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Abstract
This paper revisits probabilistic, model–based goal
recognition to study the implications of the use of
nominal models to estimate the posterior proba-
bility distribution over a finite set of hypothetical
goals. Existing model–based approaches rely on
expert knowledge to produce symbolic descriptions
of the dynamic constraints domain objects are sub-
ject to, and these are assumed to produce correct
predictions. We abandon this assumption to con-
sider the use of nominal models that are learnt from
observations on transitions of systems with un-
known dynamics. Leveraging existing work on the
acquisition of domain models via Deep Learning
for Hybrid Planning we adapt and evaluate existing
goal recognition approaches to analyse how predic-
tion errors, inherent to system dynamics identifica-
tion and model learning techniques have an impact
over recognition error rates.

1 Introduction
Goal recognition consists of identifying the correct goal of
an observed agent, given a model of the environment dy-
namics in which the agent operates and a sample of ob-
servations about its behaviour [Sukthankar et al., 2014].
Most approaches to goal recognition rely on carefully en-
gineered domain models, often in the form of a plan li-
brary [Sukthankar et al., 2014, Chapter 1] or over a domain
theory and a given set of hypothetical goals [Ramı́rez and
Geffner, 2009; Ramı́rez and Geffner, 2010]. While much ef-
fort focuses on improving the recognition algorithms them-
selves [Martin et al., 2015; Pereira et al., 2017], recent re-
search has looked critically into the availability and qual-
ity of the domain models [Pereira and Meneguzzi, 2018;
Amado et al., 2018] used to drive such algorithms. In this
paper, we explore how existing and suitable reformulations
of well known approaches to goal recognition perform over
domain models which have been obtained with the applica-
tion of machine learning techniques to datasets consisting of
transitions between states annotated with actions. For this,

∗This work was developed during an internship at The University
of Melbourne under the supervision of Dr. Miquel Ramı́rez.

we leverage recent results on Planning [Say et al., 2017;
Wu et al., 2017] that combine Deep Learning [Goodfellow
et al., 2016] to obtain a nominal model [Ljung, 1998], and
apply gradient–based optimisation [Calafiore and El-Ghaoui,
2014] algorithms using such models to compute plans.

This paper makes three main contributions. First, we pro-
pose a general framework for goal and plan recognition based
on a computational model, Finite–Horizon Optimal Control
(FHOC) problems [Bertsekas, 2017], that support continuous
action spaces and uses arbitrary cost functions to define plans,
offering more expressiveness that previous models [Baker et
al., 2009; Ramı́rez and Geffner, 2010] yet remaining compu-
tationally feasible when optimal solutions are approximated.
The two other contributions we make, discussed in Sec-
tions 4.1 and 4.2, reformulate two well–known recent ap-
proaches to goal recognition [Ramı́rez and Geffner, 2010;
Vered et al., 2016; Kaminka et al., 2018] that seek alternative
ways to enforce constraints on the transition function, which
in our setting, is not directly accessible and represented with
a “black box” neural network.

We evaluate the proposed recognition algorithms empir-
ically in Section 5, using three benchmark domains based
on the constrained Linear–Quadratic Regulator (LQR) prob-
lem [Bemporad et al., 2002], with increasing dimensions of
state and action spaces. We build synthetic datasets for these
domains and show that the first of the proposed algorithms
performs quite well and infers the correct hidden goals when
on the actual transition function of the domain, gracefully de-
grading over nominal models, due to the sometimes poor gen-
eralisation ability of the neural networks obtained.

2 Background
We now introduce the Finite–Horizon Optimal Control
(FHOC) problems, whose solutions we use to model the
range of possible agent behaviour, and discuss how we use
Deep Neural Networks (DNNs) to approximate the dynamics
constraints in FHOCs.

2.1 Finite Horizon Optimal Control Problems
We follow for the most part Bertsekas’ [2017] presentation of
FHOC problems, incorporating some elements typically used
by the literature on Control [Borrelli et al., 2017] and Plan-
ning [Bonet and Geffner, 2013] to account for constraints and
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goals1. Transitions between states are described by a station-
ary, discrete–time dynamical system

xk+1 = f(xk, uk, wk) (1)

where for each time point k ∈ [0, N ], xk is the state, uk is the
control input and wk is a random variable with a probability
distribution that does not depend on past wj , j < k. For now,
we make no further assumptions on the specific way states,
inputs and perturbations interact. States xk, controls uk, and
disturbances wk are required to be part of spaces S ⊂ Rd,
C ⊂ Rp, and D ⊆ Rd+p. Controls uk are further required
to belong to the set U(xk) ⊂ C, for each state xk and time
step k. We note that the latter accounts for both the notion of
preconditions and bounds on inputs. Observed agents seek to
transform initial states x0 into states xN with specific proper-
ties. These properties are given as logical formulas over the
components of states xk, and the set of states SG ⊆ S are
those where the desired property G, or goal, holds. The pref-
erences of observed agents to pursue specific trajectories are
accounted for with cost functions of the form

J(x0) = E{g(xN ) +

N−1∑
k=0

g(xk, uk, wk)} (2)

g(xN ) is the terminal cost, and g(xk, uk, wk) is the stage
cost. We define Finite Horizon Optimal Control problems as
an optimisation problem whose solutions describe the range
of possible optimal behaviours of observed agents

min
π∈Π

{
Jπ
(
x0

)}
(3)

subject to

uk = µk(xk) (4)
xk+1 = f(xk, uk, wk) (5)
uk ∈ U(xk), xk ∈ S, xN ∈ SG (6)

where I, the initial state, is an arbitrary element of S. Solu-
tions to Equations 3–6 are policies π

π = {µ0, µ1, . . . , µk, . . . , µN−1}

and µk is a function mapping states xk into controls uk ∈ C.
When π is such that µi = µj for every i, j ∈ [0, N ], we say π
is stationary. We note that terminal constraints xN ∈ SG can
be dropped, replacing them by terms in g(xk, uk, wk) that
encode some measure of distance to SG. Costs g(xN ) are
typically set to 0 when terminal constraints are enforced, yet
this is a convention, and establishing preferences for specific
states in SG over others is perfectly possible.

2.2 DNNs as Nominal Models
Learning the dynamics or the transition between states of a
domain model from data can be formalised as the problem of
finding the parameters θ for a function

f̂(xk, uk; θ)

that minimise a given loss function L(D, θ) over a dataset D
= { (x, u, y) | y = f(x, u, w), y ∈ S }. In the experiments

1Referred to as target regions in control.

reported on in this paper, we chose to use the procedure and
neural architecture reported by Say et al. [2017] to acquire
f̂ , a DNN using Rectified Linear Units (ReLUs) [Nair and
Hinton, 2010] as the activation function, given by h(x) =
max(x, 0). The DNN is densely connected, as recommended
by [Say et al., 2017], so for a DNN consisting of L layers, θ
= (W, b), where W ∈ Rd×d×L and b ∈ R1×L. We use the
loss function proposed by Say et al. [2017]

|D|∑
j

||ŷj − yj ||+ λ
L∑
l

||Wl||2

where ŷj = f̂(xj , uj ; θ) and λ is a Tikhonov L2-
regularisation hyper-parameter [Goodfellow et al., 2016]. In
the context of optimisation for Machine Learning, using this
regularisation technique induces the optimisation algorithm
to overestimate the variance of the dataset, so weights asso-
ciated with unimportant directions of the gradient of L de-
cay away during training. As also noted by Goodfellow et
al. [2016], RELU networks represent very succinctly a num-
ber of linear approximation surfaces that is exponential in the
number of layers L [Montufar et al., 2014]. This strongly
suggests that RELU networks can displace Gaussian process
estimation [Rasmussen and Williams, 2006] as a good initial
choice to approximate complex non-linear stationary random
processes, such as those in Equation 1, with the further advan-
tage that, as demonstrated by [Yamaguchi and Atkeson, 2016;
Say et al., 2017], DNNs can be directly used in Equation 5, so
existing optimisation algorithms can be used off–the–shelf.

3 Goal Recognition over Nominal Models
Most existing approaches to goal and plan recognition assume
that the domain model is both complete and correct, relying
on what we call actual models. Such assumptions are widely
considered by the literature on Control and Robotics [Mitro-
vic et al., 2010] to be too strong to hold in real-world, practi-
cal applications, where uncertainty on key model parameters
is unknown, or these change over time due to wear and tear.
We adopt this stance to define the task of goal and plan recog-
nition over nominal models, that are estimated or recovered
from past observed state transitions. These measurements of
the underlying system dynamics can be obtained from ob-
servations on the behaviour of other agents, random excita-
tion, or the simulation of plans and control trajectories de-
rived from idealised models. We formally define the task of
goal recognition over FHOCs and nominal models as follows.

Definition 1 (Goal Recognition Problem). A goal recog-
nition problem over nominal models is given by an esti-
mated transition function f̂(xk, uk, wk), s.t. f̂(xk, uk, wk)
= x̂k+1, where xk is a state, uk a control input, and wk
is a random variable; a cost function J; an initial state I
(i.e., an arbitrary element of S); a set of hypothetical goals
G; the hidden goal G∗ ∈ G; a sequence of observations
O = 〈o1, o2, ..., om〉; and a horizon H .

We further define the sequence of observations O to be a par-
tially observed trajectory of states x ∈ S induced by a policy
π that minimises J . In general, a finite but indeterminate
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number of intermediate states may be missing between any
two observations oi, oi+1 ∈ O. We draw a distinction be-
tween online [Baker et al., 2009; Vered et al., 2016] and of-
fline goal recognition, in which the former is a sequence of m
Goal Recognition problems where O is obtained incremen-
tally, while in the later O is available up front. We borrow the
term judgement point from [Baker et al., 2009] to refer to the
act of solving each of the m goal recognition problems that
follow from the arrival of each new observation.

Informally, solving a goal recognition problem requires to
select a candidate goal Ĝ ∈ G such that Ĝ = G∗, on the basis
of how well Ĝ predicts or explains the observation sequence
O [Baker et al., 2009; Ramı́rez and Geffner, 2010]. Typically,
this cannot be done exactly, but it is possible to produce a
probability distribution over the goals G ∈ G and O, where
the goals that best explain O are the most probable ones.

3.1 Probabilistic Goal Recognition
We follow Ramirez and Geffner [2010] (RG10) and adopt the
modern probabilistic interpretation of Dennet’s principle of
rationality [1983], the so–called Bayesian Theory of Mind, as
introduced by a series of ground-breaking cognitive science
studies by Baker et al. [2009][2014, Chapter 7]. RG10 set the
probability distribution over G and O introduced above to be
the Bayesian posterior conditional probability

P (G|O) = αP (O|G)P (G) (7)

where P (G) is the probability assigned a priori to goal G, α
is a normalisation factor inversely proportional to the proba-
bility of O, and P (O|G) is

P (O|G) =
∑
π

P (O|π)P (π|G) (8)

P (O|π) is the probability of obtaining O by executing a pol-
icy π and P (π|G) is the probability of an agent pursuingG to
select π. In the next section, we discuss two well–known ex-
isting approaches to approximate Equation 8, both reasoning
over counterfactuals [Pearl, 2009] in different ways. These
approaches frame in a probabilistic setting the so–called but-
for test of causality [Halpern, 2016]. That is, if a candidate
goal G is to be considered the cause for observations O to
happen, evidence of G being necessary for O to happen is
required. The changes to existing approaches are motivated
by us wanting to retain the ability to compute counterfactual
trajectories when transition functions cannot be directly ma-
nipulated.

4 Adapting Goal Recognition to Nominal
Models

4.1 Goal Recognition as Goal Mirroring
Mirroring [Vered et al., 2016] is an online goal recognition
approach that works on both continuous and discrete domain
models. For each of the candidate goals in G, Halpern’s but-
for test is implemented by comparing two plans: an ideal plan
and the observation-matching plan (O-plan). Ideal plans are
optimal ones computed for every pairing of I and candidate

goals G, which are pre-computed before the recognition pro-
cess starts. The O-plan is also computed for every pair I,
G, and it is required to visit every state in O. O-plans are
made of a prefix, that results from concatenating the O-plans
computed for previous judgement points [Baker et al., 2009],
and a suffix, a plan computed from the last observed state to
each candidate goal G. The but-for test is implemented by
making of use of Theorem 7 in [Ramı́rez and Geffner, 2009],
that amounts to consider a candidate G to be necessary for
O to happen, if the cost of optimal plans and those consis-
tent with the observation O are the same. Vered et al. [2016]
show that O-plans are indeed consistent with O so Ramirez
and Geffner’s results apply. The test was later cast in a proba-
bilistic framework by Kaminka et al. [2018], with Equation 8
becoming

P (O|G) = [1 + ε(πO,G, πG)]−1 (9)

ε(πO,G, πG) above is the matching error of πG, the ideal plan
for G w.r.t. πO,G, the O-plan for the observations. Under the
assumption that w is a random variable w ∼ N (0, σ) with
values given by a Gaussian distribution with mean 0 and stan-
dard deviation σ, ε can be used to account for the influence of
w as long as σ remains an order of magnitude smaller than the
values given by f(x, u, 0). Kaminka et al. [2018] define ε as
the sum of the squared errors between states in the trajectory
of πG, and those found along the trajectory of πO,G. Under
the second assumption that the selected ideal plans for a goal
G are the most likely too, Kaminka et al. ε is an unbiased
estimator for the likelihood of πO,G.

Having established the suitability of Kaminka et al. means
to bring about the but–for test to FHOCs, we now describe
how we depart from their method to obtain O-plans πO,G.
In this paper, we construct πO,G by calling a planner once
for each new observation o added to O and candidate goal
G, rather than just once per candidate goal G as Kaminka et
al. proposed. Doing so allows us to “enforce” consistency
with observations O, since the couplings between states, in-
puts and perturbation in f̂(x, u, w) are no longer available
so we can influence them with additional constraints, but are
rather “hidden” in the network parameters. As the first obser-
vation o1 is obtained, we call a planner to solve Equations 3–6
setting the initial state x0 to I and xN to xo1 , the state em-
bedded in o1. The resulting trajectory m1

O is then used to ini-
tialise π−O,G = 〈m1〉. We then invoke the planner again, this
time setting x0 = xo1 and some suitably defined constraints
s.t. xN ∈ SG for every candidate goal G. The resulting tra-
jectories m1

G are used to define the O-plans πO,G = π−O,G ⊕
m1
G, which are compared with the pre-computed ideal plans

πG to evaluate P (O|G) as per Equation 9. As further obser-
vations oi, i > 1, are received, we obtain trajectories mi

O as
above but setting x0 = xoi−1

and xN to xoi , which are used
to update π−O,G setting π−O,G = π−O,G ⊕mi

O. Trajectoriesmi
G

are obtained by setting initial states to xoi , and concatenated
to the updated π−O,G to obtain the O-plan for the i-th judge-
ment point. We use as a baseline Vered et al.’s [2016] original
mirroring algorithm, which requires |G| calls to a planner per
observation, and |G| + (|G||O|) calls overall. The approach
above requires |G|+ 1 calls to a planner per observation, and
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|G| + |O| + (|G||O|) calls overall. This is a slight overhead
which, on the basis of the results in Section 5, seems to be
amortised enough by the accuracy and robustness of the new
method.

4.2 Goal Recognition Based on Cost Differences
We now present a novel goal recognition algorithm based on
cost differences, inspired by RG10’s probabilistic framework.
RG10 implement Halpern’s but-for test [2016] by determin-
ing whether plans exist that, while achieving G, either guar-
antee that O happens, or prevent it from happening, the later
being the counterfactual plan [Pearl, 2009]. When no such
plans exist, a proof of G (not) being sufficient cause for O is
obtained. Typically though, goals remain feasible, yet costs
of plans change, making G less likely to be the cause of O
whenever the cost of achieving G is lesser when O does not
take place. We retain this definition of the test, yet we do
not obtain such plans from the solution of a suitably mod-
ified version of f̂(x, u, w), as RG10 does, by manipulating
preconditions and effects. That is not possible in our setting,
since couplings between state variables, actions and pertur-
bation are not represented explicitly. Instead, we modify the
cost function J by introducing artificial potential fields [War-
ren, 1989] centered on each observation in O that increase or
decrease costs for valid trajectories.

Let Jπ(x0;G) be the cost functions for each of the hypo-
thetical goals G ∈ G. For a given observation sequence O =
(o1, . . ., om), we define cost functions

J+
π (x0;G,O) =

g(xN )+

N−1∑
k=0

(
g(xk, π(xk)) +

m∑
j=1

h(xk, oj)

)
(10)

J−π (x0;G,O) =

g(xN )+

N−1∑
k=0

(
g(xk, π(xk))−

m∑
j=1

h(xk, oj)

)
(11)

h(x, o) is a potential field function

h(x, o) = 1− exp{−γ `(x− o)} (12)

where the exponent is given as some suitably defined function
over the difference of vectors x and o. We note that both x
and o ∈ Rd. For this paper, we have chosen the sum smooth
abs functions

`(u) =
d∑
i

√
u2
i + p2 + p

where ui is the i-th component of the vector x− o and p is a
parameter we set to 1. These functions have been reported by
Tassa et al. [2012] to avoid numeric issues in trajectory opti-
misation over long horizons. The potential is used in Equa-
tion 10 to increase, w.r.t Jπ(x0;G), the cost of those trajec-
tories that stay away from O. Conversely, in Equation 11 it
reduces the cost for trajectories that avoid O. Let T+ and T−

be sets of r best trajectories t+i , t−i for either cost function,
we introduce

∆(O,G) =
1

r

r∑
i

Jt−i
(x0;G)− Jt+i (x0;G) (13)

where Jt−i (x0;G) (resp. Jt+i (x0;G) is the result of evaluat-
ing the original cost function Jπ(x0;G) setting π to be the
deterministic policy that follows from trajectories t+i and t−i .
We define the likelihood of O given G as RG10 do

P (O|G) = [1 + exp{−β ∆(O,G)}]−1 (14)

with the proviso that β needs to be adjusted so as to be the
inverse of the order of magnitude of ∆(G,O). In comparison
to the previous approach, our formulation of goal recognition
over cost differences requires 2|G| calls per observation, and
2|G||O| calls overall. While all methods require a number
of calls linear on |G||O|, evaluating Equation 14 tends to be
more expensive, as J+ and J− contain several non–linear
terms and their derivatives are also costlier to compute. This
is relevant as most if not all of the optimisation algorithms
that we can use to solve Equation 3–6 are based on gradient–
based techniques [Calafiore and El-Ghaoui, 2014].

5 Experiments and Evaluation
We now present the empirical evaluations we carried out of
the algorithms proposed in the previous section. Sections 5.1
and 5.2 introduce the benchmark domains we used and de-
scribe how we generated the datasets for learning the tran-
sition function and the goal recognition tasks. Sections 5.3
and 5.4 report the quality of nominal models obtained and
the performance of our goal recognition algorithms over both
nominal and actual models.

5.1 Domains
For experiments and evaluation, we use three benchmark do-
mains based on the constrained LQR problem [Bemporad
et al., 2002], a general and well–understood class of opti-
mal control problems with countless practical applications.
Specifically, we use a discrete-time deterministic, linear dy-
namical system:

xk+1 = Axk +Buk (15)

and trajectories must minimise the quadratic cost function

J = xTNQx
T
N +

N−1∑
k=0

(
xkQx

T
k + ukRu

T
k

)
(16)

where Q ∈ Rd×d and R ∈ Rp×p. All matrices are set to I
of appropriate dimensions, but R which is set to 10−2I . Ac-
tions (inputs) uk are subject to simple “box” constraints of
the form lb(u)≤ uk ≤ ub(u). We note that the unconstrained
LQR problem has an analytical solution [Bertsekas, 2017] as
the cost function is globally convex and dynamics are linear,
this simplifies the analysis of the behaviour of optimisation
algorithms for training DNNs and computing trajectories. We
consider two types of tasks. In the first domain, which we
call 1D–Navigation, states xk ∈ R2 represent the position
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and velocity of a particle, control inputs uk ∈ R represent in-
stant acceleration. Goal states require reaching a given posi-
tion, yet leave terminal velocities unconstrained. The second
domain, 2D Navigation, has higher dimensionality as states
xk ∈ R4n represent position and velocities of n vehicles on
a plane, and control inputs uk ∈ R2n represent instant accel-
erations along the x and y axis. As in the previous domain,
goal states only require reaching specific positions.

5.2 Learning and Recognition Datasets
To build the datasets and learn the system dynamics for the
domains discussed previously, we generated 500 different
navigation tasks i.e. pairs of states x0 and xG. We set the
horizon H = 100, resulting in three different datasets with
50, 000 transitions each. To generate the trajectories for each
of the tasks, we first encoded the FHOCs for each of the do-
mains using the RDDL domain description language [San-
ner, 2011]. This enabled us to use the suite of hybrid plan-
ners recently proposed by Bueno et al. [2019], which we re-
fer to as TF-PLAN. These planners rely on state–of–the–art
gradient–based optimisation techniques that obtain the gradi-
ents directly from the symbolic RDDL encoding, and have
been shown to offer good performance on linear and non–
linear dynamics with complex non–linear cost functions.

We use a benchmark consisting of 30 problems for 1D–
Navigation and 30 each for 2D–Navigation setting n to 1
and 2. We ensure the initial states and hypothetical goals are
significantly different from the ones used to obtain the nom-
inal models. Each task considers at most 5 goals hypotheses
G, and observations O comprise either 5 or 10 states, i.e., 5%
and 10% of trajectories when H = 100. To generate O, we
used TF-PLAN to find a best trajectory from each initial state
I to the hidden goal G∗ ∈ G. All states in the trajectories
found have the same probability of appearing in any given O.

5.3 Learning Results
We use the approach of Say et al. [2017] to learn models
of the system dynamics (transition function) of our domains
from data. For the training stage, we configured the DNN pro-
posed by [Say et al., 2017] to use the same hyper-parameters.
Namely, 1 hidden layer, a batch size of 128 transitions, we set
the learning rate to 0.01 and dropout rate to 0.1. Training was
stopped for all domains after 300 epochs. We used exactly
the same DNN configuration to learn the system dynamics
for all of our domains. The Mean Squared Error (MSE) for
the best DNN out of 10 trials, using 300 epochs for train-
ing, were 4.5 · 10−5 for 1D-Navigation, 1.7 · 10−4 for 2D-
Navigation with n = 1, and 9.6 · 10−6 for the same domain
but n = 2. From these errors we conclude that using off–
the–shelf the learning approach of Say et al. [2017] results in
nominal models of very high quality, as judged by the loss
function they propose.

5.4 Goal Recognition Results
We now show the experimental results of our recognition ap-
proaches over both actual and nominal models. For recognis-
ing goals over actual models we used the implementation of
the TF-PLAN planner used in [Bueno et al., 2019] that takes
as input a domain model formalised in RDDL. For nominal

ONLINE OFFLINE 1ST OBSERVATION

Approach M % O N Top-2 TPR FPR N Top-2 TPR FPR Top-2 TPR FPR

ηMIRRORING A 5 450 0.87 0.77 0.05 90 0.97 0.93 0.01 0.67 0.44 0.12
∆(O,G) A 5 450 0.49 0.24 0.16 90 0.49 0.30 0.15 0.49 0.26 0.16
ηMIRRORING A 10 900 0.90 0.78 0.05 90 0.98 0.96 0.01 0.64 0.32 0.15
∆(O,G) A 10 900 0.45 0.26 0.16 90 0.44 0.28 0.15 0.47 0.28 0.15
ηMIRRORING N 5 450 0.66 0.46 0.12 90 0.83 0.67 0.07 0.44 0.24 0.17
∆(O,G) N 5 450 0.45 0.22 0.17 90 0.43 0.26 0.16 0.51 0.18 0.18
ηMIRRORING N 10 900 0.71 0.49 0.11 90 0.87 0.72 0.06 0.41 0.26 0.16
∆(O,G) N 10 900 0.45 0.26 0.16 90 0.42 0.21 0.17 0.52 0.32 0.15

Table 1: Experimental results of our approaches over both actual and
nominal models. M represents the model type, % O is observation
level, and N is the number of observed states. Note that the average
number of goal hypothesis |G| in the datasets is 5.

models we used the implementation of TF-PLAN in [Wu et
al., 2017] that takes as input a domain model represented as
a DNN. For both planners we set the learning rate to 0.01,
batch size equals to 128, and the number of epochs to 300.

To evaluate our recognition approaches, we use metrics
already used in the literature in goal recognition [Pereira et
al., 2017; Pereira and Meneguzzi, 2018]. These are the aver-
age True Positive Rate (TPR) and average False Positive Rate
(FPR). TPR is given by the number of true positives (1 when
G∗ maximises P (G|O), 0 otherwise) over the sum of true
positives and false positives (the number of candidate goals
maximising P (G|O)). A higher TPR indicates better perfor-
mance, as it measures how often the true goal is calculated re-
liably. FPR is the average number of candidate goalsG 6= G∗

which maximise P (G|O), measuring how often goals other
than the true one are found to be as good as or better expla-
nation for O than G∗. We also use the Top-k metric, typically
used in machine learning to evaluate classifiers, setting k to 2,
to measure the frequency in which G∗ was amongst the top k
candidate goals as ranked by P (G|O), and complements the
two previous measures.

Table 1 shows the performance of the algorithms described
in Section 4.1 (ηMIRRORING) and in Section 4.2 (∆(O,G)).
We analyse performance in three different settings, from left
to right: (1) online goal recognition, considering the response
of the goal recognition algorithm for each judgement point
corresponding to an observation in O; (2) offline goal recog-
nition, when we consider only the last judgement point (i.e.,
all observed states in O); and (3) considering only the first
judgement point (i.e., o1 ∈ O). With respect to recogni-
tion time, the average time per goal recognition problem for
ηMIRRORINGover the datasets is ≈ 1,100 seconds, whereas
for ∆(O,G) is ≈ 1,600 seconds.

Under the parameters used for the planners,
ηMIRRORING clearly dominates ∆(O,G) in all set-
tings by a wide margin but when considering the first
observation over nominal models. Seeking an explanation
for the poor performance of ∆(O,G) we dug deeper into
the experimental data 2 to find how often ηMIRRORING was
superior to ∆(O,G) and vice versa. Interestingly, we found
that ηMIRRORING is superior over ∆(O,G), according

2Results and Jupyter notebooks are available in
https://github.com/authors-ijcai19-3244/ijcai19-paper3244-results
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to the Top–2 measure, in 37% of the judgement points
considered, ∆(O,G) is superior in 8.9% of the cases and
both approaches are in agreement and correct in 42.1% of
cases. This suggested to us that ∆(O,G) could be sensitive
to one of the parameters used to calculate trajectories. Our
ablation study detected that the number of epochs is the key
parameter, as it directly affects how far from optimal are the
trajectories found. We also observed that varying the number
of epochs had counter-intuitive results, as the approximations
to the optimal values of J+ and J− do not get better or
worse in a linear fashion. Instead, we often observed costs
improve (or worsen) for either cost functions at different
rates, sometimes changing the sign of ∆(O,G). We ran the
∆(O,G) recognising over a limited number of instances,
setting the number of epochs to 3, 000 and we observed a
significant improvement which brought it to be in agreement
with ηMIRRORING if not sometimes superior. Of course,
this entailed an increase of run times by a roughly an order
of magnitude. This leads us to conclude that the relatively
good results of ∆(O,G) in Table 1 are due to the fact that
J+ and J− are closer to the convex ideal in Equation 16,
as they include less non–linear terms h(x, o), so TF-PLAN
is less likely to get trapped in a local minima with adverse
results for recognition accuracy early on.

6 Related Work
Most model–based approaches to goal and plan recognition
rely on complete and accurate models of actions, transitions
or other constraints. Pereira and Meneguzzi [2018] tackles
the issue of model uncertainty, and enhances landmark–based
heuristics to work with Weber and Bryce’s notion of incom-
plete models [2011], whereby uncertainty manifests in the
preconditions and effects of the discrete planning operators.
A transition function is still provided and fully accessible to
the planner, yet in an incomplete form and possibly being in-
correct, and this is indeed shown to have an impact on the
accuracy of model–based goal recognition approaches.

Recent work such as that of Say et al. [2017] and Sanchez-
Gonzalez et al. [2018] use DNNs [Goodfellow et al., 2016] to
directly acquire models of dynamic constraints. These learnt
constraints can then be readily used to formulate FHOC prob-
lems on top of them, which can be solved with a variety of dy-
namic programming or optimisation algorithms [Yamaguchi
and Atkeson, 2016; Say et al., 2017; Wu et al., 2017; Bueno
et al., 2019]. Compared to previous approaches combining
dynamic programming and system identification [Mitrovic et
al., 2010] based on Gaussian Process estimation [Rasmussen
and Williams, 2006], DNNs have gradients which may be
more straightforward to use for optimisation, yet show very
quick rates of growth when it comes to their size.

The FHOC model we define in Section 2.1 is a general-
ization [Bertsekas, 2017] of the Markov Decision Processes
(MDPs) used in seminal work on model–based goal and plan
recognition [Baker et al., 2009]. As noted in Section 3, we
too adopt Bayesian probabilities as the language to express
the degree of certainty on causal relationships between goals
G and observations O. Our work separates from theirs in
three respects. First, Baker et al. [2009] MDPs are defined

over discrete action spaces, and we use continuous ones. Sec-
ond, they assume observationsO to be prefixes of trajectories,
while we allow intermediate states to be missing. Finally, we
explicitly perform a check of sufficiency to determine causal
relations between goals and observations [Halpern, 2016], by
computing counterfactual trajectories from models. These we
use to derive probability measures of certainty of causal rela-
tion, rather than requiring explicit distributions relating goals
and observations as Baker et al. [2009] do.

7 Discussion
Model–based goal and plan recognition is a real–word, non–
trivial and challenging application of causal reasoning, and
this paper casts past approaches to model–based goal recog-
nition as different implementations of Halpern’s but–for test
of sufficient causality. We also show that machine learning
systems can be used to generate predictions which are good
enough to enable the generation of meaningful counterfactu-
als and by extension “true” causal reasoning, in contrast with
recent statements to the contrary [Pearl, 2019].

We look forward to further investigating three questions
this paper leaves open. First, to what extent the proposed al-
gorithms can handle increasing variance for w. Informal tests
on Linear–Quadratic Gaussian [Bertsekas, 2017] problems
derived from the ones presented in this paper show promise
but we have yet to test these observations for significance.
Second, we need to determine whether it is possible to mod-
ify the loss function used for training the nominal models in
a way that takes into account the accumulated error along
trajectories, rather than just the errors in predicting the next
state. Last, as discussed in Section 5.4, cost based goal recog-
nition is very sensitive of planners converging to an unhelpful
local minimum, which seems to us an inherent characteris-
tic of stochastic optimisation algorithms. We look forward
to evaluating our recognition algorithms over planners rely-
ing on Differential Dynamic Programming (DDP) [Mitrovic
et al., 2010; Yamaguchi and Atkeson, 2016], which may con-
verge faster to better local minima of the cost function.

We expect this paper to expand the applicability of model–
based goal and plan recognition by replacing carefully engi-
neered models for carefully curated datasets. This work is
also an example of how to exploit latent synergies between
Planning, Control, Optimisation and Machine Learning, as
we mix together algorithms, techniques and concepts to ad-
dress in novel ways a high–level, transversal problem relevant
to many fields in Artificial Intelligence.
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