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Abstract
The encoder-decoder framework has achieved
promising process for many sequence generation
tasks, such as neural machine translation and text
summarization. Such a framework usually gener-
ates a sequence token by token from left to right,
hence (1) this autoregressive decoding procedure is
time-consuming when the output sentence becomes
longer, and (2) it lacks the guidance of future con-
text which is crucial to avoid under-translation. To
alleviate these issues, we propose a synchronous
bidirectional sequence generation (SBSG) model
which predicts its outputs from both sides to the
middle simultaneously. In the SBSG model, we en-
able the left-to-right (L2R) and right-to-left (R2L)
generation to help and interact with each other by
leveraging interactive bidirectional attention net-
work. Experiments on neural machine translation
(En⇒De, Ch⇒En, and En⇒Ro) and text summa-
rization tasks show that the proposed model sig-
nificantly speeds up decoding while improving the
generation quality compared to the autoregressive
Transformer.

1 Introduction
The neural encoder-decoder framework has been widely
adopted in sequence generation tasks, including neural ma-
chine translation (NMT) [Sutskever et al., 2014; Bahdanau et
al., 2015; Vaswani et al., 2017], text summarization [Rush et
al., 2015; Zhou et al., 2017; Li et al., 2018], and image cap-
tioning [Xu et al., 2015; Vinyals et al., 2015]. In this frame-
work, the encoder models the semantics of the input sentence
and transforms it into a context vector representation, which
is then fed into the decoder to generate the output sequence
token by token in a left-to-right manner.

Although the framework has obtained great success, the
sequence-to-sequence model suffers from the decoding effi-
ciency problem [Gu et al., 2017]. Most of the models use
autoregressive decoders that operate one step at a time, and
they become slow when generating long sequences because
a computationally intensive neural network is used to predict
each token. Several recently proposed models avoid recur-
rence at training time by leveraging convolutions [Gehring et
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Figure 1: The illustration of synchronous bidirectional decoding for
sequence-to-sequence model. The bidirectional decoder, predicting
its outputs from left to right and from right to left simultaneously
and interactively, can produce two tokens at each time step.

al., 2017] or self-attention [Vaswani et al., 2017] as more-
parallelizable alternatives to recurrent neural networks, but
the decoding process cannot share the speed strength of par-
allelization due to the autoregressive generation schema in the
decoder. More importantly, this left-to-right decoding cannot
take advantage of future contexts which can be generated in
a right-to-left decoding [Zhang et al., 2018b].

To avoid this autoregressive property, Gu et al. [2017]
proposed a non-autoregressive model to speed up machine
translation by directly generating target words without rely-
ing on any previous predictions. Oord et al. [2017] modified
a convolutional network for non-autoregressive modeling of
speech synthesis. Lee et al. [2018] introduced a conditional
non-autoregressive neural sequence model based on iterative
refinement. However, in spite of their improvement in decod-
ing speed, non-autoregressive models typically suffer from
the substantial drop in generation quality.

In this paper, we propose a synchronous bidirectional se-
quence generation (SBSG) model to achieve a better improve-
ment on both generation quality and decoding speed. Instead
of producing output sentences token by token or predicting its
outputs in a totally parallel manner, the SBSG model gener-
ates two tokens at a time. As shown in Figure 1, the bidirec-
tional decoder can generate output sentences from both sides
to the middle with both left-to-right (L2R) and right-to-left
(R2L) directions. Furthermore, we introduce an interactive
bidirectional attention network to bridge L2R and R2L out-
puts. More specifically, at each moment, the generation of
target-side tokens does not only rely on its previously gener-
ated outputs (history information), but also depends on previ-
ously predicted tokens of the other generation direction (fu-
ture information).

Specifically, the contributions of this paper can be summa-
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rized as two folds:

• We propose a novel SBSG model that employs one de-
coder to predict outputs from both sides to the middle
simultaneously and interactively. To the best of our
knowledge, this is the first work to perform sequence
generation from both ends to the middle.

• We extensively evaluate the proposed model on typi-
cal sequence generation tasks, namely neural machine
translation and text summarization. In the case of ma-
chine translation, we not only obtain approximately
1.4× (1.5×) speedup for decoding than autoregressive
Transformer with beam search (greedy search), but also
get an improvement of 0.39 (0.99), 1.26 (2.87) and 0.73
(1.11) BLEU points of translation quality in WMT14
En⇒De, NIST Ch⇒En and WMT16 En⇒Ro respec-
tively, which also significantly outperforms previous
non-autoregressive models [Gu et al., 2017; Lee et al.,
2018; Kaiser et al., 2018]. For text summarization, the
proposed model is able to decode approximately 1.5×
faster while achieving better generation quality relative
to the autoregressive counterparts.

2 Related Work
Autoregressive Decoding. Recent approaches to sequence
to sequence learning typically leverage recurrence [Sutskev-
er et al., 2014], convolution [Gehring et al., 2017], or self-
attention [Vaswani et al., 2017] as basic building blocks.
Particularly, relying entirely on the attention mechanism, the
Transformer introduced by Vaswani et al. [2017] can improve
the training speed as well as model performance. To acceler-
ate autoregressive architecture, Mi et al. [2016] introduced a
sentence-level vocabulary which is able to reduce computing
time and memory usage. Devlin [2017] focused on fast and
accurate neural machine translation decoding in CPU. Zhang
et al. [2018a] proposed an average attention network (AAN)
as an alternative to the self-attention network in the decoder
of Transformer. Despite their remarkable success, they are d-
ifficult to parallelize and this unidirectional decoding frame-
work limits its potential [Liu et al., 2016a].

Non-Autoregressive Decoding. In terms of speeding up
the decoding of the neural Transformer, Gu et al. [2017]
modified the autoregressive architecture to speed up machine
translation by directly generating target words in parallel.
However, the main drawback of this work is the need for ex-
tensive policy gradient fine-turning techniques, as well as the
issue that this method only works for machine translation and
cannot be applied to other sequence generation tasks. In par-
allel to Gu et al. [2017], Oord et al. [2017] presented a suc-
cessful, non-autoregressive sequence model for speech wave-
form. Besides, Kaiser et al. [2018] first auto-encoded the tar-
get sequence into a shorter sequence of discrete latent vari-
ables, and then decoded the output sentence from this shorter
latent sequence in parallel. Lee et al. [2018] introduced a
conditional non-autoregressive neural sequence model based
on iterative refinement. Concurrently to our work, Wang et
al. [2018] presented a semi-autoregressive Transformer for
faster translation without changing the autoregressive proper-

ty in global. However, these approaches improved the paral-
lelizability but significantly reduced generation quality.
Towards Bidirectional Decoding. Liu et al. [2016a] pro-
posed an agreement model to encourage the agreement be-
tween a pair of target-directional LSTMs, which generated
more balanced targets. Similarly, some work attempted at
target-bidirectional decoding for SMT or NMT [Watanabe
and Sumita, 2002; Finch and Sumita, 2009; Liu et al., 2016b;
Sennrich et al., 2016a; Liu et al., 2018]. Recently, Zhang et
al. [2018b] and Zhou et al. [2019] proposed an asynchronous
and synchronous bidirectional decoding for NMT, respective-
ly. Serdyuk et al. [2018] presented the twin networks to en-
courage the hidden state of the forward network to be close to
that of the backward network used to predict the same token.
Nevertheless, the above studies are not to speed up the decod-
ing procedure, and even sacrifice speed in exchange for qual-
ity improvement. Our work differs from those by introducing
a novel sequence generation model which aims at taking full
advantage of both left-to-right and right-to-left decoding to
accelerate and improve sequence generation.

3 The Framework
Our goal in this work is to achieve a better improvement on
both generation quality and decoding speed. We introduce a
novel method for decoding with both left-to-right and right-
to-left manners simultaneously and interactively in a unified
model. As demonstrated in Figure 2, our proposed model
consists of an encoder and a bidirectional decoder, in which
two special labels (〈l2r〉 and 〈r2l〉) at the beginning of output
sentence are utilized to guide the sequence generation from
left to right or right to left. The bidirectional decoder reads
the encoder representation and generates two output tokens
at each time step, by using interactive bidirectional attention
networks. Next, we will detail individual components and
introduce an algorithm for training and inference.

3.1 The Neural Encoder
Given an input sentence x = (x1, x2, ..., xm), the new Trans-
former leverages its encoder to induce input-side semantic
and dependencies so as to enable its decoder to recover the
encoded information in an output sentence. The encoder is
composed of a stack of N identical layers, each of which has
two sub-layers:

h̃l = LN(hl−1 +MHAtt(hl−1, hl−1, hl−1))

hl = LN(h̃l + FFN(h̃l))
(1)

where the superscript l indicates layer depth, LN is layer nor-
malization, FFN means feed-forward networks, and MHAtt
denotes the multi-head attention mechanism as follows.
Scaled Dot-Product Attention. An attention function can
be described as mapping a query and a set of key-value pairs
to an output. The output is computed as a weighted sum of the
values, where the weight assigned to each value is computed
by a compatibility function of the query and the correspond-
ing key. Scaled dot-product attention operates on a query Q,
key K, and a value V as:

ATT(Q,K, V ) = softmax(
QKT

√
dk

)V (2)
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Figure 2: The new Transformer architecture with the proposed bidi-
rectional multi-head (intra- and inter-) attention network. Instead of
producing output sentence token by token or predicting its outputs in
totally parallel, the proposed model generates two tokens (one from
left to right, the other one from right to left) at a time, indicated by
two special labels.

where dk is the dimension of the key.

Multi-Head Attention. We use the multi-head version with
h heads. It obtains h different representations of (Q,K, V ),
computes scaled dot-product attention for each representa-
tion, concatenates the results, and projects the concatenation
with a feed-forward layer.

MHAtt(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = ATT(QWQ
i ,KW

K
i , V WV

i )
(3)

where WQ
i , WK

i , WV
i and WO are parameter matrices.

3.2 The Bidirectional Decoder
The bidirectional decoder performs decoding in both left-to-
right and right-to-left manners under the guidance of previ-
ously generated forward and backward outputs. We apply our
bidirectional attention network to replace the self-attention
network in its decoder part, and illustrate the overall archi-
tecture in Figure 2. Next, we will present those two bidirec-
tional attention models and integrate them into the decoder of
Transformer.

Bidirectional Scaled Dot-Product Attention
Figure 3 (left) shows our particular attention. The input con-
sists of queries ([

−→
Q ;
←−
Q ]), keys ([

−→
K ;
←−
K ]) and values ([

−→
V ;
←−
V ])

which are all concatenated by forward (L2R) states and back-
ward (R2L) states. The new forward states

−→
H j and backward

states
←−
H j can be obtained by bidirectional dot-product scaled

attention. For new forward states
−→
H j , it can be calculated as:

−→
H f

j = ATT(
−→
Q j ,
−→
K≤j ,

−→
V ≤j) = softmax(

−→
Q j
−→
KT

≤j√
dk

)
−→
V ≤j

−→
H b

j = ATT(
−→
Q j ,
←−
K≤j ,

←−
V ≤j) = softmax(

−→
Q j
←−
KT

≤j√
dk

)
←−
V ≤j

(4)

where
−→
H f

j is obtained by conventional scaled dot-product at-

tention as introduced in Equation 2, and
−→
H b

j contains the at-
tentional future information from R2L decoding. Then we
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Figure 3: (left) Bidirectional Scaled Dot-Product Attention operates
on forward (L2R) and backward (R2L) queriesQ, keysK, values V .
(right) Bidirectional Multi-Head Intra-Attention consists of several
attention layers in parallel.

use a linear interpolation method to integrate the forward in-
formation

−→
H f

j and backward information
−→
H b

j :
−→
H j = Integration(

−→
H f

j ,
−→
H b

j) =
−→
H f

j + λ ∗
−→
H b

j (5)

where λ is a hyper-parameter decided by the performance on
development set.

For R2L decoding, similar to the calculation of forward
hidden states

−→
H j , the backward hidden states

←−
H j can be com-

puted as follows.
←−
H f

j = ATT(
←−
Q j ,
←−
K≤j ,

←−
V ≤j)

←−
H b

j = ATT(
←−
Q j ,
−→
K≤j ,

−→
V ≤j)

←−
H j = Integration(

←−
H f

j ,
←−
H b

j)

(6)

where Integration(·) is the same as introduced in Equation 5.
We refer to the whole procedure formulated in Equation 4-6
as BSDPA(·).
[
−→
H j ;
←−
H j ] = BSDPA([

−→
Q j;
←−
Q j], [

−→
K≤j;

←−
K≤j], [

−→
V ≤j;

←−
V ≤j]) (7)

It is worth noting that
−→
H j and

←−
H j can improve each other

and be calculated in parallel.

Bidirectional Multi-Head Intra-Attention
Different from the mask multi-head attention (Equation 3),
we can obtain the new forward and backward hidden states
simultaneously, as shown in Figure 3 (right), where i-th at-
tention head with j-th target token can be computed using
BSDPA(·):

headi,j = [
−→
h i,j ;

←−
h i,j ] = BSDPA([

−→
Q j ;
←−
Q j ]W

Q
i ,

[
−→
K≤j ;

←−
K≤j ]W

K
i , [
−→
V ≤j ;

←−
V ≤j ]W

V
i )

(8)

where WQ
i , WK

i and WV
i are parameter matrices, which are

the same as standard multi-head attention introduced in Equa-
tion 3. By contrast, bidirectional multi-head inter-attention
is composed of two standard multi-head attention models,
which do not interact with each other.

Integrating Bidirectional Attention into Decoder
We use our bidirectional attention network to replace the
multi-head attention in the decoder part, as demonstrated in
Figure 2. For each layer in bidirectional decoder, the first
sub-layer is the bidirectional multi-head intra-attention
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(BiAttIntra) network1 which is capable of combining history
and future information:

[−→s l
d;
←−s l

d] = BiAttIntra([−→s l−1;←−s l−1], [−→s l−1;←−s l−1],

[−→s l−1;←−s l−1])
(9)

where sl denotes l-layer hidden states or embedding vec-
tors when l=0, and subscript d denotes the decoder-informed
intra-attention representation.

The second sub-layer is the bidirectional multi-head
inter-attention (BiAttInter) which integrates the representa-
tion of the corresponding source sentence by performing left-
to-right and right-to-left decoding attention respectively, as
shown in Figure 2.

[−→s l
e;
←−s l

e] = BiAttInter([−→s l
d;
←−s l

d], [h
N ;hN ], [hN ;hN ]) (10)

where e denotes the encoder-informed inter-attention repre-
sentation, and hN is the source hidden state of top layer.

The third sub-layer is a position-wise fully connected feed-
forward neural network: [−→s l;←−s l] = FFN([−→s l

e;
←−s l

e]).
Finally, we employ a linear transformation and softmax ac-

tivation to compute the probability of the j-th tokens based on
N -layer sNj = [−→s N

j ;←−s N
j ], namely the final hidden states of

forward and backward decoding.
p(−→y j |−→y <j ,

←−y <j , x, θ) = softmax(−→s N
j W )

p(←−y j |←−y <j ,
−→y <j , x, θ) = softmax(←−s N

j W )
(11)

where W denotes the weight matrix and θ is the shared pa-
rameters for L2R and R2L decoding.

3.3 Training and Inference
Training. Given a parallel sentence pair (x, y), we design
a smart strategy to enable synchronous bidirectional gener-
ation within a decoder. We first divide the output sentence
(y) into two halves and reverse the second half. Second, we
separately add the special labels (〈l2r〉 and 〈r2l〉) at the be-
ginning of each half sentence (−→y and ←−y ) to guide gener-
ating tokens from left to right or right to left. Finally, we
propose a smoothing model to better connect both direction-
al generational results. As shown in Figure 4, if the out-
put length is odd, we add the additional tag (〈null〉) before
〈eos〉 in forward or backward sentence randomly. In oth-
er words, our model is capable of generating a null word
when necessary. Following previous work [Gu et al., 2017;
Wang et al., 2018], we also use knowledge distillation tech-
niques [Kim and Rush, 2016] to train our model. Given a set
of training examples {x(z), y(z)}Zz=1, the training algorithm
aims to find the model parameters that maximize the likeli-

1Note that we follow Vaswani et al. [Vaswani et al., 2017] to use
residual connection and layer normalization in each decoder sub-
layer, which are omitted in the presentation for simplicity.

/2ny /2 1ny 

/2 2ny 

…

…

:y

:y
1y

ny
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<r2l>
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1ny  <null> <eos>
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Figure 4: The smoothing model introduced to connect L2R and R2L
results smoothly. When the output sentence has odd tokens, we ran-
domly insert 〈null〉 which means null word and can be removed in
postprocessing.
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Figure 5: The bidirectional beam search process of our proposed
model, which produces tokens from left-to-right and right-to-left si-
multaneously, under the guidance of two special labels (〈l2r〉 and
〈r2l〉). By using bidirectional attention model, left-to-right and right-
to-left decoding can help and interact with each other.

hood of the training data:

L(θ) = 1

Z

Z∑
z=1

n/2∑
j=1

{log p(−→y (z)
j |
−→y (z)

<j ,
←−y (z)

<j , x
(z), θ)

+ log p(←−y (z)
j |
←−y (z)

<j ,
−→y (z)

<j , x
(z), θ)}

(12)

Inference. Once the proposed model is trained, we employ
a simple bidirectional beam search algorithm to predict the
output sequence. As illustrated in Figure 5, with two special
start tokens which are optimized during the training process,
we let half of the beam to keep decoding from left to right,
and allow the other half beam to decode from right to left.
The blue blocks denote the ongoing expansion of the hypoth-
esis and decoding terminates when the end-of-sentence flag is
predicted. More importantly, by using the bidirectional multi-
head intra-attention, the two decoding manners can help and
interact with each other in one beam-search process. Alterna-
tively, we can also use greedy search to our model.

4 Application to Neural Machine Translation
We use BLEU [Papineni et al., 2002] to evaluate the proposed
model on translation tasks.

4.1 Setup
We verify our model on three translation datasets of different
sizes: WMT14 English-German2 (En⇒De), NIST Chinese-
English3 (Ch⇒En), WMT16 English-Romanian4 (En⇒Ro),
whose training sets consist of 4.5M, 2.0M, 0.6M sentence
pairs, respectively. We tokenize the corpora using a script
from Moses [Koehn et al., 2007] and segment each word into
subword units using BPE [Sennrich et al., 2016b]. We use
37K and 40K shared BPE tokens for En⇒De and En⇒Ro
respectively. For En⇒De, we use newstest2013 as the vali-
dation set and newstest2014 as the test set. For Ch⇒En, we
utilize BPE to encode Chinese and English respectively, and
limit the source and target vocabularies to the most frequent
30K tokens. We use NIST 2006 as the validation set, NIST

2http://www.statmt.org/wmt14/translation-task.html
3The corpora include LDC2000T50, LDC2002T01, LD-

C2002E18, LDC2003E07, LDC2003E14, LDC2003T17 and LD-
C2004T07.

4http://www.statmt.org/wmt16/translation-task.html
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System Architecture English-German Chinese-English English-Romanian

Quality Speed Quality Speed Quality Speed
Existing NMT systems

[Gu et al., 2017] NAT 17.35 N/A - - 26.22 15.6×
NAT (s=100) 19.17 N/A - - 29.79 2.36×

[Lee et al., 2018] D-NAT 12.65 11.71× - - 24.45 16.03×
D-NAT (adaptive) 18.91 1.98× - - 29.66 5.23×

[Kaiser et al., 2018] LT 19.80 3.89× - - - -
LT (s=100) 22.50 N/A - - - -

[Wang et al., 2018]
(beam search)

SAT (K=2) 26.90 1.51× 39.57 1.69× - -
SAT (K=6) 24.83 2.98× 35.32 3.18× - -

[Wang et al., 2018]
(greedy search)

SAT (K=2) 26.09 1.70× 38.37 1.71× - -
SAT (K=6) 23.93 4.57× 33.75 4.70× - -

Our NMT systems

This work
(beam search)

Transformer 27.06 1.00× 46.56 1.00× 32.28 1.00×
Transformer (R2L) 26.71 1.02× 44.63 0.94× 32.29 0.98×
Our Model 27.45 1.38× 47.82 1.41× 33.02 1.43×

This work
(greedy search)

Transformer 26.23 1.00× 44.63 1.00× 31.71 1.00×
Transformer (R2L) 25.38 0.97× 43.68 0.98× 31.19 1.04×
Our Model 27.22 1.61× 47.50 1.51× 32.82 1.46×

Table 1: Translation quality (BLEU) and speed on official test sets. Translation speed is measured on the amount of translated sentences in
one second. For comparison, we also list results reported by Gu et al. [2017]; Lee et al. [2018]; Kaiser et al. [2018]; Wang et al. [2018].
Note that we and SAT use different size corpus and different preprocessing methods for Chinese-English translation. Although the non-
autoregressive or semi-autoregressive NMT models have greater potential in speedup decoding than ours, the major drawback is translation
quality degradation. By making full use of the history information and future information, our SBSG model can get a significant BLEU
improvement (p < 0.01) than autoregressive, semi-autoregressive and non-autoregressive models.

2003-2005 as our test sets. For En⇒Ro, we use newsdev-
2016 and newstest-2016 as development and test sets.

We implement the proposed model based on the ten-
sor2tensor5 toolkit. For our bidirectional Transformer model,
we employ the Adam optimizer with β1=0.9, β2=0.998, and
ε=10−9. We use the same warmup and decay strategy for
learning rate as Vaswani et al. [2017] , with 16,000 warmup
steps. During training, we employ label smoothing of value
εls=0.1. We use three GPUs to train En⇒De and one GPU
for the other two language pairs. For evaluation, we use beam
search with a beam size of k=4 and length penalty α=0.6. Be-
sides, we use 6 encoder and decoder layers, 512 hidden size,
8 attention-heads, 2048 feed-forward inner-layer dimensions.

4.2 Results and Analysis
Parameters. NAT [Gu et al., 2017] adopts encoder-decoder
architecture with additional fertility predictor model. D-
NAT [Lee et al., 2018] has two decoders and needs more
parameters than conventional Transformer. Our bidirectional
NMT model uses one single encoder-decoder model, which
can predict the target tokens in left-to-right and right-to-left
manners simultaneously. Hence, our SBSG model does not
increase any parameters except for a hyper-parameter λ com-
pared to the standard Transformer.

Inference Speed. As shown in Table 1, the proposed S-
BSG model is capable of decoding approximately 1.4×
faster than autoregressive Transformer with beam search in
three translation tasks. Besides, our model obtains 1.61×
(En⇒De), 1.51× (Ch⇒En), and 1.46× (En⇒Ro) speedup

5https://github.com/tensorflow/tensor2tensor

than Transformer in greedy search. As a compromise solu-
tion between autoregressive and non-autoregressive models,
the speed of our model is relatively slower than NAT, D-NAT,
and LT [Kaiser et al., 2018]. Besides, our proposed model is
capable of obtaining comparable translation speed compared
to SAT [Wang et al., 2018] with K=2.

Translation Quality. Table 1 shows translation perfor-
mance of En⇒De, Ch⇒En, and En⇒Ro translation tasks.
The proposed model behaves better than NAT, D-NAT, LT in
all test datasets. In particular, our model with beam search
significantly outperforms NAT, D-NAT, and LT by 8.28, 8.54
and 4.95 BLEU points in large-scale English-German trans-
lation, respectively. Although the SAT has a faster decoding
speed than the SBSG model when K becomes bigger, it suf-
fers from the translation quality degradation relative to the au-
toregressive NMT. Compared to autoregressive Transformer,
our proposed model with beam search is able to behave better
in terms of both decoding speed and translation quality. Fur-
thermore, our model with greedy search does not only out-
perform autoregressive Transformer by 0.99, 2.87 and 1.11
BLEU points of translation quality in En⇒De, Ch⇒En and
En⇒Ro respectively, but also significantly speedups the de-
coding of conventional Transformer.

Length Analysis. We follow Bahdanau et al. [2015] to
group sentences of similar lengths together, and compute
a BLEU score and the averaged length of translations per
group. Figure 6 shows that the performance of Transformer
and Transformer (R2L) drops rapidly when the length of the
input sentence increases. Our SBSG model alleviates this
problem by generating a sequence from both sides to the mid-
dle, which in general encourages the model to produce more
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Source 徽标由乘风破浪西行的帆船、翻滚的浅蓝色弧形水纹浪花和文字 ”郑和下西洋 600周年 1405 -
2005 ”组成。

Reference the logo was made up of a westbound sailboat braving the wind and waves , churning arc - shaped spindrifts in light
blue color , and words that say ” zheng he ’s 600th anniversary to the west , 1405 - 2005 . ”.

L2R the logo is composed of sailboats that break the wind and break the waves , rolling light blue water wave flowers .
R2L 1405-2005 of zheng he , the 600th anniversary of the west .
SBSG the logo is composed of sailing boat by wind and waves , rolling light blue surpo- shaped flowers , and words ”

zheng to the west , 1405 - 2005 ” .

Table 2: A Chinese-English translation example of baselines and our proposed model. Our model can alleviate the unbalanced output
problems [Liu et al., 2016b] by generating a sentence from both sides to the middle.
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Figure 6: Length Analysis - Performance of the generated trans-
lations with respect to the lengths of the source sentences. The
proposed SBSG model can alleviate under-translation by producing
longer translation on long sentences.

accurate and long sentences.

Case Study. In Table 2, we present a translation example
from NIST Chinese-English. Liu et al. [2016b] show that
L2R model produces the translation with good prefix and
sometimes omits the second half sentence, but L2R model
usually generates the generation with better suffixes. Our re-
sults confirm these findings. The proposed SBSG model can
alleviate the errors by generating sequences from both sides
to the middle.

5 Application to Text Summarization
We further verify the effectiveness of our proposed SBSG
model on text summarization, which is another real-world ap-
plication that encoder-decoder framework succeeds [Rush et
al., 2015].

5.1 Setup
Abstractive sentence summarization aims to provide a title-
like summary for a long sentence. We conduct text summa-
rization experiments on English Gigaword dataset6. The par-
allel corpus is produced by pairing the first sentence and the
headline in the news article with some heuristic rules. The ex-
tracted corpus contains about 3.8M sentence-summary pairs
for the training set and 189K examples for the development
set. We employ a shared vocabulary of about 90K word type-
s and use DUC 2004 used by Rush et al. [2015] as our test
set. The model structure is the same as that used in neural
machine translation. We employ ROUGE as our evaluation
metric, which is all widely adopted evaluation metric for text
summarization.

6https://github.com/harvardnlp/sent-summary

DUC2004 RG-1 RG-2 RG-L Speed
ABS‡ 26.55 7.06 22.05 -
Feats2s‡ 28.35 9.46 24.59 -
Selective-Enc‡ 29.21 9.56 25.51 -
Transformer 28.09 9.52 24.91 1.00×
SBSG (beam) 28.77 10.11 26.11 1.48×
SBSG (greedy) 28.70 9.88 25.93 2.09×

Table 3: ROUGE recall evaluation results on DUC 2004 test set. For
comparison, we also list results reported by Rush et al. [2015]; Nal-
lapati et al. [2016]; Zhou et al. [2017]. Results with ‡mark are taken
from the corresponding papers. Our proposed SBSG model signif-
icant outperforms the conventional Transformer model in terms of
both decoding speed and generation quality.

5.2 Results and Analysis
In Table 3, we report the ROUGE score and speed for DUC
2004 test set. Experiments show that the generation quali-
ty of our proposed model is on par with the state-of-the-art
text summarization models. We observe approximately 1.5×
faster decoding than the autoregressive Transformer while
achieving better generation quality. Specially, our model with
beam search (greedy search) is capable of decoding 1.64×
(2.26×) faster than conventional Transformer on English Gi-
gaword test set.

6 Conclusions
In this work, we propose a novel SBSG model that performs
bidirectional decoding simultaneously and interactively. In-
stead of producing output sentence token by token, the pro-
posed model makes decoding much more parallelizable and
generates two tokens at each time step. We extensively e-
valuate the proposed SBSG model on neural machine trans-
lation (En⇒De, Ch⇒En, and En⇒Ro) and text summariza-
tion (English Gigaword) tasks. Different from previous non-
autoregressive models [Gu et al., 2017; Lee et al., 2018;
Kaiser et al., 2018] which suffer from serious quality degra-
dation, our SBSG model achieves a significant improvement
in both generation quality and decoding speed compared to
the state-of-the-art autoregressive Transformer.
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