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Abstract
The task of event extraction contains subtasks in-
cluding detections for entity mentions, event trig-
gers and argument roles. Traditional methods solve
them as a pipeline, which does not make use of task
correlation for their mutual benefits. There have
been recent efforts towards building a joint model
for all tasks. However, due to technical challenges,
there has not been work predicting the joint output
structure as a single task. We build a first model to
this end using a neural transition-based framework,
incrementally predicting complex joint structures
in a state-transition process. Results on standard
benchmarks show the benefits of the joint model,
which gives the best result in the literature.

1 Introduction
There is a surge of interest in extracting structure information
from plain text. Event extraction is an essential and challeng-
ing task, which has been shown beneficial to a wide range of
downstream tasks, including question answering [Srihari and
Li, 2000] and stock prediction [Ding et al., 2014]. Accord-
ing to the ACE2005 dataset1, event extraction contains three
subtasks, namely, detecting entity mentions that represent an
object or set of objects in the world, identifying event triggers,
which are words in a sentence representing the predicates of
an event, and identifying arguments, namely associating trig-
gers with entities involved in the event.

Most prior work model event extraction by assuming that
gold standard entities are provided [Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Chen et al.,
2015; Nguyen et al., 2016; Liu et al., 2018b]. However, entity
mention detection is a task strongly related to trigger identi-
fication and argument identification. Consider the sentence
in Figure 1 for example, The expression “10 years in jail”
can likely be divided into “10 years” and “jail” by naive
NER systems. In contrast, by first recognizing that “Hanh”

∗The first three authors contributed equally.
†Corresponding Authors
1https://catalog.ldc.upenn.edu/ldc2006t06

Hanh  was  sentenced  to  10  years  in  jail 
VAL

Defendant

SentencePER

Sentence FAC

Figure 1: Example sentence from ACE05 dataset.

plays Defendant role in a Sentence event, a system can be
more confident in identifying it as one piece, serving as one
argument. These interdependencies cannot be captured by
pipelined approaches, which perform the subtasks separately
in a two-stage or three-stage procedure. Li et al., [2013] show
that by using automatically extracted entities in a pipelined
approach, the performance of argument identification drops
by at least 10% F-scores.

To address this issue, there have been efforts towards joint
modeling of the three subtasks [Li et al., 2014; Judea and
Strube, 2016; Yang and Mitchell, 2016; Nguyen and Nguyen,
2019]. Yang and Mitchell [2016] consider structural depen-
dencies among subtasks, by adopting a two-stage rerank-
ing procedure, first selecting the k-best output of event trig-
gers and entity mentions, then performing joint inference via
reranking. Very recently, Nguyen and Nguyen [2019] build
a multi-task model that exploits mutual benefits among the
three tasks, by sharing common encoding layers given an in-
put sentence. In this setting, output structures of entity men-
tions, event triggers and argument semantic roles are decoded
separately.

Both the methods of Yang and Mitchell [2016] and that
of Nguyen and Nguyen [2019] can be regarded as efforts to-
wards a fully joint event extractor. However, both methods
still follow a pipeline framework by first predicting triggers
and entities from texts, and then making assignments of ar-
guments to triggers. Ideally, the trigger and argument struc-
tures in Figure 1 should be taken as one integrated graph, the
structure of which is predicted without predicting trigger and
entity span substructures in isolation, so that the maximum
potential of information interaction can be exploited.

To this end, we make use of a transition-based frame-
work [Nivre, 2008; Zhang and Clark, 2011; Dyer et al.,
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2015], which constructs a complex output structure holis-
tically, through a state-transition process with incremental
output-building actions. Transition-based methods have been
applied to syntatic parsing [Dyer et al., 2015], semantic pars-
ing [Wang et al., 2018b], entity recognition [Lample et al.,
2016], relation extraction [Wang et al., 2018a] and many
other NLP tasks, giving highly competitive accuracies. We
design a novel transition system for joint event extraction,
constructing the structure of Figure 1 incrementally from left
to right, without differentiating subtask structures. In this pro-
cess, entity recognition and argument association actions can
be executed alternately in a interleaving order, in a psycholin-
guistically motivated left to right reading process.

Results on standard ACE2005 benchmarks show the ad-
vantages of solving event extraction as a single task. Our
transition-based model gives the best-reported results in the
literature. To our knowledge, we are the first to investigate
transition-based methods for joint entity and event extraction.

2 Related Work
For pipelined event extraction, early studies [Grishman et
al., 2005; Ji and Grishman, 2008; Liao and Grishman, 2010;
McClosky et al., 2011] rely on manually designed indi-
cator features. Recent work alleviate feature sparsity by
using CNN [Chen et al., 2015] and graph CNN [Nguyen
and Grishman, 2018]. There are methods that jointly ex-
tract event mentions, which include structured predictions
with global features [Li et al., 2013; Li et al., 2014; Judea
and Strube, 2016], parameter sharing [Nguyen et al., 2016;
Sha et al., 2018] and attention-based graph CNN [Liu et al.,
2018b]. However, the above work conduct argument identifi-
cation by using external tools, which leads to error propaga-
tion.

Joint methods most related to ours include Yang and
Mitchell [2016] and Nguyen and Nguyen [2019]. As men-
tioned in the introduction, both methods follow a trigger →
entity → argument recognition decoding order. In contrast,
we achieve fully joint decoding with interleaving actions for
all the three subtasks, thereby achieving better information
combination. Another limitation of Yang and Mitchell [2016]
is that they heavily rely on feature templates struggling to
capture sufficient discriminative information. As a result,
their joint model can be suparssed by a pipelined but densely
represented models [Sha et al., 2018].

Our work follows a line of work doing joint modeling and
decoding using transition-based methods [Zhang and Clark,
2011; Nivre, 2008], including segmentation and normaliza-
tion [Qian et al., 2015], syntactic chunking [Lyu et al., 2016],
relation extraction [Wang et al., 2018a]. We fill a gap in the
literature by investigating joint event extraction. In light of
list-based arc-eager algorithm [Choi and McCallum, 2013]
and high promising results of neural-based parsers [Dyer et
al., 2015; Wang et al., 2018b], we propose a first neural
transition-based framework for entity and event extraction.

3 Model
The input of our task is a sentence represented as a sequence
of words S = w1, ..., wn, and the output includes:

Transitions Change of State

SHIFT
([σ|i], δ, j|λ, e, β, T,E,R)

([σ|i|δ|j], [], ψ, e, β, T,E,R)

DUAL-SHIFT
([σ|i], δ, j|λ, e, [β], T, E,R)

([σ|i|δ|j], [], ψ, e, [j|β], T, E,R)

NO-PASS
([σ|i], δ, j|λ, e, β, T,E,R)
(σ, [i|δ], j|λ, e, β, T,E,R)

LEFT-PASSl
([σ|i], δ, j|λ, e, β, T,E,R)

(σ, [i|δ], j|λ, e, β, T,E,R ∪ {(i l←− j)})

RIGHT-PASSl
([σ|i], δ, j|λ, e, β, T,E,R)

(σ, [i|δ], j|λ, e, β, T,E,R ∪ {(i l−→ j)})

DELETE
([σ|i], δ, λ, e, [j|β], T, E,R)
([σ|i], δ, λ, e, β, T,E,R)

TRIGGER-GENl
([σ|i], δ, λ, e, [j|β], T, E,R)

([σ|i], δ, j|λ, e, β, T ∪ {j}, E,R)

ENTITY-GENl
([σ|i], δ, λ, [j|e], β, T, E,R)

([σ|i], δ, j|λ, [j|e], β, T, E ∪ {j}, R)

ENTITY-SHIFT
([σ|i], δ, λ, e, [j|β], T, E,R)
([σ|i], δ, λ, [j|e], β, T, E,R)

ENTITY-BACK
([σ|i], δ, λ, [j|e], [β], T, E,R)
([σ|i], δ, λ, [], [e[1:]|β], T, E,R)

Table 1: Transition actions, [:] is a slice operation where index starts
from 0, ψ denotes Null variable.

• A set of entity mentions E, which include references
to entites. We consider the standard PER, ORG, GPE,
LOC, FAC, VEH, WEA entity types plus ACE VALUE
and TIME expressions [Yang and Mitchell, 2016].
• A set of event triggers T , namely the key words that most

clearly express an event occurrence, such like “sen-
tenced” in Figure 1. We follow Li et al., [2013] and
Sha et al., [2018], assuming that each trigger consists
only one word or token2.
• A set of event arguments R on the entity mentions that

are involved in an event. We collapse 8 time-related
types into one as in Yang and Mitchell [2016], which
results in total 29 role subtypes.

3.1 Challenges
Transition systems have been designed for building the out-
put structures of semantic dependency parsing [Wang et al.,
2018b] and relation extraction [Wang et al., 2018a], which
are to some extent similar to the structure of event extrac-
tion. However, existing transition systems cannot be directly
applied for our task, which poses bigger challenges because
an event trigger can be associated with multiple entity men-
tions and a single entity mention can participate in several
events. In addition, VALUE and TIME expressions, which as

2One can simply extent our model to multiple words scenario.
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Transitions Preconditions of transition actions
LEFT-* (λ 6= ψ) ∧ (σ 6= []) ∧ (j ∈ T ) ∧ (i ∈ E)

RIGHT-* (λ 6= ψ) ∧ (σ 6= []) ∧ (j ∈ E) ∧ (i ∈ T )
SHIFT (λ 6= ψ) ∧ (σ = [])

DUAL-SHIFT (λ 6= ψ) ∧ (σ = []) ∧ (j ∈ T )
DELETE (∃j ∈ β) ∧ (e = [])

TRIGGER-GEN (λ = ψ) ∧ (∃j ∈ β) ∧ (e = []) ∧ (j /∈ T )
ENTITY-SHIFT (λ = ψ) ∧ (∃j ∈ β)
ENTITY-GEN (λ = ψ) ∧ (e 6= []) ∧ (j /∈ E)

ENTITY-BACK (λ = ψ) ∧ (e 6= []) ∧ (j ∈ E)

Table 2: Preconditions of transition actions

specific to event extraction, are more likely to overlaps with
other entities. For example in Figure 1, the VALUE expres-
sion “10 years in jail” overlap with the FAC entity “jail”,
which adds to the challenges to transition systems. Besides
entity overlapping, there are also trigger-entity overlapping,
in the case of “Former President Bill Clinton...”, where the
word “Former” is a TIME expression as well as a trigger
word, which triggers End-Position event. We handle these
challenges by desinging a novel transition system. Code is
realeased at https://github.com/zjcerwin/TransitionEvent

3.2 Transition System
For ease of illustration, we first define several symbols used
in our transition system. We use an index i to represent
the location of words wi, of triggers ti and entities ei in
the sentence. Let an element εi refer to either a trigger ti
or an entity ei. Formally, a transition state is defined as
s = (σ, δ, λ, e, β, T,E,R), where σ is a stack holding pro-
cessed elements, δ is a queue holding elements temporarily
popped out of σ, which will be pushed back in the future, e is
a stack storing partial entity mentions, and β is a buffer hold-
ing unprocessed words. T and E are labeled trigger arcs and
entity mention arcs, respectively. R is a set of argument role
arcs. λ is a single variable holding a reference to an element
εj one at a time. A is a stack used to store the action history.
During state transition, arcs will only be generated between
the variable λ(εj) and the top element of σ(εi).

Our transition actions are summarized in Table 1. The first
five actions are used to generate argument roles. In particu-
lar, LEFT-PASSl add arc between λ(tj) and σ(ei), RIGHT-
PASSl add arc between λ(ej) and σ(ti). If no semantic role
can be assigned between λ(εj) and σ(εi), NO-PASS is per-
formed. Note that εi can be either ei or ti. SHIFT and
DUAL-SHIFT are performed when no elements are in σ.
To handle situations where a word is a trigger and also the
first word of an entity, DUAL-SHIFT additionally copies the
trigger word in λ and pushes it onto β. Note that the *-PASS
actions are forbidden when λ is Null. DELETE simply pops
the top word wi off β. TRIGGER-GEN moves wi from β to
λ adding event label lt.

The last three actions are designed to recognize nested en-
tities, among which ENTITY-SHIFT moves the top wordwi
from β to e; ENTITY-GEN summarizes all elements in e to
a vector representation, adding an entity label le, and mov-
ing the representation to λ; ENTITY-BACK pops all words
off e and pushes all except the bottom word back to β. We

Figure 2: Action prediction model, where the transition state corre-
sponds to state 7 in Table 3.

found that this design of entity actions can handle arbitrary
type of nested entities, while keeping minimum numbers of
action steps necessary.

Given a certain transition state, only a subset of actions are
legal, which can lead to a valid graph structure. We list the
action preconditions in Table 2. To extract the three subtasks
in proper order, we design the preconditions of all actions
other than DELETE according to the state of λ. For example,
if λ is not Null, only argument related actions are allowed. In
addition, we also add type constraints between entities and
triggers in a decoding state, such that a Divorce event can
only happen with PER entities.

The gold-standard sequence of transitions for the input
sentence in Figure 1 can be found in Table 3, where initial
state is ([ ], [ ], ψ, [ ], [1, ..., 8], ) and the terminal state is
(σ, δ, ψ, [ ], [ ], T, E,R).

3.3 Method
We use neural network to learn dense representations of a
transition state, for predicting the next action.

Input Representation
Formally, the representation for each word wi, is a combina-
tion of four different types of vectors:

xi = [vw
i ; v

pos
i ; vchar

i ;BERTi]

where vw
i denote a word embedding initalized with a pre-

trained 100D Glove matrix3, and vpos
i denotes a randomly

initalized POS tag embedding. For the i-th word, vchar
i de-

notes its character-level representation learned by using a Bi-
LSTM [Lample et al., 2016]. BERTi denotes a contextual-
ized embedding by using the top layer of the uncased-base
BERT model [Devlin et al., 2018].

To capture semantic features of input sequences, we use
two vanilla LSTM layers to encode xi, which allows the
model to capture long-term dependencies between words:

−→
hi = LSTMw(xi,

−→
h i−1)

←−
hi = LSTMw(xi,

←−
h i+1)

3https://nlp.stanford.edu/projects/glove/
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State Transition σ δ λ e β T E R

0 Initialization [ ] [ ] Null [ ] [1,..., 8] φ φ φ
1 ENTITY-SHIFT [ ] [ ] Null [1] [2,..., 8]
2 ENTITY-GEN [ ] [ ] 1∗ [1] [2,..., 8] E ∪ {1− PER→ 1}
3 SHIFT [1∗] [ ] Null [1] [2,..., 8]
4 ENTITY-BACK [1∗] [ ] Null [ ] [2,..., 8]
5 DELETE [1∗] [ ] Null [ ] [3,..., 8]
6 TRIGGER-GEN [1∗] [ ] 3� [ ] [4,..., 8] T ∪ {3− Sentence→ 3}
7 LEFT-PASS [ ] [1∗] 3� [ ] [4,..., 8] R ∪ {3−Defendant→ 1}
8 SHIFT [1∗, 3�] [ ] Null [ ] [4,..., 8]
9 DELETE [1∗, 3�] [ ] Null [ ] [5,..., 8]

10 ENTITY-SHIFT [1∗, 3�] [ ] Null [5] [6, 7, 8]
11 ENTITY-SHIFT [1∗, 3�] [ ] Null [5, 6] [7, 8]
12 ENTITY-SHIFT [1∗, 3�] [ ] Null [5, 6, 7] [8]
13 ENTITY-SHIFT [1∗, 3�] [ ] Null [5, 6, 7, 8] [ ]
14 ENTITY-GEN [1∗, 3�] [ ] 5∗ [5, 6, 7, 8] [ ] E ∪ {5−VAL→ 8}
15 RIGHT-PASS [1∗] [3�] 5∗ [5, 6, 7, 8] [ ] R ∪ {5− Sentence← 3}
16 NO-PASS [ ] [3�, 1∗] 5∗ [5, 6, 7, 8] [ ]
17 SHIFT [1∗, 3�, 5∗] [ ] Null [5, 6, 7, 8] [ ]
18 ENTITY-BACK [1∗, 3�, 5∗] [ ] Null [ ] [6, 7, 8]
19 DELETE [1∗, 3�, 5∗] [ ] Null [ ] [7, 8]
20 DELETE [1∗, 3�, 5∗] [ ] Null [ ] [8]
21 ENTITY-SHIFT [1∗, 3�, 5∗] [ ] Null [8] [ ]
22 ENTITY-GEN [1∗, 3�, 5∗] [ ] 8∗ [8] [ ] E ∪ {8− FAC→ 8}

Table 3: Transition sequence for the entity and event extraction in Figure 1, � indicates a trigger, ∗ indicates an entity, states 23-27 are omitted
for brevity.

The forward and backward representations are concatenated
to obtain a bi-directional representation hi = [

−→
hi ,
←−
hi ].

State Representation
The buffer β is initalized by pushing all input words and their
Bi-LSTM hidden vectors onto β in the reverse order. For rep-
resenting the stacks σ, δ, e and A, we use StackLSTM [Dyer
et al., 2015]. By maintaining a stack pointer, StackLSTM
allows poping elements off a sequence in a neural manner.
Formally, the state of the stack σ at step t is computed as:

st = StackLSTM[λ0, ..., λt]

where λi denotes the representation of currently recognized
entity mention or trigger word, which is computed when
ENTITY-GEN or TRIGGER-GEN is executed. We adopt
two composition functions to recursively integrate label in-
formation of entities and triggers into the transition system
as:

λentity
i = tanh(We,λ[et; l

entity
t ] + be,λ)

λtrigger
i = tanh(Wt,λ[ht; l

trigger
t ] + bt,λ)

whereWe,λ andWt,λ denote the learnable parameters for en-
tity representation ei and trigger representation hi, respec-
tively, while lentity

t and ltrigger
t denote their type vectors. Note

that this type of composition function is also applied for ar-
gument roles. We omit the equations for brevity.

Finally, as shown in Figure 2, we represent the model state
at time t, including (σ, δ, e, A, β) and λ, as:

gt = [st; dt; et; at;λt;ht]

All the states, including λ, have a private trainable vector rep-
resenting no element being held for the current time step.

3.4 Action Prediction

To predict the current action at time step t, we first squeeze
the state representation gt to a lower-dimensional vector mt

by employing a fully-connected layer, and then use a softmax
output layer to compute the action probability:

mt = tanh(Wmgt + bm) (1)

p(zt|mt) =
exp(u>ztmt + bz)∑

z′∈ν(S,A) exp(u
>
z′mt + bz′)

(2)

where Wm denotes a learnable parameter matrix, uz denotes
a learnable column vector for transition action z, bm and bz
are corresponding bias terms. The set ν(S,A) represents the
set of valid candidate actions. For efficient decoding, we
maximize the probability of the action sequence by greedily
taking the action with highest score p(zt|mt).

3.5 Training

We convert gold output structures in a set of training data into
gold sequence of transition actions. For each transition state,
we minimize the negative log-likehood of the corresponding
gold action:

L(θ) = − 1

T

∑
t

log p(zt|mt; θ) +
ξ

2
||θF ||2

where T is the size of the gold action sequence, θ is the pa-
rameter set of our network and ξ is a l2 regularization term
for output feed-forward network parameter set θF , which is
drawn from Equations (1) and (2).
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Event Trigger
Identification

Event Trigger
Classification

Event Argument
Identification

Argument Role
Classification

Model P R F1 P R F1 P R F1 P R F1
StagedMaxEnt‡ 73.9 66.5 70.0 70.4 63.3 66.7 75.7 20.2 31.9 71.2 19.0 30.0
TwoStageBeam‡ 76.6 58.7 66.5 74.0 56.7 64.2 74.6 25.5 38.0 68.8 23.5 35.0
Reranking‡ 77.6 65.4 71.0 75.1 63.3 68.7 73.7 38.5 50.6 70.6 36.9 48.4
ThreeStageDMCNN* 72.4 78.6 75.4 69.5 75.5 72.3 42.1 56.2 48.1 34.1 45.4 38.9
TwoStageTransition 77.6 73.2 75.3 74.7 71.5 73.1 55.4 51.1 53.1 51.3 47.5 49.4
TwoStageGRU‡ 72.7 65.9 69.1 70.4 63.9 67.0 61.7 42.1 50.1 46.0 31.4 37.4
TwoStageNP‡ - - - - - 69.6 - - 57.2 - - 50.1
MultitaskGRU‡ 70.5 74.5 72.5 68.0 71.8 69.8 59.9 59.8 59.9 52.1 52.1 52.1
JointTransition 76.7 75.5 76.1 74.4 73.2 73.8 60.0 55.1 57.4 55.7 51.1 53.3

Table 4: Event extraction results on the ACE2005 test set.“‡” represents the systems which use dependency relation features.

4 Experiments
4.1 Settings
Dataset and Evaluation We perform experiments on the
ACE2005 corpus. Following previous work [Li et al., 2013;
Yang and Mitchell, 2016; Sha et al., 2018; Nguyen and
Nguyen, 2019], we use 40 documents in the newswire cat-
egory for the test set, 30 other documents in different cat-
egories for development, and 529 remaining documents for
training. Stanford CoreNLP4 is utilized to preprocess the
data, including tokenization, POS-tagging and recognizing
the “true” case of words. We adopt the F1-metric for eval-
uating the correctness of event extraction following [Li et al.,
2013; Yang and Mitchell, 2016; Nguyen and Nguyen, 2019],
and paired t-test is used for measuring significance values.

Hyperparameters and Training Details We tune all the
hyper-parameters on the standard development set. Dropout
is adopted to mitigate overfitting, with a rate of 0.45 for word
embeddings and 0.15 for hidden states. We use the Adam
optimizer, employing a cosine learning rate decay strategy
[Loshchilov and Hutter, 2016]. The maximum and the min-
imum learning rates are 1.4e−3 and 1e−4, respectively, and
the restart increase factor is 2. The hidden and batch sizes
are set to 140 and 32, respectively. The regularization term is
set to ξ = 1e−4. Finally, to combat unknown words during
testing, we replace singleton words with a UNK embedding,
with a probability of 0.5.

4.2 Results
Baselines
We compare our proposed method with several strong base-
lines in terms of micro F1-measure. The models are di-
vided into statistical methods and neural methods. For the
former, entity candidates are obtained by selecting the k-
best (k = 50) output of a CRFEntity extractor [Yang and
Mitchell, 2016]. These methods include: (1) StagedMax-
Ent [Yang and Mitchell, 2016], a typical piplined method;
(2) TwoStageBeam [Li et al., 2013], a pipelined system with
structure perception and global features; and (3) Rerank-
ing [Yang and Mitchell, 2016], the state-of-the-art statisti-
cal model mentioned in the introduction, which reranks the

4http://stanfordnlp.github.io/CoreNLP/

k-best outputs of two CRF taggers by performing joint infer-
ence within a document context.

For our transition-based model, we build two cascaded ap-
proaches as baselines: (4) TwoStageTransition is a two-
stage transition model of this work, which first extracts en-
tities (denote as EntityTransition) and then jointly detects
triggers and argument roles. To train this model, we keep task
related actions and states from Section 3.2, while the same
input representations are used across the tasks; (5) Three-
StageDMCNN, our reimplementation of Chen et al., [2015],
which obtains entities by EntityTransition, with two sepa-
rated CNN being conducted for event extraction.

Recently proposed neural models are also listed for com-
parison: (6) TwoStageGRU [Nguyen and Nguyen, 2019] is
a two-stage baseline neural model, where entities are pre-
dicted using a sequence tagger, and a Bi-GRU with manually
designed features is used for event extraction; (7) TwoSta-
geNP [Sha et al., 2018] combines dependency relations and
Bi-LSTM for end-to-end learning. Their method build candi-
date arguments by choosing the NP phrases from an external
parser. (8) MultitaskGRU [Nguyen and Nguyen, 2019] is
a multitask model that performs all the subtasks by sharing
Bi-GRU hidden representations. This method currently has
the state-of-the-art performance on ACE2005 dataset. Binary
features inherented from Li et al., [2013] and Nguyen et al.,
[2016] are also incorporated in this method.

The Advantage of Joint Modeling
Table 4 shows the results. With predicted entity mentions,
our JointTransition shows consist performance improve-
ments over the baselines TwoStageTransition and Three-
StageDMCNN on both trigger detection and argument de-
tection. This indicates that modeling the dependencies of
entities and events is effective for reducing error propaga-
tion. Compared to the state-the-of-art joint models, we can
see that JointTransition significantly outperforms Rerank-
ing by 5.1% absolute F-score in triggers (p < 0.03) and
4.9% in arguments (p < 0.03), respectively, demonstrating
the superiority of a one-stage model and neural representa-
tions. By allowing entity information propagate through tran-
sition states, JointTransition shows better performance than
MultitaskGRU, boosting the precision of argument role by
3.6%. This demonstrates the advantage of joint learning and
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Model P R F1
CRFEntity 85.5 73.5 79.1
Reranking 82.4 79.2 80.7
PipelineGRU 80.6 80.3 80.4
MultitaskGRU 82.0 80.4 81.2
EntityTransition 86.4 86.0 86.2
JointTransition 88.2 88.1 88.1

Table 5: Entity extraction results on the ACE2005 test set.

decoding as compared to joint learning and piplined decod-
ing.

Regarding argument prediction, we find that the F-score
for argument identification by TwoStageNP is 57.2%, which
falls to 50.1% for argument role classification, with a 7.1%
decrease. Similarly, MultitaskGRU sees a 7.8% decrease.
This is saliently larger compared to a 2.2% decrease by the
statistical method Reranking. One reason may be that the
use of hand-crafted features by a statistical model effectively
eliminates false positive roles, leading to a higher precision.
In contrast, isolated decoding of TwoStageNP and Multi-
taskGRU can result in confusion between certain roles, such
as Place vs Destination and Origin vs Destination, as ob-
served by Nguyen and Nguyen [2019].

In contrast, our method gives much lower accuracy de-
crease compared with other neural methods, thanks to the use
of joint decoding and composition functions. In particular,
when each argument role decision is made, the existing par-
tial graph is available as a source of features, which gives our
model more informed role classification.

4.3 Analysis
Entity
In addition to extracting event mentions, our transition meth-
ods also extracts nested entity mentions. We compare its
results with our pipeline method as well as previous work.
First, we can see from Table 5 that EntityTransition largely
outperforms Reranking and MultitaskGRU, wich boosts
both precision and recall by an absolute 4% improvement
(p < 0.03). The improvement comes from two factors: (1)
our model captures rich input feature representations by in-
troducing character-level Bi-LSTM and pre-trained language
models; (2) By using specially designed actions, our transi-
tion system can handle overlapping entities. Few prior meth-
ods take this into account, which takes 5% of the total entities.
Second, JointTransition further improves EntityTransition
to 88.1% F-score, suggesting that jointly decoding is benefi-
cial not only for events, but also for entity recognition.

Trigger Classification
We compare JointTransition with the state-of-the-art event
trigger detection systems in Table 6. Even though gold en-
tities are available by the baseline models, our model still
shows competitive results, which indicates the ability to dis-
ambiguate context semantics despite noise in predictions of
entites. We also show the results where BERT embeddings
are removed from the input. It can be seen that the results are
also comparable with existing event systems, indicating the

Model P R F1
DMCNN [Chen et al., 2015] 75.6 63.6 69.1
JRNN [Nguyen et al., 2016] 66.0 73.0 69.3
dbRNN [Sha et al., 2018] 74.1 69.8 71.9
HBTNGMA [Chen et al., 2018] 77.9 69.1 73.3
JMEE [Liu et al., 2018a] 76.3 71.3 73.7
JointTransition 74.4 73.2 73.8
JointTransition (-BERT) 73.8 68.8 71.2

Table 6: Event trigger classification result on the ACE2005 test set.
The first group uses gold entities; the second uses predicted entites.

improvement provided by the transition method itself is more
noticeable.

Case Study
To further understand the effectiveness of our joint decoding
model compared to previous joint model, we examine three
cases, from which different aspects of models are reflected.

1. ... acquire all shares in GE Edison Life Insurance ...
take over GE ’s US car and fire insurance operations, the
reports said.

The word “fire” in sentence 1 is misclassifed to a Attack
event by MultitaskGRU, because of its surrounding word
“car”. In contrast, with the help of the transfer-ownership
event from the word “take” and the role Seller from the en-
tity “GE”, JointTransition is able to circumvent the noisy
context.

2. It is the first time they have had freedom of movement
with cars and weapons since the start of the intifada ...

Some trigger words never appear in the training dataset,
such as the word “intifada” in case 2. As a result, it is difficult
for the methods Reranking and MultitaskGRU to associate
it with Attack event. However, thanks to pre-trained language
models and joint decoding, our method correctly infers the
event trigger.

3. According to one report, he received 3.5 million dollars
for the film rights to his latest book.

In case 3, our model misidentifies that the word “received”
triggers a transfer-money event, owing to failure in detecting
the fact that the key phrase of “film rights” belongs to the
stock field. This results in false detections of two argument
roles. This type of incorrect predictions, which accounts for
38.8% of our error cases, can be potentially alleviated by us-
ing explicit dependency features, which can inform the model
that “received” is directly connected to “film rights” in the
corresponding parse tree.

5 Conclusion
We introduced a novel transition-based model for jointly pre-
dicting nested entities, event triggers, as well as their seman-
tic roles in event extraction. Unlike previous methods for
event extraction, which detect entities and event mentions
in multiple stages or separated tasks, our method captures
structural dependencies among entities and event mentions
by using a incremental left to right reading order. Experimen-
tal results on the ACE2005 benchmark show that our model
achieves the state-of-the-art performance.
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