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Abstract
We consider mechanisms for the online allocation
of perishable resources such as energy or computa-
tional power. The main application is electric ve-
hicle charging where agents arrive and leave over
time. Unlike previous work, we consider mech-
anisms without money, and a range of objectives
including fairness and efficiency. In doing so, we
extend the concept of envy-freeness to online set-
tings. Furthermore, we explore the trade-offs be-
tween different objectives and analyse their theo-
retical properties both in online and offline settings.
We then introduce novel online scheduling algo-
rithms and compare them in terms of both their the-
oretical properties and empirical performance.

1 Introduction
In this paper, we consider an online scheduling problem
where a number of agents compete for a perishable resource
and a fair allocation needs to be found. A resource is per-
ishable when it cannot be stored and, hence, needs to be al-
located at every time step to prevent it from being wasted.
Relevant examples include energy for charging electric vehi-
cles (EVs) and processing power for executing computational
tasks. We assume that agents (EVs or computational tasks)
arrive in an online manner and, on arrival, announce their de-
parture times or execution deadlines. In addition, the agents
declare the maximum amount of resource they can consume
per time step, as well as the total resource required. The aim is
to allocate resources optimally and/or fairly according to var-
ious objectives without information about future arrivals. For
ease of exposition, we will focus on the EV charging setting,
as this has received considerable attention in recent years, al-
though the model and results can be applied to other settings.

These types of scenarios are extensively studied in various
fields. Firstly, works that consider scheduling specifically for
EV applications include [Mehta et al., 2018; Sun et al., 2018;
Liu et al., 2018]. These works are concerned with cost min-
imisation, but are not interested in fair energy allocation and

propose offline rather than online algorithms. Other works,
more in line with this paper, consider online EV schedul-
ing, including [Gerding et al., 2011; Gerding et al., 2016;
Stein et al., 2012; Bilh et al., 2018]. However, all of these
works consider mechanisms with money instead of fairness.
A recent closely related work is [de Weerdt et al., 2018].
They also analyse the computational complexity of battery
charging algorithms. However, they focus on offline algo-
rithms and monetary payments. Also, they consider binary
valuation functions (demand fulfilled/non-fulfilled). Instead,
we consider partial fulfilment, as well as fairness, and do
not assume any information about the valuations (only the
scheduling constraints).

Secondly, the extensive field of scheduling has studied re-
lated problems (see [Pinedo, 2006] for an overview). How-
ever, to our knowledge, none of the existing models covers
the same set of online features as ours; specifically a model
with dynamic arrivals and departures; soft completion times,
and where each element of capacity is perishable. The area of
power balancing and bandwidth allocation [Shi et al., 2014;
Shah, 2012] has a similar flavour to our work but focuses on
the coordination of multiple decentralised actors instead. Fi-
nally, Porter [2004] investigates strategic aspects of maximiz-
ing weighted completion in online hard real-time scheduling
where tasks have weights, release times, deadlines, and du-
rations. However, in our model, we define metrics around
fairness including the proportion of a job that is completed.

Thirdly, another relevant field is online fair division (e.g.
[Aleksandrov et al., 2015; Aleksandrov and Walsh, 2017])
that considers the problem of food allocation from food
banks. While this literature presents some similarities, such
as using an online setting and indivisible goods, our model
significantly differs from theirs in that agents dynamically ar-
rive and depart over time.

The fourth and final area considered is that of energy effi-
cient processor scheduling [Albers, 2010; Yao et al., 1995].
Here, a number of jobs need to be processed on a variable-
speed processor where each job has a release time, a deadline,
and a processing volume. Certain processing power can be al-
located to each job, and this needs to be suitably scheduled.
In comparison, our model is unique in that it has a multi-
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processor flavour, as each EV is independent.
Contributions. We consider a novel setting without mon-
etary payments and where agents do not specify a valuation
function but only requirements such as their maximum charg-
ing speed, the amount of resource required and a deadline. In
doing so, we focus on trade-offs between 3 different objec-
tives: the fairness concept of envy-freeness; overall resource
utilisation; and the number of satisfied agents (i.e. agents who
receive their full demand). In more detail, this paper makes
the following contributions. First, we present the first exten-
sion of the notion of envy-freeness to online settings. Second,
we show that for offline settings there is always an allocation
that maximises both resource utilisation and the number of
satisfied agents, but neither implies the other. Moreover, the
former can be computed in polynomial time, while the latter
is NP-hard even in very restricted settings. Third, focusing
on online settings, we present two novel online scheduling
algorithms which prioritise early allocations. However, we
show that neither efficiency objective can always be achieved.
Fourth, we present an empirical evaluation in an EV charging
scenario which shows that, despite the negative theoretical
results, our algorithms perform well in practice compared to
standard benchmarks. We also show that Equal Contention,
which satisfies envy-freeness, performs very poorly in terms
of the other objectives.

2 Model
We consider a setting with n agents A = {1, . . . , n} (e.g.
EVs) who arrive in an online manner with arrival time ai ∈ T
and departure time di ∈ T (di ≥ ai) and who require
up to a certain quantity of resource qi on departure. The
value qi could be seen as the total energy needed to fully
charge the battery of an electric vehicle. We assume that
both time and quantity are discrete, i.e. T = {1, . . . , τ} and
qi ∈ N+. Let xi,t ∈ N+ denote the amount of resource
allocated to agent i at time t. Moreover, we say an agent
is satisfied if its allocation is equal to its required quantity,
i.e. if

∑di

t=ai
xi,t = qi. We assume that agents can consume

resources at a maximum charging rate of ri ∈ N+. How-
ever, since no algorithm will allocate more resources than an
agent needs, the effective maximum charging rate is given by
ri,t = min (ri, qi −

∑t−1
t′=ai

xi,t′). Finally, at each point in
time t ∈ T a supply st ∈ N+ of the resource becomes avail-
able, which can be allocated only to agents who are in the
market, i.e. At = {i ∈ A : ai ≤ t ≤ di}. We assume
that supply is perishable meaning that supply needs to be al-

1

2

t = 1 t = 2 t = 3 t = 4

s1 = 1 s2 = 1 s3 = 2 s4 = 1

q1 = 3
r1 = 2

q2 = 2
r2 = 1

Figure 1: Example allocation. For each EV and time step, each
empty square represents one potential unit of energy, while a grey
square represents an allocated unit.

located immediately and any unallocated supply is lost. Con-
sequently, we have that ∀t :

∑
i xi,t ≤ st.

This results in the following problem constraints for any
allocation we consider:

∀i ∈ A, ∀t < ai : xi,t = 0 (1)
∀i ∈ A, ∀t > di : xi,t = 0 (2)
∀i, ai ≤ t ≤ di : xi,t ≤ ri (3)

∀i ∈ A :
∑di

t=ai

xi,t ≤ qi (4)

∀t :
∑

i∈A
xi,t ≤ st (5)

Example 1. Consider two EVs arriving at a charging sta-
tion with parameters a1 = 1, d1 = 3 and a2 = 2, d2 = 4
respectively. See Fig. 1. The first vehicle has a maximum
charging rate r1 = 2 and needs three units of energy, q1 = 3.
The second vehicle has a maximum charging rate r2 = 1 and
needs two units of energy, q2 = 2. The available supply to
the charging station is one unit at time steps 1, 2, 4, and two
units at time step 3. We give an example allocation that fully
satisfies both EVs by allocating x1,1 = x1,2 = x1,3 = 1 and
x2,3 = x2,4 = 1, and zero otherwise.

3 Objectives
This work is motivated by the fact that agent preferences are
often not easily obtainable in practice, e.g. because of the
additional burden on the user and/or the difficult for users to
express their willingness to pay. Hence, although it is rea-
sonable to assume the agent constraints (ai, di, qi and ri) can
be elicited with relatively little effort, we would like to avoid
assumptions about the utility functions, and hence objectives
such as social welfare (sum of utilities) maximisation are no
longer applicable. Instead, we consider other objectives a sys-
tem designer may reasonably want to achieve in our setting.
In so doing, our goal is to study their comptuational complex-
ity, as well as the theoretical and empirical trade offs between
the various objectives. Specifically, we consider the follow-
ing set of objectives:

MaxDelivered: Maximise the total resource allocated:∑
i∈A

∑di

t=ai
xi,t.

MaxSatisfied: Maximise the number of agents satisfied:∑
i∈A{

∑di

t=ai
xi,t = qi}.

Envy-Freeness: We say agent i is envious of agent j’s allo-
cation if min

(
qi,
∑di

t=ai
min(ri, xj,t)

)
>
∑di

t=ai
xi,t.

In words, the allocation to agent j while agent i is in the
market is greater than the allocation i receives, subject
to i’s maximum charging rate and total demand. We say
that an allocation is envy-free if no agent is envious of
another agent’s allocation.

The first objective is arguably the closest to the common so-
cial welfare maximisation objective and, indeed, is equivalent
if agents have the same preferences and these are linear in the
number of units received. The second objective is reasonable
in cases where agents have some complementary preferences,
e.g. in the EV setting a driver will need a minimum charge to
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Figure 2: Example showing that MaxDelivered does not imply
MaxSatisfied.
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Figure 3: Example showing that MaxSatisfied does not imply
MaxDelivered.

complete a day’s journeys and it is also reasonable to expect
that users would want their vehicle fully charged by the time
they need it. Similarly, in a cloud computing setting, partial
completion of a computational task may not be feasible. The
third objective is about allocation fairness, where we build
on the established notion of envy-freeness, which requires
that no agent should prefer another agent’s allocation. Our
definition is the first generalisation to online settings where
agents may be in the markets at different times (and so it is not
considered unfair when an agent is receiving more resources
while another agent is not present). We note that, although
our definition is less restrictive than the original offline one, it
would be interesting to study even less restrictive extensions,
and we briefly return to this in our future work discussion.

Note that, in general, not all objectives can be satisfied si-
multaneously, and none are equivalent. We explore this in
more detail in the remainder of this paper and present now an
illustrative example.

Example 2. In this example, we show that MaxDelivered and
MaxSatisfied are not equivalent and neither implies the other.
First, consider the setup depicted in Fig. 2. The proposed
allocation satisfies MaxDelivered, as all the available supply
is allocated, but fails to satisfy any of the two EVs. Alterna-
tively, if the unit of energy allocated to EV 2 at t = 3 was
instead allocated to EV 1, we would have both MaxDelivered
and MaxSatisfied.

Secondly, consider the setup depicted in Fig. 3. In this
case, the proposed allocation verifies MaxSatisfied, given that
it satisfies EV 1 and no other allocation could possibly satisfy
the two EVs given the available supply. However, this alloca-
tion is not MaxDelivered, as there is an unused unit of supply
at time t = 3.

4 Offline Algorithms
We start by considering the complexity of solving the offline
problem (i.e. where we have complete foresight of the agents
arriving in the future). Specifically, for the MaxSatisfied ob-
jective, this is generally hard, but it can be computed in poly-
nomial time when the supply is a single unit per timestep:

Theorem 1. Computing a MaxSatisfied allocation is NP-
hard, even when st = 2 at every time step, and we have
∀i : ri = 1.

Proof. We reduce from the scheduling problem P2|pmtn,
ri|
∑
Ui, which is NP-hard [Du et al., 1992]. This is the

scheduling problem with two identical machines, tasks can
be preempted, each task has its own release time and dead-
line, and the objective is to minimize the number of tasks for
which the deadline is not met. This corresponds to our setting
where we have one agent for each task whose arrival time
equals the task’s release time, whose departure time equals
the task’s deadline and whose charging requirement qi equals
the task’s processing time. We also have that st = 2 at every
time step t, and the charging rates are ri ∈ {0, 1} for every
agent i. Finally, T equals the largest deadline.

Theorem 2. A MaxSatisfied allocation can be computed in
polynomial time when st = 1 at every time step, and we have
∀i : ri = 1.

Proof. The problem corresponds to the classic scheduling
problem 1|pmtn, ri|

∑
Ui; the case where we have a single

machine, tasks can be preempted, there are release times and
deadlines for every task, and we want to minimize the unit
penalty which is Ui := 0 if i is completed after di and 1
otherwise. This problem can be solved in polynomial time
in the number of agents using an algorithm from [Lawler,
1990].

Interestingly, the MaxDelivered objective is easier compu-
tationally:

Theorem 3. A MaxDelivered allocation can be computed in
polynomial time.

Proof. We present a polynomial-time reduction to that of
computing a feasible flow of a flow network with upper ca-
pacity constraints.

We build a network flow with nodes as follows:

{s, t} ∪A ∪ {vt | t ∈ T} ∪ {ati | t ∈ T, i ∈ A}.

The arcs between the nodes are as follows.

• Source s points to the n agents.
• Each agent node ai ∈ A points to each node ati for all

time slots t ∈ T .
• A node ati only points to node vt corresponding to time

slot t if agent ai is active in time slot t.
• Each node vt points to sink t.

The only capacities of the nodes are as follows.

• Each node ai has upper capacity qi.

• Each node vt has upper capacity st.
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We compute a maximum flow of the network. We can read
off an actual schedule by looking at the corresponding fea-
sible flow: if an agent node ai send some flow f through a
vertex vt, then ai gets f units of electricity in time slot t.

We now consider the tradeoffs between MaxDelivered and
MaxSatisfied. Although a MaxDelivered allocation process
need not optimize MaxSatisfied, as shown in Fig. 2, we
now prove that it is always possible to modify a MaxSatis-
fied schedule to also be MaxDelivered, and so achieve both
objectives simultaneously.

Proposition 1. There always exists a solution which maxi-
mizes both MaxDelivered and MaxSatisfied.

Proof. To find a schedule that is both MaxSatisfied and
MaxDelivered we first find a MaxSatisfied schedule (e.g. us-
ing our linear programming formulation). We can then take
this schedule, which may not allocate all units of charge st
at each time step, and augment it by assigning any unused
charge to any available agent not covered in the returned
MaxSatisfied schedule. If no such agent exists, then we are
allocating as much charge in each time step as possible and
the allocation is MaxDelivered.

We note that this result critically depends on the foresight
given by the offline setting. In an online setting, it will be im-
possible for any algorithm to always maximise MaxDelivered
or MaxSatisfied, as we prove in the next section.

Finally, in terms of the envy-freeness objective, a solution
can be trivially obtained in polynomial time (both in online
and offline settings) by an equal contention algorithm, i.e.
an algorithm which, subject to charging constraints, allocates
everyone the same amount at each time step. Formally:

Definition 1 (Equal Contention (EC)). A mechanism satis-
fies equal contention if, at every time step, the charging rate
of any agent in the market which is below their maximum ef-
fective rate, is at least as fast as that of any other agent in the
market. Formally, let ri,t be the effective maximum charging
rate (as defined in Section 2). Then, ∀t, i ∈ At, whenever
xi,t < ri,t we have that maxi′∈At xi′,t = xi,t.

5 Online Algorithms
We now consider online algorithms, where, at every time step,
the algorithm only has knowledge of the agents arrived so far
and has no information about future arrivals. We will assume
that future supply is known. We start by adapting the fol-
lowing well known online scheduling algorithms to our set-
ting: earliest deadline first, least laxity first and value density.
In these algorithms, at each time t, the agents are prioritised
based on different criteria, and the agent i ∈ At with the
highest priority is allocated resources at the maximum pos-
sible rate, i.e. xi,t = min(st, ri,t). If there is still supply
remaining (i.e. if si − xi,t > 0), the next agent in the pri-
ority list is allocated resources in the same manner until no
more supply or agents are available. Ties can be broken in
any way desirable. Where unspecified, in our empirical eval-
uation (Section 6) we use a random tie breaking rule.

• Earliest Deadline First (EDF): Prioritise agents based on
their deadline, with earlier deadline having higher pri-
ority. In our implementation any ties are resolved using
arrival time (earlier is better) followed by random.

• Least Laxity First (LLF): Let τmax
i denote the latest pos-

sible time that agent i can be scheduled any units in order
to fully satisfy its demand, given its current the effective
maximum charging rate and the available supply over
time. Allocate the agents with the lowest τmax

i first. If
there are agents who cannot be fully satisfied they get
top priority and least satisfied agents are prioritised first.
Ties are broken based on arrival time.

• Value Density (VD): Prioritise agents by density defined

as:
qi −

∑
t′<t xi,t′

(di − t+ 1) · ri
. Ties are broken according to EDF.

These algorithms are simple as they are very short-sighted.
Moreover, they do not directly optimise our objectives of
MaxDelivered and MaxSatisfied. Therefore, we now intro-
duce novel algorithms which are based on their offline coun-
terparts, but without considering future arrivals. That is, an
optimal schedule is computed based on the agents currently
in the market, assuming no new agents arrive. The sched-
ule is then recomputed at each timestep, considering any new
agents who have arrived (noting that past allocations cannot
be revoked). A challenge is that, typically, many such sched-
ules exist and a random tie breaking rule turns out to per-
form poorly empirically. Therefore, our algorithm prioritises
schedules where more resources are allocated to the agents
earlier on in the schedule. Formally, for MaxDelivered the
algorithm is as follows:

Definition 2 (OnlineMaxDelivered (OMDel)). Let t be a cur-
rent time step and At the agents currently in the market. The
algorithm proceeds in two steps. First, find the maximum
number of units, xt, we can allocate at the current time, t,
i.e. find xt = max

∑
i∈At

xi,t subject to the problem con-
straints. Then, an online MaxDelivered solution is found by
maximising

∑
i∈At

∑di

t′=ai
xi,t′ subject to the problem con-

straints and
∑

i∈At
xi,t = xt.

Note that, first, the additional constraint of allocating xt
units at time t does not reduce the optimality of the solution.
That is, OnlineMaxDelivered will allocate the same number
of units regardless of the constraint (we leave out a formal
proof due to space). Second, imposing similar constraints
at later timesteps is superfluous since any future constraints
do not influence the choice at time t. Finally, it is easy to
see that the additional constraint does not affect the computa-
tional time:

Theorem 4. OnlineMaxDelivered runs in polynomial time.

Proof. The argument is similar as that of Theorem 3 except
that, since we are in an online setting and the allocation in pre-
vious time steps is irrevocable, we enforce the prior history of
the allocation by having lower capacity constraints for the ati
nodes representing the agents for a particular time step.

We can similarly define an algorithm for MaxSatisfied.
Due to Proposition 1 we can always achieve an allocation
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which maximises both MaxDelivered and MaxSatisfied, and
this can be achieved by combining both criteria as follows:
Definition 3 (OnlineMaxSatisfied (OMSat)). Find xt as in
Definition 2. Then, an online MaxSatisfied solution is found
by maximising both MaxDelivered as well as MaxSatisfied,
i.e.

∑
i∈At

(∑di

t′=ai
xi,t′ + {

∑di

t=ai
xi,t = qi}

)
subject to

the problem constraints and
∑

i∈At
xi,t = xt.

Although this algorithm satisfies both objectives, it can be
trivially shown that its computational hardness is the same as
that of solving MaxSatisfied offline (see Section 4).

Finally, we show that, unfortunately, even though these al-
gorithms look ahead, none of the algorithms are always op-
timal in online settings. This is surprising, especially for
MaxDelivered.
Theorem 5. No online mechanism exists which always opti-
mises MaxDelivered.

Proof. The proof is by counterexample. Consider a setting
with initially 2 agents entering the market at time t = 1,
where r1 = 1, q1 = 2 and r2 = 2, q2 = 2. Agent 1 is in
the market for 4 timesteps, and agent 2 for only 2 timesteps
(d1 = 4, d2 = 2). Supply is 2 units per time step.

We consider two options. In option 1, the algorithm allo-
cates 0 units to agent 1 and 2 units to agent 2. In option 2, the
algorithm allocates 1 unit to both. It is easy to see that any
other option (i.e. which does not allocate the full supply in
the first round) is suboptimal.

If option 2 is chosen, suppose that a third agent enters the
market at t = 2 with r3 = 2, q3 = 2, d3 = 2 (i.e. the agent
is in the market for 1 timestep and requires 2 units). The
maximum total units allocated is 5. However, if option 1 was
chosen, 6 units could have been allocated in total, showing
that option 2 is not optimal.

If option 1 is chosen, suppose that 2 agents enter the market
at times t = 3 and t = 4 with r3 = r4 = 2, q3 = q4 = 2,
d3 = 3, d4 = 4 (they stay in the market for 1 timestep each).
At timestep 2 agent 2 requires no more resources, so the only
option is to allocate 1 unit to agent 1. Then, at timesteps 3 and
4 at most 4 units can be allocated, making the total delivery
7. However, if option 2 is chosen, at timestep 2 we give 1 unit
to each. The total delivery after 4 timesteps is then 8.

Hence, neither option is always optimal, showing that no
online algorithm can always optimise MaxDelivered.

Theorem 6. No online mechanism exists which always opti-
mises MaxSatisfied.

Proof. The proof is by counterexample. Consider the setting
detailed in the proof of Theorem 5. If option 2 is chosen and,
following the previous proof, a new agent arrives at t = 2
with r3 = 2, q3 = 2, d3 = 2, then only two agents would
be satisfied. It is easy to see that choosing option 1 would
satisfy all three agents. Similarly, if option 1 is chosen and
two agents enter the market at times t = 3 and t = 4 with
r3 = r4 = 2, q3 = q4 = 2, d3 = 3, d4 = 4, only three agents
would be satisfied. Again, choosing option 2 would satisfy all
four agents. Hence, neither option is always optimal, showing
that no online algorithm can always optimise MaxSatisfied.

6 Empirical Evaluation
Despite the negative theoretical results for online settings, the
algorithms may perform well in practice. Hence, in this sec-
tion, we compare the performance of the proposed algorithms
in a realistic simulation. We will start by detailing the setup
considered, and then proceed to describe the results.

We consider a 24-hour period, i.e. T= {0, 1, . . . , 23}, each
time unit representing one hour. Specifically, we consider
a night-time charging scenario, in which EVs arrive to the
charging station in the evening and depart in the morning.
For every considered day, random EVs and supply conditions
are generated, as detailed in the next sections. Also, we run
50 instances of each given simulation and present averaged
results. Note that all the data from this empirical evaluation
is publicly available [Perez-Diaz et al., 2019].

6.1 Supply Settings
Each supply unit represents 3 kWh [Binetti et al., 2015]. In
terms of the available supply, high availability is characteris-
tic of night hours. In more detail, Robu et al. [2013] iden-
tify the average available energy in a small neighbourhood to
be 615 kWh between 2:00 and 6:00, corresponding to 5-12
units/time step. On the contrary, reduced supply is available
during the rest of the day, corresponding to 99 kWh, hence
0-4 units/time step. Thus, the supply available at time t, st, is
drawn from a Gaussian distribution with parameters specified
in Table 1, both for high and low supply intervals. Specifi-
cally, mean, standard deviation, and minimum and maximum
limits are presented for each.

6.2 EV Settings
Similarly to the available supply, the characteristics of ev-
ery EV are drawn independently from a Gaussian distribution
with the parameters specified in Table 1.

Robu et al. [2013] reported that the majority of agents ar-
rive in the time interval 16:00-19:00 (peak at 17:00). With
regards to the standard deviation of this arrival time, values
such as 1.5 and 3.13 have been reported [Benetti et al., 2015].
Similarly, Robu et al. [2013] find that EV departures peak be-
tween 8:00 and 10:00. Thus, most EVs are plugged-in for at
most 15h every night. Average and standard deviations are
set to 85% and 5% of the online time limit, respectively.

With respect to battery capacity, it is assumed to be ap-
proximately 25 kWh, which corresponds to 9 units of supply.
In terms of required charge, it is assumed that the battery’s
health is taken into account by the EV owner. Specifically,

min average std max
high supply 1 10.5 2.25 15
low supply 1 5.25 6 6

arrival 0 17 2.3 23
online time 1 12.75 0.75 remaining hours

charging rate 1 2.5 1 5
quantity 1 5.5 1.5 10

Table 1: Limits, averages and standard deviations of the Gaussian
distributions of each of the scenario’s stochastic variables.
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Figure 4: Number of envious agents (left) and number of satisfied
agents (right) when varying the number of agents present in the sim-
ulation. The stochastic available supply units follow the Gaussian
distribution specified in Table 1. The dashed line corresponds to the
optimal offline MaxSatisfied allocation.

Neaimeh et al. [2015] report a minimum charge value of 39%,
with a median of 53%, and a maximum value of 68%.

Finally, the maximum charging rate of an EV depends on
the vehicle itself and on the charging infrastructure. Given
that we consider a night-time charging scenario, presumably
in residential areas, we consider that the EVs do not have
access to industrial-grade charging speeds. Typical charging
speeds in this type of scenario are around 3-6 kW and 11 kW
[Heydarian-Forushani et al., 2016].

6.3 Results
We now compare how each of the considered algorithms per-
forms with respect to the considered objectives. Fig. 4 shows
the number of envious agents (as per our envy-freeness defi-
nition, see Section 3) and the number of satisfied agents in a
setting where we vary the total number of agents. We can see
that, as the number of agents grows, it becomes more difficult
to keep them envy-free and to satisfy their requirements. In
fact, the number of satisfied agents drops as more agents are
in the market for most algorithms, since more agents only get
partially satisfied. Moreover, even though EqualContention
is the only envy-free algorithm, it is extremely inefficient and
scores very low on agent satisfaction. Interestingly, while
LLF is the worst in terms of both measures, EDF and Online-
MaxDelivered are comparable, and Value Density is the best
of the simple algorithms and performs surprisingly well. On-
lineMaxSatisfied presents the highest efficiency in terms of
the number of satisfied agents, achieving over 96% efficiency
in all cases, and the best envy-freeness after EqualContention,
but incurs more costly computation. Furthermore, all the
algorithms perform similarly with respect to MaxDelivered,
achieving between 95 and 100% of the offline optimal result,
apart from EqualContention, which is only 13% optimal on
average (graphs omitted).

These trends are similar when we vary the amount of avail-
able supply, as depicted in Fig. 5. We can see that, as ex-
pected, overall results improve as the available supply grows,
since there is less competition for the resources. Again,
EqualContention is very inefficient, and OnlineMaxSatisfied
presents, on the whole, the best results. Results with respect
to MaxDelivered are also similar to before.

7 Conclusions and Future Work
In this paper we study online allocations of perishable re-
sources (e.g. energy or computational power) in a setting

10 12 14
Supply

0

20

40

E
nv

io
u

s
ag

en
ts

10 12 14
Supply

0

20

S
at

is
fie

d
ag

en
ts

Figure 5: Number of envious agents (left) and number of satisfied
agents (right) when varying the amount of supply available at each
time step. Total number of agents is 45. The dashed line corre-
sponds to the optimal offline MaxSatisfied allocation, averaged over
20 instances.

without money and where agents dynamically enter and leave
the market. In doing so, we consider efficiency objectives
(MaxDelivered and MaxSatisfied) as well as fairness (envy-
freeness). Specifically, we provide computational complexity
results as well as the trade-offs between the objectives. We
also introduce novel online algorithms, called OnlineMaxDe-
livered and OnlineMaxSatisfied, and prove that their compu-
tational complexity is polynomial and NP-hard, respectively.
Moreover, we prove that no algorithm exists which can al-
ways guarantee a solution satisfying either efficiency objec-
tive in online settings. Also, we extend the definition of envy-
freeness to online settings, and show that an envy-free allo-
cation can be found in polynomial time using an equal con-
tention algorithm, but this algorithm performs poorly in terms
of the other objectives. Finally, our empirical results show
that the proposed OnlineMaxSatisfied algorithm achieves the
best overall performance across the considered objectives.

An interesting direction for further research is to consider
additional objectives, such as truthfulness and other notions
of fairness. In more detail, different from existing work in
mechanism design, in our settings agents do not need to re-
port valuation functions, but only constraints. Nevertheless,
agents can still misreport these. For example, it is already
known that the earliest deadline first algorithm is not incen-
tive compatible since it is sometimes beneficial to report an
earlier deadline. In future work, we will analyse which al-
gorithms are truthful. Furthermore, we would like to study
other algorithms besides equal contention that meet online
envy-freeness. Preliminary work indicates that, for agents ar-
riving at the same time, envy-freeness can only be guaranteed
by applying equal contention between those agents. How-
ever, for agents arriving at different times, other variants can
be considered. Moreover, it would be interesting to consider
approximately envy-free solutions.
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Lyons, Yvonne Hübner, Phil T Blythe, and Phil C Taylor.
A probabilistic approach to combining smart meter and
electric vehicle charging data to investigate distribution
network impacts. Applied Energy, 157:688–698, 2015.

[Perez-Diaz et al., 2019] Alvaro Perez-Diaz, Anto-
nia Marcu, Enrico H. Gerding, Haris Aziz, Serge
Gaspers, Nicholas Mattei, and Toby Walsh. Dataset
for “Fair Online Allocation of Perishable Goods
and its Application to Electric Vehicle Charging”,
https://eprints.soton.ac.uk/430960/, 2019. Last accessed
on 04/06/2019.

[Pinedo, 2006] Michael L. Pinedo. Scheduling: Theory, Al-
gorithms, and Systems. Springer, 5th edition, 2006.

[Porter, 2004] R Porter. Mechanism design for online real-
time scheduling. In Proceedings of the 5th ACM confer-
ence on Electronic commerce, pages 61–70, 2004.

[Robu et al., 2013] Valentin Robu, Enrico H. Gerding, Se-
bastian Stein, David C. Parkes, Alex Rogers, and
Nicholas R. Jennings. An Online Mechanism for Multi-
unit Demand and its Application to Plug-in Hybrid Elec-
tric Vehicle Charging. J. Artif. Int. Res., 48(1):175–230,
2013.

[Shah, 2012] Ashin D. Shah. On Coordinating Electricity
Markets: Smart Power Scheduling for Demand Side Man-
agement and Economic Dispatch. PhD thesis, Harvard
University, 2012.

[Shi et al., 2014] Huaizhou Shi, Venkatesha R. Prasad, Er-
tan Onur, and I.G.M.M Niemegeers. Fairness in wireless
networks: Issues, measures and challenges. IEEE Com-
munications Surveys, 16(1):5–24, 2014.

[Stein et al., 2012] Sebastian Stein, Enrico H. Gerding,
Valentin Robu, and Nicholas R. Jennings. A Model-Based
Online Mechanism with Pre-Commitment and its Appli-
cation to Electric Vehicle Charging. In Proceedings of the
11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2012), pages 4–8, 2012.

[Sun et al., 2018] Bo Sun, Zhe Huang, Xiaoqi Tan, and
Danny H.K. Tsang. Optimal Scheduling for Electric Ve-
hicle Charging with Discrete Charging Levels in Distribu-
tion Grid. IEEE Transactions on Smart Grid, 9(2):624–
634, 2018.

[Yao et al., 1995] Frances Yao, Alan Demers, and Scott J.
Shenker. A scheduling model for reduced CPU energy.
In Proceedings of IEEE 36th Annual Foundations of Com-
puter Science, pages 374–382, 1995.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5575


