
Generalized Potential Heuristics for Classical Planning

Guillem Francès , Augusto B. Corrêa , Cedric Geissmann and Florian Pommerening
University of Basel, Basel, Switzerland

{guillem.frances,augusto.blaascorrea,cedric.geissmann,florian.pommerening}@unibas.ch

Abstract
Generalized planning aims at computing solutions
that work for all instances of the same domain. In
this paper, we show that several interesting plan-
ning domains possess compact generalized heuris-
tics that can guide a greedy search in guaranteed
polynomial time to the goal, and which work for
any instance of the domain. These heuristics are
weighted sums of state features that capture the
number of objects satisfying a certain first-order
logic property in any given state. These features
have a meaningful interpretation and generalize
naturally to the whole domain. Additionally, we
present an approach based on mixed integer lin-
ear programming to compute such heuristics auto-
matically from the observation of small training in-
stances. We develop two variations of the approach
that progressively refine the heuristic as new states
are encountered. We illustrate the approach em-
pirically on a number of standard domains, where
we show that the generated heuristics will correctly
generalize to all possible instances.

1 Introduction
Domain-independent planners scale up nowadays to prob-
lems with very large state spaces, but the solutions they
compute typically work only on a single problem. Gener-
alized planning, in contrast, aims at computing more gen-
eral solutions that work for potentially infinite classes of
problems with similar underlying structure [Levesque, 2005;
Srivastava et al., 2008; Bonet et al., 2009; Hu and De Gia-
como, 2011]. Once a generalized solution is found, instan-
tiating it for a concrete problem of the class usually requires
little effort. A possible generalized solution for the problem
of clearing a particular block b in Blocksworld, for instance,
would somehow represent the idea that blocks above b need
to be picked up and put away repeatedly until b is clear.

Recently, Bonet et al. [2019] have shown how to learn an
abstraction over a first-order logical language from sample in-
stances, and how to use a fully-observable non-deterministic
planner to obtain a generalized policy from that abstraction
[Bonet et al., 2017]. Building on their work, we instead try
to find generalized heuristics that capture greedy strategies in

planning domains. For that, we use the same feature space
as Bonet et al. [2019], where features encode how many ob-
jects in a state of the problem satisfy some property, such as
“the number of blocks above block b”. These features are de-
fined in the first-order language of the domain description and
are meaningful and easily interpretable [Fox et al., 2017]. We
show that simple linear combinations of these features exist in
many domains which are descending and dead-end avoiding
heuristics as defined by Seipp et al. [2016]. Such heuristics
can be seen both as a strong measures of progress as defined
by Parmar [2002], and as a generalization of potential heuris-
tics [Pommerening et al., 2015], and can be used in a greedy
search to reach the goal in a polynomial number of steps. The
key difference with standard potential heuristics is that our
heuristics are instance-independent: once found, they can be
used in any instance of the domain.

We start by providing some background and formaliz-
ing generalized potential heuristics (Sections 2–3). In Sec-
tion 4 we demonstrate that generalized descending and dead-
end avoiding potential heuristics exist for many standard do-
mains. In Section 5 we show how to learn these heuristics au-
tomatically from small training instances using a mixed inte-
ger program (MIP). We present empirical results for a number
of domains in Section 6, and conclude by discussing related
work and the implications of this work in Sections 7 and 8.

2 Background
We start by introducing the formal basis and notation of plan-
ning tasks, generalized planning, and concept languages.

2.1 Classical Planning Formalism
We consider deterministic planning tasks that compactly rep-
resent a state space plus a first-order vocabulary with an in-
terpretation over states. The state space of a task is a tuple
〈S,L, T, sI , SG〉, where S is a set of states, L a set of labels,
T ⊆ S×L×S the transition relation, sI ∈ S the initial state,
and SG ⊆ S the set of goal states. It is deterministic: for a
state s and label l there is at most one transition 〈s, l, s′〉 ∈ T .

The first-order vocabulary of a task is a tuple Σ =
〈V ,F ,P〉, where V is a set of variables, F a set of function
symbols and P a set of predicate symbols. Each predicate
and function symbol has an arity in N+

0 . We assume w.l.o.g.
that P contains only unary and binary predicates, and F con-
tains only nullary functions, i.e., constants. Function symbols

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5554

with arity n > 0 can be compiled into (n + 1)-ary predicate
symbols and predicate symbols with arity n > 2 can be re-
placed by multiple binary predicates. Each state s ∈ S in the
planning task represents a first-order interpretation I(s) that
assigns a truth value to any formula in the language induced
by Σ. We write s |= ϕ if formula ϕ is true under I(s).

Classical planning tasks represented in PDDL [McDer-
mott, 2000] fit our definition by using the set of PDDL ob-
jects as constants and all possible sets of ground atoms as the
set of states. More expressive formalisms such as Functional
STRIPS [Geffner, 2000] also fit our definition after compiling
away function symbols.

The set of successors of state s consists of all states s′ such
that 〈s, l, s′〉 ∈ T for some label l. A path between states s0
and sn is a sequence of labels 〈l1, . . . , ln〉 such that there are
states s1, . . . , sn−1 with 〈si−1, li, si〉 ∈ T for 1 ≤ i ≤ n. A
plan is a path from the initial state sI to some goal state. A
state is called reachable if there is a path to it from sI , and it
is called solvable if there is a path from it to a goal state. A
state is alive if it is solvable, reachable and not a goal state.

2.2 Generalized Planning
Generalized planning is interested in finding solutions that
work for a whole class of planning tasks [Srivastava et al.,
2008]. We call a set of planning tasks all using the same set of
predicate symbols a generalized planning domain. The plan-
ning tasks in a domain can still have different sets of constants
and thus different state spaces. In PDDL, there is a syntactic
distinction between objects that are used in all tasks of a do-
main and those that are used in one task only. While both are
constants from a first-order logic point of view, we refer to
the former as PDDL-level constants to distinguish them.

In Blocksworld, for instance, all instances use predicates
on, clear, etc., but have different constants for the blocks be-
ing used. If Blocksworld was encoded with a constant repre-
senting the table, this constant would be a PDDL-level con-
stant, while the ones representing blocks would not.

For the challenge of finding a general solution to a domain
to be feasible, we assume that its instances share a common
underlying structure.

2.3 Concept Languages
Concept Languages or description logics are a family of
knowledge representation formalisms based on tractable sub-
sets of first-order logic [Baader et al., 2017]. They build on
the notions of concepts, classes of objects that share some
property, and roles, relations between these objects. Several
description languages have been studied in the literature, each
with different expressivity. We here use the standard language
SOI with equality role-value-maps.

Syntax. Formally, complex concepts and roles are defined
inductively from sets of given (application-dependent) prim-
itive concepts and roles, which are, respectively, unary and
binary first-order predicates. Any primitive concept is a con-
cept, and any primitive role is a role. The universal concept
> and the bottom concept ⊥ are also concepts. Let C and
C ′ be concepts, and R and R′ roles. The negation ¬C, the

union C t C ′, the intersection C u C ′, the existential re-
striction ∃R.C, the universal restriction ∀R.C, and the role-
value-map R = R′ are also concepts, and if a1, . . . an are
constants, the nominal {a1, . . . an} is a concept. The inverse
role R−1, the (non-reflexive) transitive closure role R+, and
the composition role R ◦R′ are also roles.

Semantics. The semantics of the above constructs are de-
fined relative to a given universe ∆. A model ·M maps each
constant to an element of ∆, each primitive concept to a sub-
set of ∆, and each primitive role to a subset of ∆ × ∆. The
definition ofM extends to complex concepts and roles:

>M = ∆, ⊥M = ∅,
(¬C)M = ∆ \ CM, {a1, . . . an}M = {aM1 , . . . aMn },

(C tC ′)M = CM ∪C ′M, (C uC ′)M = CM ∩C ′M,
(∃R.C)M = {a | ∃b : (a, b) ∈ RM ∧ b ∈ CM},
(∀R.C)M = {a | ∀b : (a, b) ∈ RM → b ∈ CM},

(R = R′)M = {a | ∀b : (a, b) ∈ RM ↔ (a, b) ∈ R′M},
(R−1)M = {(b, a) | (a, b) ∈ RM},

(R ◦R′)M = {(a, c) | ∃b : (a, b) ∈ RM ∧ (b, c) ∈ R′M},
(R+)M = {(a0, an) | ∃a1, . . . , an−1 :

(ai−1, ai) ∈ RM for all 1 ≤ i ≤ n}.

Complexity. We define the complexity K(X) of a concept
or role X as the size of its syntax tree, e.g., K(∃R.C) =
1 +K(R) +K(C). The complexity of > and ⊥ is 0, and that
of any primitive concept or role is 1.

2.4 Concept Languages in Planning Tasks
We limit ourselves to tasks whose goals are expressed as con-
junctions of ground atoms, and whose predicates have arity
at most 2. We take the unary predicates of the planning task
to be primitive concepts, and its binary predicates to be prim-
itive roles, in a universe that consists exactly of all constants
in the task, which we consider to denote themselves. As a
result, each state s of the planning task uniquely determines
a model M(s) for the concept language of the task where
CM(s) = {a | I(s) |= C(a)} for primitive concepts C, and
RM(s) = {(a, b) | I(s) |= R(a, b)} for primitive roles R.

To ensure that concepts can be interpreted in all instances
of a domain, we restrict nominal concepts to PDDL-level
constants, which are by definition common to all instances.
To support goal-oriented reasoning, we follow Martin and
Geffner [2004] and introduce goal concepts CG and goal
roles RG for every primitive concept C and role R that is
used in the goal formula of the task. The denotation of these
elements is fixed in all states s, and given by the atoms in the
goal formula.

In the Blocksworld encoding discussed above, the table
constant would give rise to a nominal concept {table}. The
universe ∆ would consist of all blocks plus the table. The
concept clear would then represent the set of all blocks that
are clear; the concept ∃on.{table}, all blocks that lie on the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5555

table, and the concept clearG, the set of all blocks b ∈ ∆ such
that clear(b) is part of the goal conjunction.

3 Generalized Potential Heuristics
Potential heuristics, weighted sums over conjunctive state
features, have enjoyed some recent success in classical plan-
ning [Pommerening et al., 2015; Seipp et al., 2015]. Here,
we generalize the idea to features mapping states to integers.
Definition 1. Let S be a set of states and F a set of features
f : S → Z. Let w : F → R be a weight function mapping
features to weights. The value of the potential heuristic with
features F and weights w on state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

Note that S can contain states from multiple planning tasks
and that a potential heuristic is well-defined on any state of
any task of a domain if all its features are. Following Bonet
et al. [2019], we use two types of features:
Definition 2. Let C and C ′ be concepts and R a role from
the concept language of a planning domain, and s a state of
some task in the domain. The value of the cardinality fea-
ture |C| in s is |CM(s)|. The value of the distance feature
dist(C,R,C ′) is min{n | ∃a0, . . . , an s.t. a0 ∈ CM(s), an ∈
C ′
M(s)

, and (ai−1, ai) ∈ RM(s) for 1 ≤ i ≤ n}. When
no such R-path exists between the denotations of concepts C
and C ′, we define the value of dist(C,R,C ′) to be zero.

For example, feature |∃carry.>| maps each state in Grip-
per to the number of carried balls. In the VisitAll domain,
dist(at-robot, connected, placeu¬visited) maps to the small-
est distance between the robot and an unvisited place.

Potential heuristics with concept-based features compactly
represent a heuristic function for the whole domain. How-
ever, not all such heuristics are useful. We now investigate a
useful subclass with strong theoretical guarantees.

3.1 Descending and Dead-End Avoiding Heuristics
Seipp et al. [2016] study descending and dead-end avoid-
ing heuristics. A heuristic function h is descending if every
alive state s has a successor s′ ∈ succ(s) with lower heuristic
value h(s′) < h(s), and it is dead-end avoiding if any suc-
cessor s′ ∈ succ(s) of an alive state s such that h(s′) < h(s)
is solvable. Descending, dead-end avoiding heuristics are rel-
evant because they guide standard greedy algorithms such as
hill-climbing or greedy best-first search to a goal state (if pos-
sible) or detect that the task is unsolvable (if not) without
backtracking. If the heuristic values are integers, the num-
ber of steps the algorithms take is bounded by the difference
between the heuristic value of the initial state and the small-
est heuristic value [Seipp et al., 2016]. In our case, heuristic
values can be real numbers but it is easy to see that the result
generalizes for steepest ascent hill-climbing with a slightly
stricter definition of descending heuristics: for our heuristics,
we require that every alive state s has a successor s′ with
h(s′) + 1 ≤ h(s). Steepest ascent hill-climbing improves the
heuristic value by at least 1 in each step and thus has the same
guarantee as with integer-valued heuristics.

The values of our features as defined above are always
upper-bounded by |∆|. Since heuristic values are linear com-
binations of such values and the weights are fixed for the
whole domain, all heuristic values are in O(|∆|). The dif-
ference between two heuristic values and thus the number of
steps a greedy algorithm takes are also limited by O(|∆|).
Thus, a potential heuristic using concept-based features that
is descending and dead-end avoiding on all instances of a do-
main can be used to solve every instance in polynomial time.

3.2 Limitations
While there are interesting domains that can be solved with
concept-based potential functions, there are also some theo-
retical limitations of the approach. First, since all heuristic
values are finite, we cannot represent infinite heuristic val-
ues and thus cannot detect unsolvable instances. Despite this,
unsolvable states can be avoided as long as the initial state
is solvable, as we demonstrate in the domain Spanner below.
Next, the functions that can be expressed depend on the pred-
icates available in the domain. If a relation between objects is
implicitly encoded (e.g., in the available actions), we cannot
express it. We will see this limitation in the domain Grip-
per below. Finally, the downside of guaranteeing that greedy
algorithms run in O(|∆|) is that the plans we discover must
have a length in O(|∆|). With sufficiently high weights, a
subset of tasks might be solved, but we cannot hope to find
a general solution in domains with super-linear plans, as we
will see in the domain VisitAll below.

4 Examples
We now show examples of descending and dead-end avoid-
ing potential functions for several classical planning domains.
For simplicity, all used concepts and their intended meanings
are listed in Table 1. The somewhat tedious proofs that the de-
scribed functions are indeed descending and dead-end avoid-
ing can be found in a technical report [Francès et al., 2019].

Spanner
In the domain Spanner, an agent has to pick up spanners on
its way to a gate with nuts that have to be tightened. Spanners
can only be used once, and the path to the gate is one-way. In
the standard encoding, the function

|S1|+ |S2|+ dist(S3, link, S4) + 2|S5|
is descending and dead-end avoiding. Its value decreases
when spanners are picked up (S1), nuts are tightened (S2), or
the agent approaches the gate (dist(S3, link, S4)). Unsolv-
able states are avoided through a penalty for leaving a posi-
tion before picking up all spanners (S5). Interestingly, there
is an alternative encoding with no distance features that uses
a cardinality feature counting the cells behind the agent.

Gripper
In the domain Gripper, a robot with two grippers has to trans-
port some balls between two rooms. We use a generalization
of the standard domain with several rooms, robots, and grip-
pers per robot. The goal remains to transport all balls into a
certain room. The domain is dead-end-free, and the following
function is descending:

8|G1|+ 4|G2| − 2|G3| − |G4|

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5556

Spanner K(C)

S1 spanner u (∃at.>) Spanners which have not been picked up 4
S2 nut u (¬tightened) Untightened nuts 4
S3 ∃at−1.man Locations occupied by some agent 4
S4 ∃at−1.S2 Locations with an untightened nut 7
S5 spanner u ∃at.∃(link+)−1.S3 Spanners in a cell no longer reachable by any agent 12

Gripper K(C)

G1 ¬(at = atG) u ∃at.> Balls that are in a room different from the target room 7
G2 ∃carry.> Balls carried by some robot 2
G3 ∃carry.∃gripper.∃at-robby.∃at−1

G .> Balls carried by some robot while robot is in the target room 9
G4 ∃at-robby.((∃at−1.>) u ¬(∃at−1

G .>)) Robots in non-empty rooms other than the target room 10

Blocksworld K(C)

B1 ontableG u ontable Blocks that are correctly placed on the table 3
B2 (∃onG.>) u (on = onG) Blocks that are placed on their target block 6
B3 ¬(ontableG t ∃onG.>) Blocks that are not mentioned in the goal 5
B4 B1 t B2 t B3 Blocks where the block (or table) below is consistent with the goal 16
B5 ∀on−1

G .(on = onG) Blocks where the block above is consistent with the goal 6
B6 B4 u ∀on+.(B4 u B5) Blocks that are well-placed 43
B7 holding u ∃onG.(clear u B6) Blocks held while their target block is clear and well-placed 49

VisitAll K(C)

V1 place u ¬visited Places not yet visited 4

Logistics K(C)

L1 package u (at ◦ in-city = atG ◦ in-city) Packages on the ground in the correct city 9
L2 package u (in ◦ at ◦ in-city = atG ◦ in-city) Packages in a vehicle in the correct city 11
L3 package u ¬(at ◦ in-city = atG ◦ in-city) Packages on the ground in the wrong city 10
L4 package u ¬(in ◦ at ◦ in-city = atG ◦ in-city) Packages in a vehicle in the wrong city 12
P1 package u (∃in.truck) u (in ◦ at = atG) Packages in a truck at the right location for that package 11
P2 L2 u (∃in.truck) u ¬(in ◦ at = atG) Packages in a truck in the right city but wrong location 22
P3 L1 u (∃at.∃at−1.truck) u ¬(at = atG) Packages on the ground in the right city with an available truck 21
P4 L1 u (∃at.¬∃at−1.truck) u ¬(at = atG) Packages on the ground in the right city without an available truck 22
P5 L2 u (∃in.airplane) Packages in an airplane in the right city 15
P6 L4 u (∃in.airplane) Packages in an airplane in the wrong city 18
P7 L3 u (∃at.∃at−1.airplane) Packages on the ground in an airport of the wrong city with an available plane 17
P8 L3 u (∃at.(airport u ¬∃at−1.airplane)) Packages on the ground in an airport of the wrong city without an available plane 20
P9 L4 u (∃in.(truck u ∃at.airport)) Packages in a truck at the airport of the wrong city 20
P10 L4 u (∃in.∃at.¬airport) Packages in a truck at a non-airport location of the wrong city 19
P11 L3 u (∃at.¬airport u ∃at−1.truck) Packages on the ground of a non-airport location of the wrong city with an available truck 20
P12 L3 u (∃at.¬airport u ¬∃at−1.truck) Packages on the ground of a non-airport location of the wrong city without an available truck 21

Table 1: Useful concepts and their complexities for selected classical planning domains.

Interestingly, in the default encoding no predicate relates
robots to grippers, as these are all implicitly assumed to be-
long to the only robot. Hence, we cannot express a concept
like G3 that considers the carried balls and the location of the
robot at the same time. This could be addressed with a sim-
ple extension to our concept language, but there is a trade-off
between expressivity and tractability of the set of features.

Blocksworld
In the domain Blocksworld, the goal is to stack and unstack
blocks to achieve a target configuration. In contrast to Seipp
et al. [2016], we can represent the notion of well-placed
blocks [Slaney and Thiébaux, 2001] and thus do not require
exponential and instance-dependent weights:

−4|B6| − |holding| − 2|ontable| − 2|B7|

The function rewards placing a block in its final position (B6),
unstacking a misplaced block (holding), dropping it (ontable)
and picking it back up once its target is available (B7).

VisitAll
In the domain VisitAll, an agent has to visit all nodes of an
undirected graph. For graphs with a diameter of at most k,

the following function is descending:

k|V1|+ dist(at-robot, connected, V1)

Moving closer to the closest unvisited location reduces the
value by 1. Reaching it decreases the cardinality feature by 1
but can increase the distance feature by up to k.

VisitAll shows the limitation to plans with a linear length:
to generalize to all graphs, the weight k would have to depend
on the instance. A possible solution is to allow more general
features, for example one that multiplies the cardinalities of
two concepts. Replacing k|V1|with |V1×place|would yield a
potential function that is descending in all VisitAll instances.

Logistics
In the domain Logistics, packages need to be transported be-
tween different locations in different cities. Each city has a
single airport, trucks move within cities, and planes between
airports. The heuristic

∑12
i=1 i|Pi| is descending: concepts

Pi encode mutually exclusive states that a package can be in
and there is always an action that only moves packages from
concepts Pi to concepts Pj with j ≤ i. Logistics is also rep-
resentative for other domains, e.g., the domain Miconic that

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5557

controls an elevator to deliver passengers can be seen as a
Logistics domain with a single city and truck.

5 Learning the Heuristics from Sample Tasks
As we have seen, simple descending and dead-end avoiding
potential heuristics exist for several standard domains. We
next propose a way to learn them automatically. Our ap-
proach takes as input a set F of candidate features and a set
of states S . It then computes a generalized potential heuristic
with features from F that is descending and dead-end avoid-
ing over all states in S , and further minimizes a measure of
heuristic complexity. Following Bonet et al. [2019], for F
we consider all concept-based features up to a certain com-
plexity, where the complexity K(f) of a feature f is the to-
tal complexity of its concepts and roles (see Section 2.3). In
turn, for S we consider all reachable states from a few train-
ing instances, which we assume small enough so that their
reachable state space can be fully expanded. States in S can
thus be labeled with information on whether they are alive or
unsolvable. We denote by SA the subset of alive states in S ,
and by T the set of transitions starting in an alive state.

From S and F we define the mixed integer linear program
M(S,F), with variables wf ∈ Z for each f ∈ F , as follows:

min
w

∑
f∈F

[wf 6= 0]K(f) subject to

∨
s′∈succ(s)

h(s′) + 1 ≤ h(s) for s ∈ SA (1)

h(s′) ≥ h(s) for (s, s′) ∈ T , s′ unsolvable, (2)

where h(s) is used as shorthand for the linear expression∑
f∈F wff(s). Note that f(s) here are integer constants.

Constraints (1) encode the condition of being descending,
while constraints (2) encode that of being dead-end avoid-
ing. Because simpler features can be expected to generalize
better, we minimize the total complexity of selected features.

In order to deal with the nonlinearity of constraints (1), we
use indicator constraints. Full details can be found in the
technical report [Francès et al., 2019]. The resulting MIP has
O(|F|+ |T |) variables and O(|F|+ |T |) constraints.

Theorem 1. Any solution to the MIP M(S,F) induces a
generalized potential heuristic with features from F that is
descending and dead-end avoiding on S .

Many weights of such a solution will typically be zero, in
which case we consider the corresponding feature as unused.

5.1 Incremental Constraint Generation
The above MIP M(S,F) has size linear in S , the number
of reachable states of the training instances, which somewhat
limits the approach. Often, however, many of the states in S
are intuitively redundant; for our approach to work, it would
be enough to have a few states that are representative of the
whole domain dynamics. We can not easily know in advance
which states are representative, but we can use the above ob-
servation to generate the constraints in M(S,F) incremen-
tally within a constraint generation loop.

For this, we assume that S contains labeled states from
fully-explored training instances. We randomly sample a sub-
set of states S0 ⊆ S . The solutions to the MIP M(S0,F)
induce generalized potential heuristics h that are descending
and dead-end avoiding over the states in S0. We can check
if h is also descending and dead-end avoiding over the rest of
states in S . If it is, we are done. Otherwise, we put the first
χ states where it is not into a set of flaws S0χ, and restart the
process by solving the MIPM(S1,F), where S1 = S0∪S0χ.
Since the size of Si increases monotonically with i, the pro-
cess eventually converges to the computation of M(S,F),
but often we find a suitable heuristic before that. IfM(Si,F)
turns out to be unsolvable at some iteration i, then no gener-
alized heuristic with the properties we seek exist when using
only features from F , in which case we can increase the com-
plexity bound used to generate the set F and start over.

5.2 Refinement of the Heuristic for Unseen States
Assume that we have a generalized potential heuristic h that
is descending and dead-end avoiding over all states S in our
training set, computed with the MIP M(S,F). It might of
course be the case that h does not generalize to other in-
stances of the generalized problem. This will be quickly
apparent, since a (steepest-ascent) hill-climbing search will
reach a local minimum s 6∈ SG in polynomial time. When
that happens, we would like to refine h to make it behave
correctly in states like s, but we will typically not have in-
formation on which of the states in the instance are unsolv-
able. If the path followed by the hill-climbing search is
sI = s0, s1, . . . , sn = s, however, the reason for the heuristic
failure must be one of the following:
(a) the problem is unsolvable,
(b) for some pair (si, si+1), si is solvable, si+1 is not, and

h(si+1) < h(si),
(c) s is solvable, but none of its successors has smaller h-

value.
We here assume that we deal with solvable instances only,

since we view detecting unsolvability as an orthogonal prob-
lem.1 In that case, upon finding a local minimum we can re-
fine h by adding to the original MIPM(S,F) the following
refinement constraint that tackles cases (b) and (c):(
n−1∨
i=0

h(si) ≤ h(si+1)

)
∨

 ∨
s′∈succ(s)

h(s′) + 1 ≤ h(s)

 ,

using again indicator constraints to represent the disjunction.
If the new MIP has a solution, we can then restart the

search from sI . When new flaws are found, we add refine-
ment constraints for them iteratively until we are able to reach
a goal state. Otherwise, if the MIP has no solution, then the
set F of candidate features is not expressive enough to repre-
sent a heuristic that generalizes to the instance. Again, we can
restart the process with a larger set of candidate concepts.

1 A way to represent both finite and infinite heuristic values with
finite potential heuristics is to use two functions: one that represents
the finite values and one that recognizes unsolvable states [Corrêa
and Pommerening, 2019]. Different methods are useful for these
two cases, and here we only focus on the first one.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5558

G M S V
of training instances 8 12 11 9
of iterations 2.0 2.7 1.0 1.7
|F| 469 2105 904 330
of MIP variables 2017 7273 3381 1039
of MIP constraints 2238 7331 3370 1190
Complexity of h 8 (18) 6 (14) 8 (20) 5 (8)
of features in h 5 4 5 3
Total time 8h 32m 178s 87s
Total MIP time 7.4h 26m 6.8s 2.1s

Table 2: Results of the incremental constraint generation approach
on Gripper (G), Miconic (M), Spanner (S) and VisitAll (V). Number
of iterations of the constraint generation loop, MIP size and running
times averaged over 3 runs. Heuristic complexity k1 (k2) denotes
heuristic with maximum complexity feature k1 and total aggregated
complexity k2. “Number of features” stands for the number of non-
zero weights in the function h. MIP dimensions and size |F| of the
pool of candidate features reported for the last iteration. Total MIP
time aggregates MIP solution times on each iteration.

6 Empirical Results
We have implemented a prototype of the above approach in
Python, building on the feature generator by Bonet et al.
[2019] and on the Pyperplan planner.2 The experiments be-
low run on Intel Xeon E3-1275 CPUs using CPLEX v12.8
as a MIP solver. No run used more than 6 GB of memory.
Source code and benchmarks are available online.3

We use the standard encodings of Miconic, Spanner, and
VisitAll, and a generalization of Gripper to an arbitrary num-
ber of robots, grippers, and rooms, as described in Section 4.
For each domain, we use training instances with a (reachable)
state space of at most 15000 states. To keep the set of can-
didate concepts small, we limit role composition to primitive
roles. In our experiments, allowing nested composition in-
creased the number of concepts and the chance of overfitting
without resulting in simpler heuristics. In all the experiments
we use the incremental method described in Section 5.1, as it
showed consistently better performance. We set a maximum
complexity of k = 8 when generating cardinality features
and of k = 5 for distance features. The initial set of states S0
has 100 randomly sampled states along with their successors,
plus all states in an arbitrary optimal plan. The generation of
candidate features takes a few minutes in all cases.

Our main result is that for the four domains above, our ap-
proach finds a potential heuristic that not only is descending
and dead-end avoiding over all training instances, but which
can be (manually) proven to generalize to all instances of the
class, which means that when used within a steepest-ascent
hill-climbing, it will be able to solve any such instance in
polynomial time. The only exception is VisitAll, where we
empirically confirm what we discussed in Section 4: we can
only generalize to instances with graph diameter bounded by
the largest diameter used in the training instances.

Table 2 gives an overview of the whole learning process.

2 https://bitbucket.org/malte/pyperplan/
3 https://doi.org/10.5281/zenodo.3236083

In the four domains, the constraint generation loop converges
quickly to a final solution, never requiring more than 3 it-
erations. The number of features in the set of candidate fea-
tures F varies significantly, being a function of the number of
unary and binary predicates as well as the logical structure of
the problem encoding. In terms of runtime, Gripper by far re-
quires the most time, most of which is spent solving the MIP
in each of the two iterations. We have not further investigated
the reason why CPLEX takes so long in this case. VisitAll is
the only domain where distance features appear necessary.

Some of the computed heuristic functions have lower com-
plexity than the ones discussed in Section 4, but they capture
similar greedy mechanisms. In Spanner, for instance, repre-
senting the distance to the gate turns out to be simpler by us-
ing a transitive closure that counts the number of empty cells
behind the agent than by using a distance feature. To illus-
trate, the following is the heuristic computed automatically
from 12 small training instances in the Miconic domain:

− 3|boarded| − 5|served|
+ 2|(∀origin−1.boarded) u lift-at|
+ 1|(∀destin−1.served) u lift-at|.

The first two features reward boarding passengers into the
elevator and serving them to their destination. The third re-
wards the elevator for moving away from a floor F once it
has boarded all passengers that start their trip in F , and the
last rewards the elevator for moving away from F once it has
served all passengers that want to go to F . The function dif-
fers from the idea we presented for the more general Logistics
domain in Section 4, as the concepts here do not all represent
mutually exclusive sets of passengers. This illustrates a gen-
eral trend with the heuristics computed by our method: they
often differ from the ones we had in mind and have lower
overall complexity. Additionally, different MIP solutions in-
ducing different generalized heuristics, all with equal overall
complexity, can be found by our method.

Our prototype is not yet able to scale up to domains such
as Blocksworld or Logistics. Although there exist descend-
ing and dead-end avoiding generalized potential heuristics for
these domains (Section 4), the complexity of some of their
features seems too high. For example, the number of features
below the complexity bound of 49 in Blocksworld is in the
order of 2 million. While this is out of scope now, solving a
MIP with millions of variables is conceivably possible with
sufficient computing resources. Better methods of feature se-
lection can also help our method to scale up more robustly.

7 Related Work
Our work relates to a number of previous research threads.
Parmar [2002] studies measures of progress from the first-
order framework of situation calculus. A predicate p is a
measure of progress if in every possible state there is some
action that monotonically increases the extension of p. If such
a predicate can be succinctly represented, then a policy that
always selects a p-increasing action is an efficient planning
algorithm. Descending potential heuristics are measures of
progress in dead-end-free domains. Parmar introduces mea-
sures of progress for different types of domains. In particular,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5559

tiered measures of progress underlie our heuristic for Logis-
tics. Her discussion is limited to dead-end free domains, and
leaves open the question of how to find measures of progress
automatically, which is the focus of our work. This question
is also tackled by Yoon et al. [2005], who use first-order fea-
tures based on taxonomic syntax to approximate measures of
progress. In their case, these measures are lexicographic en-
sembles of heuristics which they learn greedily from a num-
ber of sample plans. This is similar in spirit to our work, but
we are interested in learning exact measures of progress over
the whole state space of the problem, not over some sam-
ple trajectories that need to be externally chosen, and we aim
at minimizing the complexity of the learnt heuristic, which
should help generalization. When our approach succeeds, we
have learnt a (provably correct) polynomial search algorithm
for all instances of the planning domain at hand.

Seipp et al. [2016] study descending, dead-end avoid-
ing potential heuristics over conjunctive state features, but
the features and weights in their heuristics are instance-
dependent, and they do not address the question of how to
obtain these heuristics automatically. Our contribution can
be seen as a possible answer to such a question based on first-
order features and learning from observing small instances.

Concept languages have been used to learn classical plan-
ning policies before. Martin and Geffner [2004] learn simple
rule-based policies in the form of lists of concept-action pairs,
with a focus on capturing optimal behavior in Blocksworld.
The taxonomic syntax used by Yoon et al. [2005], similar to
concept languages, is also used in other works by the same
authors [Yoon et al., 2006; Yoon et al., 2008].

This work is also related to recent research in gener-
alized planning [Levesque, 2005; Srivastava et al., 2008;
Hu and De Giacomo, 2011; Bonet and Geffner, 2018], in par-
ticular to the approach taken by Bonet et al. [2019], who
learn a generalized abstraction from training instances based
on the same type of first-order features that we use here.
Their work however requires that the generalized problem can
be abstracted into a Qualitative Numerical Problem (QNP),
where domain dynamics need to be expressible through (in-
determinate) increments and decrements of numerical vari-
ables X and preconditions of the form X > 0 and X = 0.
This inductively-learned QNP is then mapped into a fully-
observable non-deterministic problem to obtain a general-
ized policy with certain correctness guarantees [Bonet and
Geffner, 2018]. Our approach, which is in contrast more di-
rect, can reason with precise quantitative change (e.g., favor
some transition iff feature fi increases more than f2), and can
handle domains such as Spanner, which do not have an obvi-
ous QNP abstraction. On the other hand, we cannot capture
things like looping policies, which Bonet et al. can.

Finally, our work is also related to the line of research by
Toyer et al. [2018], who use a neural network-based approach
for computing generalized policies for stochastic planning
domains. A major difference with the work that we present
here is that the logical grounding of our approach lends itself
to better interpretability and, more relevantly, to the possibil-
ity of reasoning, manually or automatically, about the theo-
retical correctness of the heuristics that we learn.

8 Discussion
We have presented a way to automatically compute descend-
ing and dead-end avoiding potential heuristics that are well-
defined on all instances of a generalized planning domain.
The presented approach of course has a number of limita-
tions, the most obvious being that not all problems have a
greedy solution strategy that can be expressed as a compact
generalized potential heuristic. Because of our choice of fea-
tures, heuristic values are linear in the number of objects, and
so is the length of the plans we can compute, which leaves
out many interesting problems that do not have plans of that
type. Our work can be seen however as a preliminary step
towards the automatic synthesis of solvers with polynomial
performance guarantees over all instances of a generalized
planning problem. An important next step for this would be
to deductively prove the correctness of the computed heuris-
tics from the domain model, in the spirit of [Levesque, 2005].

The heuristic functions that we defined manually are easily
interpretable by a human. The ones that our approach discov-
ers automatically are sometimes slightly less obvious. It is
not clear how to optimize for interpretability, but in general
it seems that optimizing the total complexity of the heuris-
tic yields heuristics which are not too hard to interpret. The
extent to which these heuristics and their interpretability re-
late to the logical invariants that are implicit in the domain
representation would deserve further examination.

We have also seen a trade-off in the choice of the under-
lying concept language and of the complexity bounds. More
expressive concepts allow some properties to be represented
more concisely, but a richer language aggravates the combi-
natorial explosion of the set of candidate features to be ex-
plored and increases the size of the mixed integer linear pro-
gram that we use. At the same time, for a fixed set of train-
ing instances, increasing the allowed complexity of concepts
increases the chances of overfitting. Such problems can be
mitigated by using our incremental constraint generation ap-
proach, which can increase the complexity bound progres-
sively as the current bound is proven too low to contain a
heuristic with the desired properties. An interesting research
direction would be to devise techniques to explore the pool of
candidate features more selectively.

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan). The authors thank Blai Bonet for
his contribution to the codebase used in the experiments.

References
[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten

Lutz, and Uli Sattler. Introduction to Description Logic.
Cambridge University Press, 2017.

[Bonet and Geffner, 2018] Blai Bonet and Héctor Geffner.
Features, projections, and representation change for gener-
alized planning. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018),
pages 4667–4673. IJCAI, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5560

[Bonet et al., 2009] Blai Bonet, Héctor Palacios, and Héctor
Geffner. Automatic derivation of memoryless policies and
finite-state controllers using classical planners. In Alfonso
Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Re-
fanidis, editors, Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2009), pages 34–41. AAAI Press, 2009.

[Bonet et al., 2017] Blai Bonet, Giuseppe De Giacomo,
Héctor Geffner, and Sasha Rubin. Generalized planning:
Non-deterministic abstractions and trajectory constraints.
In Carles Sierra, editor, Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI
2017), pages 873–879. IJCAI, 2017.

[Bonet et al., 2019] Blai Bonet, Guillem Francès, and Héctor
Geffner. Learning features and abstract actions for com-
puting generalized plans. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI
2019). AAAI Press, 2019.

[Corrêa and Pommerening, 2019] Augusto B. Corrêa and
Florian Pommerening. An empirical study of perfect
potential heuristics. In Nir Lipovetzky, Eva Onaindia,
and David E. Smith, editors, Proceedings of the Twenty-
Ninth International Conference on Automated Planning
and Scheduling (ICAPS 2019). AAAI Press, 2019.

[Fox et al., 2017] Maria Fox, Derek Long, and Daniele Mag-
azzeni. Explainable planning. In IJCAI-17 Workshop on
Explainable AI (XAI), pages 24–30, 2017.

[Francès et al., 2019] Guillem Francès, Augusto B. Corrêa,
Cedric Geissmann, and Florian Pommerening. General-
ized potential heuristics for classical planning: Additional
material. Technical Report CS-2019-003, University of
Basel, Department of Mathematics and Computer Science,
2019.

[Geffner, 2000] Héctor Geffner. Functional Strips: A more
flexible language for planning and problem solving. In
Jack Minker, editor, Logic-Based Artificial Intelligence,
volume 597 of Kluwer International Series In Engineering
And Computer Science, chapter 9, pages 187–209. Kluwer,
Dordrecht, 2000.

[Hu and De Giacomo, 2011] Yuxiao Hu and Giuseppe De
Giacomo. Generalized planning: Synthesizing plans that
work for multiple environments. In Toby Walsh, editor,
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), pages 918–923.
AAAI Press, 2011.

[Levesque, 2005] Hector Levesque. Planning with loops. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), pages 509–515. Pro-
fessional Book Center, 2005.

[Martin and Geffner, 2004] Mario Martin and Héctor
Geffner. Learning generalized policies from planning
examples using concept languages. Applied Intelligence,
20(1):9–19, 2004.

[McDermott, 2000] Drew McDermott. The 1998 AI Plan-
ning Systems competition. AI Magazine, 21(2):35–55,
2000.

[Parmar, 2002] Aarati Parmar. A logical measure of progress
for planning. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pages
498–505. AAAI Press, 2002.

[Pommerening et al., 2015] Florian Pommerening, Malte
Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence (AAAI 2015), pages 3335–3341. AAAI Press,
2015.

[Seipp et al., 2015] Jendrik Seipp, Florian Pommerening,
and Malte Helmert. New optimization functions for po-
tential heuristics. In Ronen Brafman, Carmel Domshlak,
Patrik Haslum, and Shlomo Zilberstein, editors, Proceed-
ings of the Twenty-Fifth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2015), pages
193–201. AAAI Press, 2015.

[Seipp et al., 2016] Jendrik Seipp, Florian Pommerening,
Gabriele Röger, and Malte Helmert. Correlation complex-
ity of classical planning domains. In Subbarao Kambham-
pati, editor, Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016), pages
3242–3250. AAAI Press, 2016.

[Slaney and Thiébaux, 2001] John Slaney and Sylvie
Thiébaux. Blocks World revisited. Artificial Intelligence,
125(1–2):119–153, 2001.

[Srivastava et al., 2008] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. Learning generalized plans
using abstract counting. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI
2008), pages 991–997. AAAI Press, 2008.

[Toyer et al., 2018] Sam Toyer, Felipe Trevizan, Sylvie
Thiébaux, and Lexing Xie. Action schema networks: Gen-
eralised policies with deep learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pages 6294–6301. AAAI Press, 2018.

[Yoon et al., 2005] Sung Wook Yoon, Alan Fern, and Robert
Givan. Learning measures of progress for planning do-
mains. In Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI 2005), pages 1217–
1222. AAAI Press, 2005.

[Yoon et al., 2006] Sung Wook Yoon, Alan Fern, and Robert
Givan. Learning heuristic functions from relaxed plans. In
Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee
McCluskey, editors, Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2006), pages 162–170. AAAI Press, 2006.

[Yoon et al., 2008] Sung Wook Yoon, Alan Fern, and Robert
Givan. Learning control knowledge for forward search
planning. Journal of Machine Learning Research, 9:683–
718, 2008.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5561

