended
SA-LSTM Prosecutors had accused SUBJ-PER, 22, then a student at OBJ-

ORG OBJ-ORG, and her boyfriend Raffaele. schools attended

Table 3: Output of SA-LSTM and PA-LSTM on samples from the TACRED test set, with words highlighted according to the attention
weights produced by SA-LSTM and PA-LSTM. The third column for each example is the predicted result of corresponding model and the
forth column is the gold standard.

1. OBJ-PER OBJ-PER, the president of the SUBJ-ORG, was sued by the SEC.

3. SUBJ-PER, who served as bureau chief, was convicted of accepting bribes, OBJ-CRIMINAL.

2. Founded in OBJ-DATE, SUBJ-ORG is a non-profit membership association.

4. Defendants are brought in together with SUBJ-PER including his wife Zhou Xiao and OBJ-PER.

Figure 3: Visualization of the extracted relational expressions using
Viterbi decoding algorithm. Green box indicates the model attend to
the true relational expressions as desired while the extracted wrong
segment is highlighted with red dotted box.

LSTM only focuses on the individual word “son” and can-
not capture the full relational expression “the son of”, so it
is difficult for PA-LSTM to distinguish between relation chil-
dren and parents. Thanks to the segment attention, our SA-
LSTM model can successfully attend to the desired segment
and make a correct decision.

In the second example, our proposed model successfully
detects the relation phrase “a student at” while PA-LSTM
only attend to the single word “at”, lose the information that
the subject entity is a student. Hence, it is not surprising
that PA-LSTM wrongly marks this instance as relation em-
ployee of. From these examples, we can observe that the pro-
posed model is capable of capturing shallow structural infor-
mation so as to perform relation extraction.

To give people some intuitive sense about how our models
perform, we sample out some instances and use Viterbi de-
coding algorithm to extract the relation expressions explicitly
(Figure 3). As we can see from the first two examples, the
segment attention precisely detects the subject entity, object
entity and the relation phrase between them. The third exam-
ple shows that the model can successfully attend to the de-
sired segment even if it is not adjacent to two target entities.
Sometimes, our model also fails to attend to the right span
as the forth example shows. Our segment attention identifies
“SUBJ-PER including his wife” as a relational expression be-
cause “his wife” is a highly confusing trigger phrase and close
to the subject entity, thus the model tends to capture them as
a whole while no relation hold between the entity pair.

5.3 Error Analysis
Although the proposed method outperforms the state-of-the-
art systems, we also observe several failure cases. The fol-

lowing is a typical example of a wrongly classified sen-
tence: “the SUBJ-ORG’s annual conference in OBJ-LOC
OBJ-LOC”. This sentence is wrongly classified as belong-
ing to the no relation category, while the ground-truth label
is stateorprovince of headquarters. The phrase “annual con-
ference in” does not appear in the training data, and moreover
is used metaphorically, making it difficult for the model to
recognize the semantic connection.

Another common issue is that there are multiple relations
in a sentence, such as the following ones: “SUBJ-PER, the
only child of OBJ-PER and his wife, Rosaile”. The model
fails to attend to the right span because two relations hold
simultaneously and their relational expressions are close to
each other, so the attention mechanism tends to assign similar
weights to the two phrases when extract the relation between
SUBJ-PER and OBJ-PER. It would be interesting to see if
designing more precise path pruning strategy can improve the
performance since reducing the noise from input would hope-
fully further alleviate the burden of attention layer.

6 Conclusion
In this paper, we propose a novel model that learns the latent
relational expressions based on the segment attention layer
for relation extraction. By incorporating a linear-chain CRF
into the attention layer, our model is capable of capturing the
dependencies between target entities and their relations. Ex-
periments on standard TACRED dataset show that our pro-
posed model outperforms a strong feature-based classifier and
all baseline neural models. We further compare the visualized
attention of our model with the baseline model to show how
segment attention layer affects the model. In the future, we
will conduct research on how to design more sophisticated
attention mechanism to address some of the existing chal-
lenges in relation extraction, such as multiple relations per
sentence. The source code of this paper can be obtained from
https://github.com/yubowen-ph/segment.
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