
Counterexample-Guided Strategy Improvement for POMDPs
Using Recurrent Neural Networks

Steven Carr1∗ , Nils Jansen2∗ , Ralf Wimmer3,4 ,
Alexandru Serban 2 , Bernd Becker3 and Ufuk Topcu1

1 The University of Texas at Austin
2 Radboud University, Nijmegen, The Netherlands

3 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
4 Concept Engineering GmbH, Freiburg im Breisgau, Germany

stevencarr@utexas.edu, n.jansen@science.ru.nl

Abstract
We study strategy synthesis for partially observable
Markov decision processes (POMDPs). The partic-
ular problem is to determine strategies that provably
adhere to (probabilistic) temporal logic constraints.
This problem is computationally intractable and the-
oretically hard. We propose a novel method that
combines techniques from machine learning and
formal verification. First, we train a recurrent neu-
ral network (RNN) to encode POMDP strategies.
The RNN accounts for memory-based decisions
without the need to expand the full belief space
of a POMDP. Secondly, we restrict the RNN-based
strategy to represent a finite-memory strategy and
implement it on a specific POMDP. For the result-
ing finite Markov chain, efficient formal verification
techniques provide provable guarantees against tem-
poral logic specifications. If the specification is not
satisfied, counterexamples supply diagnostic infor-
mation. We use this information to improve the
strategy by iteratively training the RNN. Numerical
experiments show that the proposed method elevates
the state of the art in POMDP solving by up to three
orders of magnitude in terms of solving times and
model sizes.

1 Introduction
Autonomous agents that make decisions under uncertainty and
incomplete information can be mathematically represented as
partially observable Markov decision processes (POMDPs).
In this setting, while an agent makes decisions within an envi-
ronment, it obtains observations and infers the likelihood of
the system being in a certain state, known as the belief state.
POMDPs are effective in modeling a number of real-world
applications, see for instance [Kaelbling et al., 1998]. Tradi-
tional POMDP problems typically seek to compute a strategy
that maximizes a cumulative reward over a finite horizon.

However, the agent’s behavior is often required to obey
more complicated specifications. For example, reachability,

∗Contact Authors

liveness or, more generally, specifications expressed in tempo-
ral logic (e. g. LTL [Pnueli, 1977]) describe tasks that cannot
be expressed using reward functions [Littman et al., 2017].

Strategy synthesis for POMDPs is a difficult problem, both
from the theoretical and the practical perspective. For infinite-
or indefinite-horizon problems, computing an optimal strategy
is undecidable [Madani et al., 1999]. Optimal action choices
depend on the whole history of observations and actions, and
thus require an infinite amount of memory. When restricting
the specifications to maximizing accumulated rewards over a
finite horizon and also limiting the available memory, comput-
ing an optimal strategy is PSPACE-complete [Papadimitriou
and Tsitsiklis, 1987]. This problem is, practically, intractable
even for small instances [Meuleau et al., 1999]. Moreover,
even when strategies are restricted to be memoryless, finding
an optimal strategy within this set is still NP-hard [Vlassis et
al., 2012]. For more general specifications like LTL properties,
synthesis of strategies with limited memory is even harder,
namely EXPTIME-complete [Chatterjee et al., 2015]).

The intractable nature of finding exact solutions in these
problems gave rise to approximate [Hauskrecht, 2000], point-
based [Pineau et al., 2003], or Monte-Carlo-based [Silver and
Veness, 2010] methods. However, none of these approaches
provides guarantees for temporal logic specifications. [Chat-
terjee et al., 2015] studies such problems on a theoretical level.
The tool PRISM-POMDP [Norman et al., 2017] actually pro-
vides guarantees by approximating the belief space into a fully
observable belief MDP, but is restricted to small examples.
Other techniques, such as those employing an incremental sat-
isfiability modulo theory (SMT) solver over a bounded belief
space [Wang et al., 2018] or a simulation over sets of belief
models [Haesaert et al., 2018], are also restricted to small
examples. Finally, [Junges et al., 2018] constructs finite-state
controllers for POMDPs using parameter synthesis for Markov
chains [Hahn et al., 2010; Junges et al., 2019] by apply-
ing convex optimization techniques [Cubuktepe et al., 2017;
2018]. Their procedure involves constructing a product of
the POMDP and an automaton for temporal logic constraints,
which can cause a substantial blow-up in the state space.

Although strategy synthesis for POMDPs is hard, an avail-
able candidate strategy resolves the nondeterminism and par-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5532

tial observability for a POMDP and yields a so-called induced
discrete-time Markov chain (MC). For this simpler model,
verification methods are capable of efficiently certifying tem-
poral logic constraints and reward specifications for billions of
states [Baier and Katoen, 2008]. Tool support is available via
probabilistic model checkers such as PRISM [Kwiatkowska
et al., 2011] or Storm [Dehnert et al., 2017].

There remains a dichotomy between directly synthesizing
an optimal strategy and the efficient verification of a candidate
strategy. The key questions are (1) how to generate a “good”
strategy in the first place and (2) how to improve a strategy if
verification refutes the specification. Machine learning and for-
mal verification techniques address these questions separately.
In this paper, we combine methods from both fields in order to
guarantee that a candidate strategy learned through machine
learning provably satisfies temporal logic specifications.

At first, we learn a randomized strategy* via recurrent neural
networks (RNNs) [Hochreiter and Schmidhuber, 1997] and
data stemming from knowledge of the underlying structure
of POMDPs. We refer to the resulting trained RNN as the
strategy network. RNNs are a good candidate for learning
a strategy because they can successfully represent temporal
dynamic behavior [Pascanu et al., 2013].

Secondly, we extract a concrete (memoryless randomized)
candidate strategy from the RNN and use it directly on a given
POMDP, resulting in the MC induced by the POMDP and the
strategy. Formal verification reveals whether specifications
are satisfied or not. In the latter case, we generate a so-called
counterexample [Wimmer et al., 2014], which points to parts
of the MC (and by extension of the POMDP) that are critical
for the specification. For those critical parts, we use a linear
programming (LP) approach that locally improves strategy
choices (without any guarantees on the global behavior). From
the improved strategy, we generate new data to retrain the
RNN. We iterate that procedure until the strategy network
yields satisfactory results.

While the strategies are memoryless, allowing for random-
ization over possible choices – relaxing determinism – is often
sufficient to capture necessary variability in decision-making.
The intuition is that deterministic choices at a certain state
may need to vary depending on previous decisions, thereby
trading off memory. However, randomization in combina-
tion with finite memory may supersede infinite memory for
many cases [Amato et al., 2010; Junges et al., 2018]. We
encode finite memory directly into a POMDP by extending its
state space. We can then directly apply our method to create
finite-state controllers (FSCs) [Meuleau et al., 1999].

As previously discussed, the investigated problem is unde-
cidable for POMDPs [Madani et al., 1999] and therefore the
approach is naturally incomplete. Soundness is provided, as
verification yields hard guarantees on the quality of a strategy.

Related Work
Besides the publications mentioned earlier, we list several
results employing RNN architectures for POMDPs, all of
them within the policy gradient class of algorithms specific to
reinforcement learning [Sutton et al., 2000]. In this setting, the
strategy is parameterized and updated by performing gradient

*Also referred to as stochastic strategy or policy.

ascent on the error function (typically chosen to maximize the
discounted reward).

In order to cope with arbitrary memory in POMDPs, policy
gradient methods need some notion of memory. RNNs are
suitable for this task because (1) they are differentiable end-
to-end and (2) they are designed to exhibit dynamic temporal
behavior. [Wierstra et al., 2007] were the first to employ an
RNN to learn (finite-memory) strategies for POMDPs, using
an long short-term memory (LSTM) architecture which is able
to leverage both long and short term events in the past.

Recent progress in deep learning enabled scaling neural net-
works (NNs) to solve complex problems. For example, [Mnih
et al., 2015] developed an NN - based Q-learning algorithm
able to play video games straight from video frames, under
partial observability. Instead of using RNNs, the memory
problem is solved by replaying a series of frames at every
step. Later, [Hausknecht and Stone, 2015] added an LSTM
cell to enhance the algorithm’s capacity with both long and
short term memory. The field has rapidly moved to explore
new ways of improving the memory representation [Parisotto
and Salakhutdinov, 2018] [Pritzel et al., 2017] [Santoro et al.,
2018]. However, even though they yield good performance on
a variety of tasks, these methods do not provide any guarantees
on the strategies learned.

2 Preliminaries
A probability distribution over a finite or countably infinite set
X is a function µ : X→ [0, 1]⊆R with ∑x∈X µ(x)= µ(X)= 1.
The set of all distributions on X is Distr(X). The support of a
distribution µ is supp(µ) = {x ∈ X |µ(x)> 0}.
(PO)MDPs. A Markov decision process (MDP) M is a tuple
M = (S,Act,P) with a finite (or countably infinite) set S of
states, a finite set Act of actions, and a transition function
P : S×Act→Distr(S). We use a reward function r : S×a→
R. A finite path π of an MDP M is a sequence of states and
actions; last(π) is the last state of π . The set of finite paths
of M is PathsM

fin. A discrete-time Markov chain (MC) is an
MDP with |Act(s)|= 1 for all s ∈ S. A strategy γ for an MDP
M is a function γ : PathsM

fin→ Distr(Act) with supp
(
γ(π)

)
⊆

Act
(
last(π)

)
for all π ∈PathsM

fin. A strategy γ is memoryless if
last(π) = last(π ′) implies γ(π) = γ(π ′) for all π,π ′ ∈PathsM

fin.

Definition 1 (Induced Markov Chain) For an MDP M =
(S,Act,P) and a strategy γ ∈ ΓM , the MC induced by M
and γ is given by Mγ = (PathsM

fin,P
γ) where:

Pγ(π,π ′) =

{
P(last(π),a,s′) · γ(π)(a) if π ′ = πas′,
0 otherwise.

Definition 2 (POMDP) A partially observable Markov deci-
sion process (POMDP) is a tuple M = (M,Z,O), with M =
(S,Act,P) the underlying MDP of M , Z a finite set of obser-
vations and O : S→ Z the observation function.

The set of all finite observation-action sequences for a POMDP
M is denoted by ObsSeqM

fin .

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5533

Definition 3 (POMDP Strategy) An observation-based strat-
egy for a POMDP M is a function γ : ObsSeqM

fin →
Distr(Act) such that supp

(
γ(O(π))

)
⊆ Act

(
last(π)

)
for all

π ∈ PathsM
fin. ΓM

z is the set of observation-based strategies
for M .

A memoryless observation-based strategy γ ∈ ΓM
z is analo-

gous to a memoryless MDP strategy, formally we simplify to
γ : Z→ Distr(Act), i. e., we decide based on the current ob-
servation only. Similarly, a POMDP together with a strategy
yields an induced MC as in Def. 1, resolving all nondetermin-
ism and partial observability. A general POMDP strategy can
be represented by infinite-state controllers. Strategies are often
restricted to finite memory; this amounts to using finite-state
controllers (FSCs) [Meuleau et al., 1999].

Definition 4 (FSC) A k-FSC for a POMDP is a tuple A =
(N,nI ,γα ,δ) where N is a finite set of k memory nodes,
nI ∈ N is the initial memory node, γ is the action map-
ping γα : N × Z → Distr(Act) and δ is the memory update
δ : N×Z×Act→ N. Let γA ∈ ΓM

z denote the observation-
based strategy represented by the FSC A .

The product M ×A of a POMDP and a k-FSC yields a
(larger) “flat” POMDP where the memory update is directly
encoded into the state space [Junges et al., 2018]. The action
mapping γα is left out of the product. A memoryless strategy
γ ∈ ΓM×A

z then determines the action mapping and can be
projected to the finite-memory strategy γA ∈ ΓM

z .

Specifications
We consider linear-time temporal logic (LTL) proper-
ties [Pnueli, 1977]. For a set of atomic propositions AP, which
are either satisfied or violated by a state, and a ∈ AP, the set
of LTL formulas is given by:

Ψ ::= a | (Ψ∧Ψ) | ¬Ψ | © Ψ | �Ψ | (ΨUΨ) .

Intuitively, a path π satisfies the proposition a if its first state
does; (ψ1∧ψ2) is satisfied, if π satisfies both ψ1 and ψ2; ¬ψ

is true on π if ψ is not satisfied. The formula©ψ holds on π

if the subpath starting at the second state of π satisfies ψ . The
path π satisfies �ψ if all suffixes of π satisfy ψ . Finally, π

satisfies (ψ1Uψ2) if there is a suffix of π that satisfies ψ2 and
all longer suffixes satisfy ψ1. ♦ψ abbreviates (trueUψ).

For POMDPs, one wants to synthesize a strategy such that
the probability of satisfying an LTL-property respects a given
bound, denoted ϕ = P∼λ (ψ) for ∼ ∈ {<,≤,≥,>} and λ ∈
[0,1]. In addition, undiscounted expected reward properties
ϕ =E∼λ (♦a) require that the expected accumulated cost until
reaching a state satisfying a respects λ ∈ R≥0.

If ϕ (either LTL or expected reward specification) is satis-
fied in a (PO)MDP M under γ , we write M γ |= ϕ , that is, the
specification is satisfied in the induced MC, see Def. 1. While
determining an appropriate strategy is still efficient for MDPs,
this problem is in general undecidable for POMDPs [Chat-
terjee et al., 2016]. In particular, for MDPs, to check the
satisfaction of a general LTL specification one needs mem-
ory. Typically, tools like PRISM [Kwiatkowska et al., 2011]
compute the product of the MDP and a deterministic Rabin

automaton. In this product, reachability of so-called accepting
end-components ensures the satisfaction of the LTL property.
This reachability probability can be determined in polyno-
mial time. PRISM-POMDP [Norman et al., 2017] handles
the problem similarly for POMDPs, but note that a strategy
needs memory not only for the LTL specification but also for
observation dependencies.

Finally, given a (candidate) strategy γ , checking whether
M γ |= ϕ holds can be done both for MDPs and POMDPs
in polynomial time. For more details we refer to [Baier and
Katoen, 2008].

3 Synthesis Procedure
Formal problem statement. For a POMDP M and a
specification ϕ , where either ϕ =P∼λ (ψ) with ψ an LTL
formula, or ϕ = E∼λ (♦a), the problem is to determine a
(finite-memory) strategy γ ∈ ΓM

z such that M γ |= ϕ .

If such a strategy does not exist, the problem is infeasible.

Outline
The workflow of the proposed approach is illustrated in Fig. 1:
We train an RNN using observation-action sequences gener-
ated from an initial strategy as discussed in Sect. 3.1. The
trained strategy network represents an observation-based strat-
egy, taking as input an observation-action sequence and re-
turning a distribution over actions, see Def 3. For a POMDP
M , we use the output of the strategy network in order to re-
solve nondeterminism. The strategy network is thereby used
to extract a memoryless strategy γ ∈ ΓM and as a result we
obtain the induced MC M γ . Model checking of this induced
MC evaluates whether the specification ϕ is satisfied or not
for the extracted strategy. In the former case, the synthesis pro-
cedure is finished. The extraction and evaluation is explained
in Sect. 3.2.

If the specification is not satisfied, we obtain a counterex-
ample highlighting critical states of the POMDP. We employ

Local Improvement

Linear Program
for each s ∈ S′

Training Data

POMDP Observation-
Action Sequences

Recurrent
Neural Network

Strategy

Strategy γ for M

Induced Model

DTMC M γ

Model Checking

M γ |= ϕ ?

Counterexamples

Set S′ ⊆ S of critical states

Concrete Model

POMDP M
Specification ϕ

UNSAT

SAT

Figure 1: Flowchart of the RNN-based refinement loop

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5534

a linear programming (LP) approach that locally improves ac-
tion choices of the current strategy at these critical states, see
Sect. 3.3. Afterwards, we retrain the RNN by generating new
observation-action sequences obtained from the new strategy.
We iterate this procedure until the specification is satisfied
or a fixed iteration threshold is reached. For cases where we
need to further improve, we use domain knowledge to create
a specific memory-update function of a k-FSC A , see Def. 4.
Then, we compute the product M ′ = M ×A . We iterate our
method with M ′ as starting point and thereby determine a
concrete k-FSC including the action mapping.

3.1 Learning Strategies with RNNs
As mentioned in Section 1, policy gradient algorithms are
used to map observations to actions and are not well suited for
POMDPs due to their inability to cope with arbitrary mem-
ory. To overcome this weakness, we design our method to
make explicit use of memory using RNNs - a family of neural
networks designed to exhibit dynamic temporal behavior.
Constructing the strategy network. We use the long short-
term memory (LSTM) architecture [Hochreiter and Schmid-
huber, 1997] in a similar fashion to policy gradient methods
and model the output as a probability distribution on the action
space (described formally by γ̂ : ObsSeqM

fin →Distr(Act)). By
having stochastic output units, we avoid computing gradients
on the internal belief states, see [Meuleau et al., 1999] for
a similar approach. Using back propagation through time,
we can update the strategy during training. Thus, for a given
observation-action sequence from ObsSeqM

fin , the model learns
a strategy γ̂ ∈ ΓM

z . The output is a discrete probability distri-
bution over the actions Act, represented using a final softmax
layer.
RNN training. We train the RNN using a slightly modified
version of sampling re-usable trajectories [Kearns et al., 2000].
In particular, for a POMDP M = (M,Z,O) and a specification
ϕ , instead of randomly generating observation sequences, we
first compute a strategy γ ∈ ΓM of the underlying MDP M
that satisfies ϕ . Then we sample uniformly over all states
of the MDP and generate finite paths (of a fixed maximal
length) from PathsMγ

fin of the induced MC Mγ , thereby creating
multiple trajectory trees. For each finite path π ∈ PathsMγ

fin ,
we generate one possible observation-action sequence πz ∈
ObsSeqM

fin such that π = z0,a0, . . . ,an−1,zn with zi = O(π[i]),
where π[i] denotes the i-th state of π for all 1 ≤ i ≤ n. We
form the training set D from a (problem specific) number of
m observation-action sequences with observations as input
and actions as output labels. Both input and output sets were
processed using one-hot-encoding. To fit the RNN model,
we use the Adam optimizer [Kingma and Ba, 2014] with a
cross-entropy error function.
Sampling large environments. In a POMDP M with a
large state space (|S|> 105), computing the underlying MDP
strategy γ ∈ ΓM affects the performance of the procedure. In
such cases, we restrict the sampling to a smaller environment
that shares the observation Z and action spaces Act with M .
For example, consider a gridworld scenario with a moving
obstacle that has the same underlying probabilistic movement

for different problem sizes; such a framework can provide a
similar dataset regardless of the size of the grid.

3.2 Strategy Extraction and Evaluation

We first describe how to extract a memoryless strategy from the
strategy network for a specific POMDP, then we formalize the
extension to FSCs to account for finite memory. Afterwards,
we shortly explain how to evaluate the resulting strategies.

Given a POMDP M , we use the trained strategy net-
work γ̂ : ObsSeqM

fin → Distr(Act) directly as observation-
based strategy. Note that the RNN is inherently a predictor
for the distribution over actions and will not always deliver
the same output for one input. While we always use the first
prediction we obtain, one may also sample several predictions
and take the average of the output distributions.

Extension to FSCs
As mentioned before, LTL specifications as well as
observation-dependencies in POMDPs require memory. Con-
sider therefore a general FSC A = (N,nI ,γ,δ) as in Def. 4.
We first predefine the memory update function δ in a problem-
specific way, for instance, δ changes the memory node when
an observation is repeated. Consider observation sequence
πz ∈ ObsSeqM

fin with πz = z0,a0, . . . ,zn. Assume, the FSC
is in memory node nk ∈ N at position i of πz. We define
δ (nk,zi,ai) = nk+1, if πz[i] = (zi,ai), and there exists a j < i
such that πz[j] = (z j,a j) with zi = z j. Similarly, we account
for specific memory choices akin to the relevant LTL specifi-
cation.

Once δ has been defined, we compute a product POMDP
M × A which creates a state space over S × N. The
training process is similar to the method outlined above
but instead of generating observation-action sequences from
ObsSeqM

fin , we generate observation-node-action sequences
(z0,n0),a0, . . . ,an−1,(zn,nn) from ObsSeqM×A

fin . In this case,
the RNN is learning the mapping of observation and mem-
ory node to the distribution over actions as an FSC strategy
network: γ̂ FSC : ObsSeqM×A

fin ×N→ Distr(Act)
In order to extract the memoryless FSC A from the FSC

strategy network γ̂FSC, we collect the predicted distributions
across the product set of all possible observations z ∈ Z and all
possible memory nodes n ∈ N. From this prediction, the FSC
A is constructed from the action mapping γ(z,n) = γ̂FSC(z,n)
and the predefined memory update function δ .

Evaluation. We assume that for POMDP M = (M,Z,O)
and specification ϕ , we have a finite-memory observation-
based strategy γ ∈ ΓM as described above. We use the strategy
γ to resolve all nondeterminism in M , resulting in the induced
MC M γ , see Def. 1. For this MC, we apply model checking,
which in polynomial time reveals whether M γ |= ϕ . For the
fixed strategy γ we extracted from the strategy network, this
provides hard guarantees about the quality of γ regarding ϕ .
As mentioned before, this strategy is only a prediction obtained
from the RNN – so the guarantees necessarily do not directly
carry over to the strategy network.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5535

3.3 Improving the Represented Strategy
We describe how we compute a local improvement for a strat-
egy that does not satisfy the specification. In particular, we
have POMDP M = (M,Z,O), specification ϕ , and the strat-
egy γ ∈ ΓM with M γ 6|= ϕ . We now create diagnostic infor-
mation on why the specification is not satisfied.

First, without loss of generality, we assume ϕ = P≤λ (ψ).
Let γ(z)(a) denote the probability of choosing action a ∈ Act
upon observation z∈ Z, under the strategy γ . Let Pr∗(s) denote
the probability to satisfy ψ within the induced MC M γ . For
some threshold λ ′ ∈ [0,1], a state s ∈ S is critical iff Pr∗(s)>
λ ′. We define λ ′ as a function λ ′ : S×λ → R with respect to
the threshold λ from the original specification and the state s.
We define the set of critical decision under the strategy γ .

Definition 5 (Critical Decision) A probability γ(z)(a) > 0
according to an observation-based strategy γ ∈ Γ is a crit-
ical decision iff there exist states s,s′ ∈ S with s ∈ O−1(z),
P(s,a,s′)> 0, and s′ is critical.

Intuitively, a decision is critical if it may lead to a critical
state. The set of critical decisions serves as a counterexample,
generated by the set of critical states and the strategy γ . Note
that even if a specification is satisfied for γ , the sets of critical
decisions and states may still be non-empty as they depend on
the definition of the criticality-threshold λ ′.

For each observation z ∈ O with a critical decision, we con-
struct an optimization problem that minimizes the number of
different (critical) actions the strategy chooses per observation
class. In particular, the probabilities of action choices under γ

are redistributed such that the critical choices are minimized.

max
γ(z)(a),a∈Act

min
s∈S

ps (1)

subject to

∀s ∈ O−1(z). ps = ∑
a∈Act

γ(z)(a) · ∑
s′∈S

P(s,a,s′) · p∗(s′)

Basically, we maximize over the minimal possible worst case
probability for critical states, using the original probability
p∗. From the resulting improved strategy, we generate a new
set of paths starting from the critical states. After convert-
ing these new paths into observation-action sequences, we
retrain the RNN. By gathering more data from these ap-
parently critical situations, we locally improve the quality
of the strategies at those locations and gradually introduce
observation-dependencies.

3.4 Correctness and Termination
Correctness of our approach is ensured by evaluating the ex-
tracted strategy on the POMDP using model checking. As the
investigated problem is undecidable for POMDPs [Madani et
al., 1999], our approach is naturally incomplete. In order to
enforce termination after finite time, we abort the refinement
loop after a specified number of iterations, or as soon as the
progress from one iteration to the next (in terms of the model
checking results) falls below a user-specified threshold.

4 Experimental Results
We evaluate our RNN-based synthesis procedure on bench-
mark examples that are subject to either LTL specifications or
expected cost specifications. For the former, we compare to the
tool PRISM-POMDP, and for the latter we compare to PRISM-
POMDP and the point-based solver SolvePOMDP [Walraven
and Spaan, 2017]. Recall that, in general, a strategy over the
continuous belief space induces an infinite memory strategy
for POMDPs. PRISM-POMDP employs a discretization (we
chose the default level of discretization) of that belief space
which technically induces a finite-memory strategy. There-
fore solutions from PRISM-POMDP are approximate; the tool
computes an upper and lower bound on the optimum.

We selected the two solvers from different research commu-
nities because they provide the possibility for a straightforward
adaption to our benchmark setting. In particular, the tools sup-
port undiscounted rewards and have a simple and similar input
interface. Extended experiments with, for instance, Monte-
Carlo-based methods [Silver and Veness, 2010] are interesting
but beyond the scope of this paper.

For a fair comparison, instead of terminating our synthesis
procedure once a specification is satisfied, we always iterate
10 times, where one iteration encompasses the (re-)training
of the RNN, the strategy extraction, the evaluations, and the
strategy improvement as detailed in Sect. 3. For instance, for
a specification ϕ = P≤λ (ψ), we leave the λ open and seek to
compute Pmin(ψ), that is, we compute the minimal probability
of satisfying ψ to obtain a strategy that satisfies ϕ . We cannot
guarantee to reach that optimum, but we rather improve as far
as possible within the predefined 10 iterations. The notions are
similar for P≥λ and Pmax as well as for expected cost measures
E≤λ (E≥λ) and Emin (Emax).

We will now shortly describe our experimental setup and
present detailed results for both types of examples.

Implementation and setup. We employ the following
Python toolchain to realize the full RNN-based synthesis pro-
cedure. First, we use the deep learning library Keras [Chollet
and others, 2015] to train the strategy network. To evaluate
strategies, we employ the probabilistic model checkers PRISM
(LTL) and STORM (undiscounted expected rewards).We eval-
uated on a 2.3 GHz machine with a 12 GB memory limit and a
specified maximum computation time of 105 seconds.

4.1 Temporal Logic Examples
We examined three problem settings involving motion plan-
ning with LTL specifications. For each of the settings, we use
a standard gridworld formulation of an agent with 4 action
choices (cardinal directions of movement), see Fig. 2(a). In-
side this environment there are a set of static (x̂) and moving
(x̃) obstacles as well as possible target cells A and B. Each
agent has a limited visibility region, indicated by the green
area, and can infer its state from observations and knowledge
of the environment. We define observations as Boolean func-
tions that take as input the positions of the agent and moving
obstacles. Intuitively, the functions describe the 8 possible
relative positions of the obstacles with respect to the agent
inside its viewing range.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5536

A

B x̂

x̂
x̃

(a)

Problem |S| |Act| |Z|

Navigation (c) c4 4 256
Delivery (c) c2 4 256
Slippery (c) c2 4 256
Maze(c) 3c+8 4 7
Grid(c) c2 4 2
RockSample[4,4] 257 9 2
RockSample[5,5] 801 10 2
RockSample[7,8] 12545 13 2

(b)

Figure 2: (a) Example environment and (b) Benchmark metrics

1. Navigation with moving obstacles – an agent and a sin-
gle stochastically moving obstacle. The agent task is to
maximize the probability to navigate to a goal state A
while not colliding with obstacles (both static and mov-
ing): ϕ1 = Pmax (¬X U A) with x = x̂∪ x̃,

2. Delivery without obstacles – an agent and static objects
(landmarks). The task is to deliver an object from A to B
in as few steps as possible: ϕ2 = Emin(♦(A∧♦B)).

3. Slippery delivery with static obstacles – an agent
where the probability of moving perpendicular to the
desired direction is 0.1 in each orientation. The task is to
maximize the probability to go back and forth from loca-
tions A and B without colliding with the static obstacles
x̂: ϕ3 = Pmax (�♦A∧�♦B∧¬♦X), with x = x̂,

Evaluation
Fig. 3 compares the size of counterexample in relation to the
probability of satisfying an LTL formula in each iteration of
the synthesis procedure. In particular, we depict the size of
the set S′ ⊂ S of critical states regarding ϕ1 = Pmax (¬X U A)
for the Navigation example with grid-size 6. Note that even if
the probability to satisfy the LTL specification is nearly one
(for the initial state of the POMDP), there may still be critical
intermediate states. As can be seen in the figure, while the
probability to satisfy the LTL formula increases, the size of
the counterexample decreases. In particular, the local improve-
ment (Eq. 1, Sect. 3.3) is demonstrated to be effective.

0 2 4 6 8 10
0

500

1,000

1,500

Iteration no.

#
cr

iti
ca

ls
ta

te
s

Refinement statistics

0

0.2

0.4

0.6

0.8

1

Pr
(¬

X
U

A
)

Probability
Counterexamples

Figure 3: Progression of the number of critical states and the probabil-
ity of satisfying an LTL specification as a result of local improvement
steps.

RNN-based Synthesis PRISM-POMDP
Problem States Type, ϕ Res. Time (s) Res. Time (s)

Navigation (3) 333 PM
max, ϕ1 0.74 14.16 0.84 73.88

Navigation (4) 1088 PM
max, ϕ1 0.82 22.67 0.93† 1034.64

Navigation (4) [2-FSC] 13373 PM
max, ϕ1 0.91 47.26 – –

Navigation (4) [4-FSC] 26741 PM
max, ϕ1 0.92 59.42 – –

Navigation (4) [8-FSC] 53477 PM
max, ϕ1 0.92 85.26 – –

Navigation (5) 2725 PM
max, ϕ1 0.91 34.34 MO MO

Navigation (5) [2-FSC] 33357 PM
max, ϕ1 0.92 115.16 – –

Navigation (5) [4-FSC] 66709 PM
max, ϕ1 0.92 159.61 – –

Navigation (5) [8-FSC] 133413 PM
max, ϕ1 0.92 250.91 – –

Navigation (10) 49060 PM
max, ϕ1 0.79 822.87 MO MO

Navigation (10) [2-FSC] 475053 PM
max, ϕ1 0.83 1185.41 – –

Navigation (10) [4-FSC] 950101 PM
max, ϕ1 0.85 1488.77 – –

Navigation (10) [8-FSC] 1900197 PM
max, ϕ1 0.81 1805.22 – –

Navigation (15) 251965 PM
max, ϕ1 0.91 1271.80* MO MO

Navigation (20) 798040 PM
max, ϕ1 0.96 4712.25* MO MO

Navigation (30) 4045840 PM
max, ϕ1 0.95 25191.05* MO MO

Navigation (40) – PM
max, ϕ1 TO TO MO MO

Delivery (4) [2-FSC] 80 EM
min, ϕ2 6.02 35.35 6.0 28.53

Delivery (5) [2-FSC] 125 EM
min, ϕ2 8.11 78.32 8.0 102.41

Delivery (10) [2-FSC] 500 EM
min, ϕ2 18.13 120.34 MO MO

Slippery (4) [2-FSC] 460 PM
max, ϕ3 0.78 67.51 0.90 5.10

Slippery (5) [2-FSC] 730 PM
max, ϕ3 0.89 84.32 0.93 83.24

Slippery (10) [2-FSC] 2980 PM
max, ϕ3 0.98 119.14 MO MO

Slippery (20) [2-FSC] 11980 PM
max, ϕ3 0.99 1580.42 MO MO

Table 1: Synthesizing strategies for examples with LTL specs.

Table 1 contains the results for the above LTL examples.
Note that the sizes of the FSCs were included to demonstrate
the trade-off between computational tractability and expres-
sivity: a larger FSC means that the strategy can store more in-
formation, which may lead to better choices. However, larger
FSCs require more computational effort and may require more
data for training the RNN. We convey this trade-off in the
experiments, as the size of the FSC is often problem-specific.
Naturally the strategies produced by the procedure will not
have higher maximum probabilities (or lower minimum ex-
pected cost) than those generated by the PRISM-POMDP tool.
However, they scale for significantly larger environments and
settings. In the larger environments (Navigation(15) and up-
wards indicated by a star) we employ the sampling technique
outlined at the end of Sect. 3.1 on a dataset with grid-size
10. The strategy still scales to these larger environments even
when trained on data from a smaller state space.

Also in Table 1, we compare the effect of increasing the
value of k for several k-FSCs. In smaller instances with grid-
sizes of 4 and 5, memory-based strategies significantly out-
perform memoryless ones in terms of quality (the resulting
probability or expected cost) while not consuming significantly
more time. The increase in performance is due to additional
expressiveness of an FSC-based strategy in these environments
with a higher density of obstacles.

Summarized, our method scales to significantly larger do-
mains than PRISM-POMDP with competitive computation
times. As mentioned before, there is an inherent level of ran-
domness in extracting a strategy. While we always take the
first shot result for our experiments, the quality of strategies
may improved by sampling several RNN predictions. †

†Output was a bound; we give the worst-case value from bound.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5537

RNN-based Synthesis PRISM-POMDP pomdpSolve
Problem Type States Res Time (s) Res Time (s) Res Time (s)

Maze (1) EM
min 68 4.31 31.70 4.30 0.09 4.30 0.30

Maze (2) EM
min 83 5.31 46.65 5.23 2.176 5.23 0.67

Maze (3) EM
min 98 8.10 58.75 7.13 38.82 7.13 2.39

Maze (4) EM
min 113 11.53 58.09 8.58 543.06 8.58 7.15

Maze (5) EM
min 128 14.40 68.09 13.00† 4110.50 12.04 132.12

Maze (6) EM
min 143 22.34 71.89 MO MO 18.52 1546.02

Maze (10) EM
min 203 100.21 158.33 MO MO MO MO

Grid (3) EM
min 165 2.90 38.94 2.88 2.332 2.88 0.07

Grid (4) EM
min 381 4.32 79.99 4.13 1032.53 4.13 0.77

Grid (5) EM
min 727 6.62 91.42 MO MO 5.42 1.94

Grid (10) EM
min 5457 13.63 268.40 MO MO MO MO

RockSample[4,4] EM
max 2432 17.71 35.35 N/A N/A 18.04 0.43

RockSample[5,5] EM
max 8320 18.40 43.74 N/A N/A 19.23 621.28

RockSample[7,8] EM
max 166656 20.32 860.53 N/A N/A 21.64† 20458.41

Table 2: Comparison for standard POMDP examples.

4.2 Comparison to Existing POMDP Examples
For comparison to existing benchmarks, we extend two ex-
amples from PRISM-POMDP for an arbitrary-sized structure:
Maze(c) with c+ 2 rows and Grid(c) – a square grid with
length c. We also compare to RockSample [Silver and Veness,
2010] (see Table 2(b) for problem metrics).

These problems are quite different to the LTL examples, in
particular the significantly smaller observation spaces. As a
result, a simple memoryless strategy is insufficient for a useful
comparison. For each problem, the size of the k-FSC used
is given by: Maze(c) has k = (c+1); Grid(c) has k = (c−1)
and RockSample with b rocks has k = b.

Our method compares favorably with PRISM-POMDP and
pomdpSolve for Maze and Grid (Table 2). However, the pro-
posed method performs poorly in comparison to pomdpSolve
for RockSample: An observation is received after taking an
action to check a particular rock. This action is never sam-
pled in the modified trajectory-tree based sampling method
(Sect. 3.1). Note that our main aim is to enable the efficient
synthesis of strategies under linear temporal logic constraints.

5 Summary and Future Work
We introduced a new RNN-based strategy synthesis method
for POMDPs and LTL specifications. While we cannot guaran-
tee optimality, our approach shows results that are often close
to the actual optimum with competitive computation times for
large problem domains.

For the future, we are interested in extending our method to
continuous state spaces together with abstraction techniques
that would enable to employ our model-based method.

Acknowledgements
This work was partially supported by the grants DARPA
D19AP00004 and ONR N00014-18-1-2829.

References
[Amato et al., 2010] Christopher Amato, Daniel S Bernstein,

and Shlomo Zilberstein. Optimizing fixed-size stochas-
tic controllers for POMDPs and decentralized POMDPs.
AAMAS, 21(3):293–320, 2010.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter Ka-
toen. Principles of Model Checking. MIT Press, 2008.

[Chatterjee et al., 2015] Krishnendu Chatterjee, Martin
Chmelı́k, Raghav Gupta, and Ayush Kanodia. Qualitative
analysis of POMDPs with temporal logic specifications for
robotics applications. In ICRA, pages 325–330, 2015.

[Chatterjee et al., 2016] Krishnendu Chatterjee, Martin
Chmelı́k, and Mathieu Tracol. What is decidable about
partially observable Markov decision processes with
ω-regular objectives. Journal of Computer and System
Sciences, 82(5):878–911, 2016.

[Chollet and others, 2015] François Chollet et al. Keras.
https://github.com/fchollet/keras, 2015. Accessed on
02.13.19.

[Cubuktepe et al., 2017] Murat Cubuktepe, Nils Jansen, Se-
bastian Junges, Joost-Pieter Katoen, Ivan Papusha, Hasan A.
Poonawala, and Ufuk Topcu. Sequential convex program-
ming for the efficient verification of parametric MDPs. In
TACAS (2), volume 10206 of LNCS, pages 133–150, 2017.

[Cubuktepe et al., 2018] Murat Cubuktepe, Nils Jansen, Se-
bastian Junges, Joost-Pieter Katoen, and Ufuk Topcu. Syn-
thesis in pmdps: A tale of 1001 parameters. In ATVA, vol-
ume 11138 of Lecture Notes in Computer Science, pages
160–176. Springer, 2018.

[Dehnert et al., 2017] Christian Dehnert, Sebastian Junges,
Joost-Pieter Katoen, and Matthias Volk. A storm is coming:
A modern probabilistic model checker. In CAV (2), volume
10427 of LNCS, pages 592–600. Springer, 2017.

[Haesaert et al., 2018] Sofie Haesaert, Petter Nilsson, Cris-
tian Ioan Vasile, Rohan Thakker, Ali-akbar Agha-
mohammadi, Aaron D. Ames, and Richard M. Murray.
Temporal logic control of POMDPs via label-based stochas-
tic simulation relations. In ADHS, volume 51(16) of IFAC-
PapersOnLine, pages 271–276. Elsevier, 2018.

[Hahn et al., 2010] Ernst Moritz Hahn, Holger Hermanns,
and Lijun Zhang. Probabilistic reachability for parametric
Markov models. Software Tools for Technology Transfer,
13(1):3–19, 2010.

[Hausknecht and Stone, 2015] Matthew Hausknecht and Pe-
ter Stone. Deep recurrent q-learning for partially observable
MDPs. CoRR, abs/1507.06527, 7(1), 2015.

[Hauskrecht, 2000] Milos Hauskrecht. Value-function ap-
proximations for partially observable Markov decision pro-
cesses. J. Artif. Intell. Res., 13:33–94, 2000.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Junges et al., 2018] Sebastian Junges, Nils Jansen, Ralf
Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter
Katoen, and Bernd Becker. Finite-state controllers of
POMDPs via parameter synthesis. In UAI, 2018.

[Junges et al., 2019] Sebastian Junges, Erika Ábrahám, Chris-
tian Hensel, Nils Jansen, Joost-Pieter Katoen, Tim Quat-
mann, and Matthias Volk. Parameter synthesis for markov
models. CoRR, abs/1903.07993, 2019.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5538

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artif. Intell.,
101(1):99–134, 1998.

[Kearns et al., 2000] Michael J Kearns, Yishay Mansour, and
Andrew Y Ng. Approximate planning in large POMDPs
via reusable trajectories. In NIPS, pages 1001–1007, 2000.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint 1412.6980, 2014.

[Kwiatkowska et al., 2011] Marta Kwiatkowska, Gethin Nor-
man, and David Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[Littman et al., 2017] Michael L. Littman, Ufuk Topcu, Jie
Fu, Charles Isbell, Min Wen, and James MacGlashan.
Environment-independent task specifications via GLTL.
arXiv preprint 1704.04341, 2017.

[Madani et al., 1999] Omid Madani, Steve Hanks, and Anne
Condon. On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision
problems. In AAAI, pages 541–548. AAAI Press, 1999.

[Meuleau et al., 1999] Nicolas Meuleau, Leonid Peshkin,
Kee-Eung Kim, and Leslie Pack Kaelbling. Learning finite-
state controllers for partially observable environments. In
UAI, pages 427–436. Morgan Kaufmann, 1999.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[Norman et al., 2017] Gethin Norman, David Parker, and
Xueyi Zou. Verification and control of partially observable
probabilistic systems. Real-Time Systems, 53(3):354–402,
2017.

[Papadimitriou and Tsitsiklis, 1987] Christos H. Papadim-
itriou and John N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research,
12(3):441–450, 1987.

[Parisotto and Salakhutdinov, 2018] Emilio Parisotto and
Ruslan Salakhutdinov. Neural map: Structured memory
for deep reinforcement learning. In ICLR. OpenReview.net,
2018.

[Pascanu et al., 2013] Razvan Pascanu, Çaglar Gülçehre,
Kyunghyun Cho, and Yoshua Bengio. How to construct
deep recurrent neural networks. CoRR, abs/1312.6026,
2013.

[Pineau et al., 2003] Joelle Pineau, Geoff Gordon, and Sebas-
tian Thrun. Point-based value iteration: An anytime algo-
rithm for POMDPs. In IJCAI, pages 1025–1032. Morgan
Kaufmann, 2003.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57. IEEE Computer Society, 1977.

[Pritzel et al., 2017] Alexander Pritzel, Benigno Uria, Sri-
ram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals,

Demis Hassabis, Daan Wierstra, and Charles Blundell. Neu-
ral episodic control. In ICML, volume 70 of Proc. of Ma-
chine Learning Research, pages 2827–2836. PMLR, 2017.

[Santoro et al., 2018] Adam Santoro, Ryan Faulkner, David
Raposo, Jack W. Rae, Mike Chrzanowski, Theophane We-
ber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and
Timothy P. Lillicrap. Relational recurrent neural networks.
In NeurIPS, pages 7310–7321, 2018.

[Silver and Veness, 2010] David Silver and Joel Veness.
Monte-carlo planning in large POMDPs. In NIPS, pages
2164–2172, 2010.

[Sutton et al., 2000] Richard S. Sutton, David A. McAllester,
Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approxi-
mation. In NIPS, pages 1057–1063, 2000.

[Vlassis et al., 2012] Nikos Vlassis, Michael L. Littman, and
David Barber. On the computational complexity of stochas-
tic controller optimization in POMDPs. ACM Trans. on
Computation Theory, 4(4):12:1–12:8, 2012.

[Walraven and Spaan, 2017] Erwin Walraven and Matthijs
Spaan. Accelerated vector pruning for optimal POMDP
solvers. In AAAI, pages 3672–3678. AAAI Press, 2017.

[Wang et al., 2018] Yue Wang, Swarat Chaudhuri, and Ly-
dia E. Kavraki. Bounded policy synthesis for pomdps with
safe-reachability objectives. In AAMAS, pages 238–246.
Int’l Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM, 2018.

[Wierstra et al., 2007] Daan Wierstra, Alexander Förster, Jan
Peters, and Jürgen Schmidhuber. Solving deep memory
POMDPs with recurrent policy gradients. In ICANN, pages
697–706. Springer, 2007.

[Wimmer et al., 2014] Ralf Wimmer, Nils Jansen, Erika
Ábrahám, Joost-Pieter Katoen, and Bernd Becker. Minimal
counterexamples for linear-time probabilistic verification.
Theoretical Computer Science, 549:61–100, 2014.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5539

