
Approximability of Constant-horizon Constrained POMDP

Majid Khonji1,2∗ , Ashkan Jasour2 and Brian Williams2
1EECS Department, KU Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, UAE

2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, USA

majid.khonji@ku.ac.ae, {mkhonji, jasour, williams}@mit.edu

Abstract
Partially Observable Markov Decision Process
(POMDP) is a fundamental framework for planning
and decision making under uncertainty. POMDP
is known to be intractable to solve or even ap-
proximate when the planning horizon is long (i.e.,
within a polynomial number of time steps). Con-
strained POMDP (C-POMDP) allows constraints
to be specified on some aspects of the policy in
addition to the objective function. When the con-
straints involve bounding the probability of failure,
the problem is called Chance-Constrained POMDP
(CC-POMDP). Our first contribution is a reduction
from CC-POMDP to C-POMDP and a novel Inte-
ger Linear Programming (ILP) formulation. Thus,
any algorithm for the later problem can be uti-
lized to solve any instance of the former. Sec-
ond, we show that unlike POMDP, when the length
of the planning horizon is constant, (C)C-POMDP
is NP-Hard. Third, we present the first Fully
Polynomial Time Approximation Scheme (FPTAS)
that computes (near) optimal deterministic policies
for constant-horizon (C)C-POMDP in polynomial
time.

1 Introduction
A fundamental area in artificial intelligence involves plan-
ning under uncertainty. Partially observable markov deci-
sion process (POMDP) provides a model for optimal plan-
ning under actuator and sensor uncertainty, where the goal is
to find policies that maximize some measure of expected util-
ity [Kaelbling et al., 1998; Sondik, 1971]. POMDP model
is quite general and used in many areas such as reinforce-
ment learning [Kaelbling et al., 1996] and robotics [Kress-
Gazit et al., 2009]. The model extends a well-researched
framework of markov decision process (MDP) to scenar-
ios where an agent cannot accurately observe the underlying
state of the environment [Howard, 1960; Puterman, 2014].
In many real-world applications, a single measure of per-
formance is not sufficient to capture all requirements (e.g.,
a battery-operated unmanned aerial vehicle (UAV) tasked
∗Contact Author

to maximize its surveillance coverage while keeping energy
consumption below a given threshold). An extension, of-
ten called constrained POMDP (C-POMDP), encodes ad-
ditional constraints on the system to capture those require-
ments [Poupart et al., 2015]. Another approach is to bound
the probability of constraint violation, modeled as chance-
constrained POMDP (CC-POMDP) [Santana et al., 2016].
Unsurprisingly, modeling constraints as negative rewards in
the objective function leads to models that are over-sensitive
to the particular value chosen, and to policies that are overly
risk-taking or overly risk-averse [Undurti and How, 2010].

The focus in the literature has been primarily on the fully
observable constrained MDP (C-MDP), for which non-trivial
theoretical results [Altman, 1999; Feinberg and Shwartz,
1996] and efficient algorithms are known (e.g., [Trevizan
et al., 2016], [Ono et al., 2012]). On the other hand, the
state of the art for (C)C-POMDP is less mature. Despite re-
cent algorithmic developments, there has been relatively little
effort devoted to the theoretical aspects of (C)C-POMDP.
Current methods span from extensions of dynamic program-
ming [Isom et al., 2008], point-based value iteration [Kim et
al., 2011], approximate linear programming [Poupart et al.,
2015], on-line search [Undurti and How, 2010], to heuris-
tic forward search for CC-POMDP [Santana et al., 2016].
These methods generally compromise on either the optimal-
ity or the feasibility of the problem, in which they may
obtain policies that are sub-optimal or in some cases vio-
late the constraints. Another issue is that some of these
methods produce randomized policies [Poupart et al., 2015].
Arguably, users rarely trust stochasticity in decision mak-
ing in safety-critical systems [Dolgov and Durfee, 2005;
Santana et al., 2016].

In general, POMDP is known to be NP-Hard [Papadim-
itriou and Tsitsiklis, 1987]. A stronger hardness result states
that there is no α-approximation for POMDP unless P=NP
[Lusena et al., 2001], where α characterizes the worst-case
ratio between the approximate solution and an optimal so-
lution. In this context, α can be any arbitrary value with a
polynomial number of bits (hence exponentially small). The
hardness result assumes the planning horizon has a polyno-
mial number of time steps. If we assume a constant length,
POMDP can be easily solved in polynomial time using a
standard search algorithm [Russell and Norvig, 2016].

This work provides the first approximability study for

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5583



(C)C-POMDP. We show that when the planning horizon
is constant, unlike POMDP, (C)C-POMDP is still NP-hard
even when the environment is fully observable. Despite the
hardness, we show that one can obtain close-to-optimal solu-
tions in polynomial time within a user-defined accuracy pa-
rameter ε. It is worth noting that in many practical applica-
tions (e.g., self-driving vehicle), the planning horizon is rea-
sonably small (within 10 seconds). Thus, a better theoretical
understanding of the constant-horizon case is both relevant
to practice and paves the way for future development of fast
heuristics without compromising optimality.

The paper is structured as follows. Sec. 2 presents defini-
tions and relevant background. Sec. 3 provides a novel in-
teger linear programming (ILP) formulation and a reduction
from CC-POMDP into C-POMDP. Sec. 4 presents our hard-
ness result, namely, (C)C-(PO)MDP is NP-Hard even when
planning horizon is two. In Sec. 5, we provide a novel fully
polynomial time approximation scheme FPTAS for the two
problems, which is the best possible algorithm in theory in
terms of approximation ratio.

2 Problem Definition
We consider a series of discretized time steps T = {1, . . . , h}
with a fixed interval. Through out this work, we assume h is a
constant. By this assumption, we do not require our algorithm
to scale in h. This is motivated by the fact that there is no α-
approximation for POMDP for polynomial h, unless P=NP
[Lusena et al., 2001].

Definition 2.1 (C-POMDP). Constrained partially observ-
able markov decision process problem is a tuple M =
〈S,A,O, T,O, U, b0, h, U ′, C ′〉, S,A andO are finite sets of
discrete states, actions and observations; T : S × A × S →
[0, 1] is a probabilistic transition function between states, i.e.,
T (s, a, s′) = Pr(s′ | a, s), where s, s′ ∈ S and a ∈ A;
O : O × S → [0, 1] is a probabilistic observation func-
tion such that O(o, s) = Pr(o | s), where o ∈ O and
s ∈ S; U : S × A → R+ is a non-negative reward func-
tion; b0 : S → [0, 1] is an initial belief state, a probability
distribution over the state space; h is the execution horizon;
U ′ : S ×A → R+ is a secondary non-negative penalty func-
tion; and C ′ ∈ R+ is an upper bound on the total expected
penalty. The objective is to compute a conditional plan (or a
policy) that maximizes the cumulative expected reward while
keeping the cumulative expected constraint penalty at most
C ′.

Definition 2.2 (CC-POMDP). Chance constrained par-
tially observable markov decision process problem is
a tuple M = 〈S,A,O, T,O, U, b0, h,R,∆〉, where
S,A,O, T,O, U, b0, h are defined as in Def. 2.1; R ⊂ S is
a subset that represents risky states (wherein the agent can-
not perform any further action); and ∆ is the risk budget,
a threshold on the probability of failure. The objective is to
compute a conditional plan that maximizes the cumulative ex-
pected reward such that the probability of ending up in risky
states is at most ∆.

In the following, we set up notation and provide formal
definitions for the notions of conditional plan and approxi-

Figure 1: The precedence relationship between action sequences is
represented by directed edges. Hyper-nodes, represented by shaded
circles, are observation sequences Õ, while white circles are action
sequences Ã, represented by the last action of the sequence (for h =
3, A = {a1, a2}, and O = {o1, o2}).

mation algorithm. We show later how to calculate expected
reward, risk, and penalty in Sec. 3.

Define the set of all possible histories of length k, repre-
sented by interleaving action-observation sequences, as

Qk ,


{q = 〈a1q, o2q, a3q, . . . , ak−1q , okq 〉
| a2t−1q ∈ A, o2tq ∈ O, t ∈ T }, if k is even,
{q = 〈a1q, o2q, a3q, . . . , ok−1q , akq 〉
| a2t−1q ∈ A, o2tq ∈ O, t ∈ T }, if k is odd.

Notice when k is even, a sequence q ∈ Qk ends with an
observation, whereas if k is odd, the sequence ends with an
action. For convenience, we define a function τ : N+ → T
that maps indices k onto time steps in T as follows:

τ(k) ,

{
k
2 if k is even,
k+1
2 if k is odd.

Let Õ ,
⋃
k is even,
τ(k)∈T

Qk be the set of all possible sequences that

end with an observation. Similarly, define Ã ,
⋃
k is odd,
τ(k)∈T

Qk

to be the set of all possible sequences that end with an action.
For a sequence q ∈ Õ and action a ∈ A (resp. observation
o ∈ O), we write qa (resp. qo) to denote the concatenation
q‖〈a〉 (resp. q‖〈o〉). Also, for any two sequences q, q′ ∈
Ã ∪ Õ we write qq′ to denote q‖q′. Let |q| be the length of
sequence q. We refer to the empty sequence by 0.

Given a sequence q ∈ Õ ∪ Ã, let O(q) and A(q) respec-
tively denote the set of observation and action indices along
the sequence. We write oiq and ajq to denote the i-th obser-
vation and j-th action, respectively, for i ∈ O(q), j ∈ A(q).
For convenience, we write q − k to denote the sequence mi-
nus the last k elements (where an element is either an action
or observation). For example, q = a1o2a3, q − 1 = a1o2,
q − 2 = a1, and so on. Next, define a precedence relation-
ship between action sequences in Ã by a directed tree graph
Ga = (Ã, Ea) (depicted in Fig. 1) such that (q, q′) ∈ Ea if
and only if q′ = qoa for some o ∈ O and a ∈ A1.

1Note that q ∈ Ã (resp. q′ ∈ Õ) represents a sequence, while
a ∈ A (resp. o ∈ O) represents a single action (resp. observation).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5584



Figure 2: A conditional plan is represented by red circles over action
sequences, represented by the last action. (h = 3, A = {a1, a2},
and O = {o1, o2}.)

We define a binary decision variable xq for each sequence
such that xq = 1 indicates the last action in q is selected,
and xq = 0 otherwise. We write x , (xq)q∈Ã to denote the
vector of all decision variables.
Definition 2.3. x ∈ {0, 1}|Ã| is a conditional plan if,∑

a∈A
xqa ≤ 1, ∀q ∈ Õ ∪ {0}, (1)

xq ≥ xq′ , ∀(q, q′) ∈ Ea. (2)

Cons. (1) enforces that at most one action is selected
for each observation (see the red circles in Fig. 2), while
Cons. (2) maintains the precedence relationship, that is, if an
action is selected then all its ancestors (defined by the prece-
dence relationship Ga) must be selected as well. The two
constraints enforce a tree structure, also known as a policy
tree.

We note that the definition above does not enforce a full-
horizon policy tree. We deliberately highlight this defini-
tion because unlike POMDP where there always exists a
full-horizon solution, such solution may not exist for (C)C-
POMDP due to the restriction imposed by the constraint (see
Sec. 3.3 below). In other words, the highest reward actions
may consume all the risk budget before reaching the horizon.
Thus, one may opt to prioritize objective optimization over
policy completeness. In many practical applications, xq = 0
can be interpreted as a safe maneuver. For example, an au-
tonomous underwater glider, tasked to maximize expected
science return while bounding the risk of collision [Timmons
and Williams, 2015], can execute a safe-extract action any-
time (by changing its buoyancy so that it floats to the surface
for extraction).

We note that one can construct a scenario in which a full-
horizon solution exists for CC-POMDP but the current state-
of-the-art approach returns infeasible [Santana et al., 2016]).
Therefore we find it important to highlight this new aspect
of the constrained version of POMDP that hasn’t been dis-
cussed before. The results of this paper can be extended to
enforce full-horizon policies. Due to the paucity of space, we
omit the details and refer interested readers to the full version
of the paper.

The subject of approximation algorithms is well-studied in
the theoretical computer science community [Vazirani, 2013].

In the following, we define some standard terminology for ap-
proximation algorithms. Consider a maximization problem Π
with non-negative objective function f(·), let F be a feasible
solution to Π and F ? be an optimal solution to Π. f(F ) de-
notes the objective value of F . Let OPT = f(F ?) be the opti-
mal objective value of F ?. A common definition of approxi-
mate solutions is α-approximation, where α characterizes the
approximation ratio between the approximate solution and an
optimal solution.
Definition 2.4 ([Vazirani, 2013]). For α ∈ [0, 1], an α-
approximation to maximization problem Π is an algorithm
that obtains a feasible solution F for any instance such that
f(F ) ≥ α · OPT.

In particular, polynomial-time approximation scheme
(PTAS) is a (1− ε)-approximation algorithm to a maximiza-
tion problem, for any ε > 0. The running time of a PTAS is
polynomial in the input size for every fixed ε, but the expo-
nent of the polynomial might depend on 1/ε. In other words,
PTAS allows to trade the approximation ratio against the run-
ning time. An even stronger notion is a fully polynomial-time
approximation scheme (FPTAS), which requires the running
time to be polynomial in both input size and 1/ε.

3 Novel Formulation for (C)C-POMDP
In this section, we present a novel ILP formulation for
CC-POMDP and C-POMDP, and show the similarity be-
tween the two problems. We observe that the later is in fact
more general. In other words, any instance of CC-POMDP
can be reduced to an instance of C-POMDP. The reduc-
tion implies that any algorithm for C-POMDP can be also
used to solve CC-POMDP. It also implies that because CC-
POMDP is NP-Hard (as we show in Sec. 4), C-POMDP
must be NP-Hard as well. The key idea for the new ILP for-
mulation is that we can calculate rewards and risks (penal-
ties for C-POMDP) independently from decision variable x,
hence we get linear constraints.

3.1 Calculating Reward
We show how to compute the cumulative expected reward
of a conditional plan. The cumulative expected penalty for
C-POMDP is obtained in a similar way, thus we omit for
brevity. The reward of the last action in a sequence q ∈ Ã
is denoted by uq . Essentially, the reward is the product of
the probability of sequence q occurring, denoted by ρ(q), and
the sum of expected reward of the last action a|q|q in that se-
quence, denoted by v(q):

uq , ρ(q) · v(q). (3)
As shown by [Aras et al., 2007], we can recursively compute
ρ(q) by the following

ρ(q) , Pr
( ∧
i∈O(q)

oiq

∣∣∣ b0 ∧
j∈A(q)

ajq

)
=

∏
i∈O(q)

Pr
(
oiq

∣∣∣ b0 ∧
j∈A(q)
j<i

ajq

)

=
∏

i∈O(q)

Pr(oiq | bi−1q ),

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5585



for q ∈ Ã ∪ Õ, |q| > 1, where bi−1q is the prior belief state
after action ai−1q in q, defined by

bi−1q (s) ,
∑
s′∈S

T (s′, ai−1q , s) · bi−2q (s′).

The posterior belief biq is computed as

biq(s) ,
O(oiq, s) · bi−1q (s)

Pr(oiq | bi−1q )
, ∀s ∈ S,

where Pr(oiq | bi−1q ) ,
∑
s∈S b

i−1
q (s) · O(oiq, s). Notice that

by the definition of a sequence, if i ∈ O(q) corresponds to an
observation then (i−1) ∈ A(q) corresponds to an action. For
|q| = 1, the probability ρ(q) , 1 because such state is always
reachable. Hence, the expected reward v(q) of sequence q ∈
Ã is computed by

v(q) ,
∑
s∈S

bq−1(s) · U(s, a|q|q ). (4)

The total expected reward of a conditional plan x is given by∑
q∈Ã uqxq.

Remark 1. Given a sequence q ∈ Ã, the reward uq can be
computed independently from a conditional plan x.

3.2 Calculating Risk
We adopt the notion of execution risk from [Santana et al.,
2016; Santana and Williams, 2015], denoted by er(0), to
compute the probability of ending up in risky states starting
from the initial sequence 0. The chance constraint requires
that

er(0) ≤ ∆. (5)

For a given belief b, let r(b) ,
∑
s∈R b(s) be the expected

risk of failure. We write the execution risk as a function of a
conditional plan x ∈ {0, 1}|Ã| using the recursion in Eqn. (6)
(see [Santana et al., 2016] for a systematic derivation). P̃r(o |
bq−1) is the observation probability, and bq−1(s) and b̃q(s)
are safe prior and posterior beliefs, respectively, defined by,

P̃r(o | bq−1) ,
∑
s′∈S

O(o, s′)bq−1(s′),

bq−1(s) ,

∑
s′∈S\R T (s′, a, s)̃bq−2(s′)

1− r(̃bq−2)
,

b̃q(s) ,
O(o

|q|
q , s) · bq(s)

P̃r(o | bq−1)
,

for q ∈ Õ, and where b̃0q = b0. The reason we distinguish
safe prior and posterior from the standard definitions is that
reaching history q implies, roughly speaking, that none of the
past states were in R, otherwise no action could have been
taken to proceed.

Next, we solve the recursive Eqn. (6) and rearrange the
terms to obtain

er(0) = r(b0) +
∑

q∈Ã:τ(|q|)<h

(∑
o∈O

( ∏
i∈O(qo)

(
1− r(̃bi−2qo )

)
· P̃r(oiqo | b

i−1
qo )

)
· r(̃bqo)

)
· xq

+
∑

q∈Ã:τ(|q|)=h

(( ∏
i∈O(q)

(
1− r(̃bi−2q )

)
· P̃r(oiq | b

i−1
q )

)
· r(bq)

)
· xq, (7)

where b̄iq and b̃jq are the belief states after the i-th action and j-
th observation, respectively. For q ∈ Ã, write the coefficient
of xq from Eqn. (7) as

rq ,



∑
o∈O

(∏
i∈O(qo)

(
1− r(̃bi−2qo )

)
· P̃ (oiqo | b

i−1
qo )

)
·r(̃bqo), if τ(|q|) < h,(∏
i∈O(q)

(
1− r(̃bi−2q )

)
· P̃ (oiq | b

i−1
q )

)
·(1− r(̃bq−1)) · r(bq), if τ(|q|) = h.

(8)
By Eqns. (7) and (8), the chance Cons. (5) can be written as∑

q∈Ã

rq · xq ≤ ∆− r(b0).

Remark 2. For a given sequence q ∈ Ã, the risk rq can be
computed independently from a conditional plan x.

3.3 ILP Formulation for CC-POMDP
Chance-constrained POMDP
Given a precomputed (uq, rq)q∈Ã ∈ R2|Ã|

+ from Eqns. (3)

and (8), a precedence graph Ga = (Ã, Ea), Õ, C , ∆ −
r(b0), C ∈ R+, CC-POMDP can be formulated by the fol-
lowing integer linear program:

(ILP) max
xq∈{0,1}

∑
q∈Ã

uq · xq

Subject to
∑
a∈A

xqa ≤ 1, ∀q ∈ Õ ∪ {0}, (9)

xq ≥ xq′ , ∀(q, q′) ∈ Ea, (10)∑
q∈Ã

rq · xq ≤ C, (11)

Constrained POMDP
In CC-POMDP, a secondary objective function U ′(s, a) is
given as a constraint with an upper bound C ′ ∈ R+ on the
total expected value. We can use the above ILP formulation
for C-POMDP with the following changes in the coefficients:
rq is replaced by a penalty r′q , calculated in the same way
as uq replacing U(s, a) by U ′(s, a) in Eqn. (4) (as shown in
Sec. 3.1). Thus Cons. (11) is replaced by

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5586



er(q) ,


r(b0) + (1− r(b0))

∑
a∈A

∑
o∈O P̃r(o | ba) · er(ao) if q = 0,

r(̃bq) · xq−1 + (1− r(̃bq))
∑
a∈A

∑
o∈O P̃r(o | bqa) · er(qao), if q ∈ Õ and τ(|q|+ 2) ≤ h,

r(̃bq) · xq−1 + (1− r(̃bq))
∑
a∈A er(qa), if q ∈ Õ and τ(|q|+ 1) = h,

r(bq) · xq, if q ∈ Ã and τ(|q|) = h,

(6)

∑
q∈Ã

r′qxq ≤ C ′. (12)

With the above formulation, we observe the similarity be-
tween the two problems. We highlight that C-POMDP is
actually more general, because the parameters have higher
degrees of freedom as we show below.

First, it is worth noting that one can slightly generalize C-
POMDP by allowing the penalty function to be a function of
state and action history instead of a single action, namely,U ′ :

S ×Ã → R+ (denoted by CC-POMDP*). Any instance I =(
(uq, rq)q∈Ã, C

)
of CC-POMDP can be easily reduced to an

instance I ′ =
(
(u′q, r

′
q)q∈Ã, C

′) of C-POMDP* as follows:

set C ′ = C and define U ′(s, q) , rq
ρ(q) , q ∈ Ã. Following

the same lines in Sec. 3.1 we obtain r′q = rq (and u′q = uq).
Any solution to such instance of C-POMDP* is also feasible
to that of CC-POMDP with the same objective value.

Second, we note that C-POMDP (with the standard tran-
sition function) can be also seen as a generalization of CC-
POMDP even for the fully observable case (C-MDP) . Given
an instance I of CC-POMDP, we can compute an instance
I ′ of C-(PO)MDP as follows: set the state space S ′ and ob-
servation space O′ of C-POMDP to be equal to the set of
observation sequences of CC-POMDP, S ′ = O′ = Õ ∪{0};
set O(q, q′) = 1 if q = q′ for q, q′ ∈ S ′, and 0 otherwise
(hence fully observable); set T (q, a, q′) = 1

|O| if q′ = qao

and o ∈ O, and 0 otherwise; U(q, a) = uq and U ′(q, a) = rq
for q ∈ S ′, a ∈ A. Following the steps in Sec. 3.1 we obtain
r′q = rq and u′q = uq .

4 Hardness of CC-POMDP
In this section we provide our main hardness result. The re-
sult is tightly focused on a highly restricted subset of CC-
POMDP instances, with a planning horizon of two and a
fully observable environment. This provides an argument
that, in general, exact algorithms are infeasible for most CC-
POMDP instances.

Theorem 4.1. CC-POMDP is NP-Hard even for the fully
obervable case (O = S), time horizon h = 2, and a single
action A = {a}.

Proof. We present a reduction from the (weakly) NP-Hard
knapsack problem (KP) to CC-POMDP.

Definition 4.2 (KP). Given a set of items {1, . . . , n}, each
associated with a value vi ∈ R+ and a weight wi ∈ R+,
i = 1, . . . , n, and a total capacity P ∈ R+; find a subset of
items that achieve the highest aggregate value subject to the
capacity constraint. More precisely,

Figure 3: A gadget for the reduction from KP to CC-POMDP. Blue
arrows represent the state transition function, red dashed circles rep-
resent the risky state sn+2, and green circles represent safe states.
The subtree within the gray box represents the precedence relation-
ship between action nodes.

(KP) max
xi∈{0,1}

n∑
i=1

vi · xi s.t.
n∑
i=1

wi · xi ≤ P.

W.l.o.g. we assume P ≤ 1 and
∑n
i=1 wi = 1 (which

can be easily achieved via normalization). We present a
reduction from an instance I of KP to instance I ′ of CC-
POMDP as follows. Let S = {s1, s2, . . . , sn, sn+1, sn+2},
R = {sn+2}, O = S , A = {a}, and ∆ = P

2 . Since the
system is fully observable (O(si, sj) = 1 for i = j, and
0 otherwise), we have b0(sn+1) = 1, and b0(s) = 0 for
s ∈ S\{sn+1}.

Based on the above, r(b0) = 0, C = ∆ − r(b0) = P
2 .

Define the state transition function as follows, for s, s′ ∈ S ,
a ∈ A:

T (s, a, s′) ,


wi if s = sn+1, s

′ = si ∈ S\R,
1
2 if s ∈ S\{sn+1, sn+2}, s′ ∈ R,
1
2 if s = s′ ∈ S\R
1 if s = s′ = sn+2,
0 otherwise.

(13)
Define the reward function as

U(s, a) ,

{
vi
wi

if s = si ∈ S\{sn+1, sn+2},
0 otherwise. (14)

See Fig. 3 for a pictorial illustration of instance I ′.
The precedence graph is given by Ga = (Ã, Ea), where

Ã = {a, as1a, as2a, . . . , asna, asn+1a, asn+2a}, and Ea is
defined as shown in Fig. 3 (the subtree within the box). Fol-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5587



lowing the steps in Secs. 3.1–3.2,

P̃r(oi | ba) = Pr(oi | ba) = ba(si) = ba(si)

= T (sn+1, a, si) =

{
wi if i = 1, . . . , n,
0 otherwise;

b̃aoi(si) = baoi(si) =

{
1 if i = 1, . . . , n,
0 otherwise;

baoia(s) = baoia(s) =

{
1
2 if s ∈ {si, sn+2},
0 otherwise,

where oi = si, i = 1, . . . , n+2. Hence, we obtain rq , q ∈ Ã,
as follows:

ra =
∑
o∈O

(1− r(b0)) · P̃ (o | b0) · r(̃bao) = 0,

raoia = (1− r(b0)) · P̃ (oi | ba) · (1− r(̃baoi)) · r(b̄aoia)

= wi

2 , for i = 1, . . . , n,

raon+1a = raon+2a = 0.

We also obtain uq as follows:

ua = ρ(a) ·
∑
s∈S

b0(s)U(s, a) = 0,

uaoia = Pr(oi | ba) ·
∑
s∈S

baoi(s) · U(s, a)

= wiU(si, a) = wi
vi
wi

= vi, for i = 1, . . . , n,

uaon+1a = uaon+2a = 0.

Now, any optimal solution x∗ for instance I ′, of value
denoted by OPT(I ′), must satisfy x∗a = 1; otherwise,
OPT(I ′) = 0 (by Cons. (10)), which is smaller than that of the
feasible solution x′a = 1, x′as1a = 1, x′q = 0, for q 6= as1a,
contradicting the optimality of x∗. Let V (x) and V (x′) de-
note the objective values of solution x ∈ {0, 1}n for KP(I)

and x′ ∈ {0, 1}|Ã| for CC-POMDP(I ′), respectively.
Given a non-trivial feasible solution x′ for CC-

POMDP(I ′) (such that x′a = 1, x′asn+1a = x′asn+2a = 0),
one can obtain a solution x for KP(I) such that xi , x′asia.
By Cons. (11),∑

q∈Ã

rq · x′q ≤ C ⇐⇒
n∑
i=1

wi

2 x
′
asia + 0x′a + 0x′asn+1a

+ 0x′asn+2a ≤
P
2 ⇐⇒

n∑
i=1

wixi ≤ P. (15)

Hence, solution x is feasible for KP(I). Note that the objec-
tive value of x′ is equivalent to that of x:

∑
q∈Ã

uq · x′q =
n∑
i=1

vi · xi, (16)

Hence, V (x) = OPT(I ′). It remains to show that x is
optimal to KP(I). Suppose that there exists a solution y
for KP(I) such that V (y) > OPT(I ′), then we can find

x′ for CC-POMDP(I ′) such that x′asia ← yi, x′a = 1,
x′asn+1a = x′asn+2a = 0, which is a feasible solution by (15)
and Cons. (10), and V (x′) > OPT(I ′) by (16), contradicting
the optimality of x∗. Therefore OPT(I) = OPT(I ′).

Note that if there exists an optimal algorithm for CC-
POMDP, then we can use it to obtain optimal solutions for
KP. Since KP is NP-Hard, we conclude that such algorithm
does not exist, unless P=NP.

5 Algorithm
In this section, we provide an FPTAS that is applicable to
both C-POMDP and CC-POMDP. We showed in Sec. 4 that
CC-POMDP is NP-Hard, which implies that the FPTAS is
the best polynomial time algorithm in theory in terms of ap-
proximation ratio (unless P=NP). In fact, we consider a gen-
eralization of the two problems by allowing arbitrary values
for rq , uq , C in the ILP formulation. The new problem is
also a generalization of the so-called precedence constrained
knapsack problem (PKP) under tree topologies [Johnson and
Niemi, 1983; Kellerer et al., 2004].

Definition 5.1 (PKP). Given a directed out-tree graph Gp =
(Vp, Ep), where nodes represent items i, each of which has a
value ui ∈ R+ and a weight ri ∈ R+, and edges correspond
to the precedence order between items such that an item can
be packed into the knapsack only if its parent is also packed
(precedence relationship). The goal is to find a subset of items
that maximizes the total value while satisfies the precedence
relationship and the total weight is at most C.

PKP can be formulated using the above ILP with |O| = 1
(whereas rq, uq, C are allowed to be arbitrary non-negative
numbers). When |O| > 1, we call this generalization
multiple-choice precedence constrained knapsack problem
(MPKP).

Definition 5.2 (MPKP). Given a directed And-Or graph
G = (V, E), where nodes are partitioned into And nodes and
Or nodes. Contrary to PKP, only an And node i is associated
with a value ui ∈ R+ and a weight ri ∈ R+. Edges cor-
respond to the precedence order between And-Or nodes such
that a node is selected only if its parent is also selected (prece-
dence relationship). In addition, for an Or node, at most one
of its children is allowed to be selected (disjunction condi-
tion). The goal is to find a subset of nodes that maximizes the
total value of And nodes while satisfies the precedence rela-
tionship between And-OR nodes, the disjunction condition at
Or nodes, and the total weight of And nodes is at most C.

In the following, we present an FPTAS that solves MPKP.
The algorithm is a non-trivial extension of the FPTAS for
the PKP problem [Johnson and Niemi, 1983; Kellerer et al.,
2004] to account for And-Or graphs. The algorithm can also
solve both C-POMDP and CC-POMDP since MPKP is a
generalization of the two problems. First, we set up nota-
tion needed to describe the algorithm. For simplicity, we
use the terminologies of CC-POMDP, namely, we say “re-
ward” instead of “value” and “risk” instead of “weight”. De-
fine an And-Or graph G = (V, E), where the set of nodes
V , Ã∪(Õ∪{0}) is a partition such that Ã∩(Õ∪{0}) = ∅,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5588



and

E ,
{

(q, q′) | q ∈ V s.t. τ(|q|) < h,(
(if q ∈ Õ ∪ {0}, q′ = qa, a ∈ A)

or (if q ∈ Ã, q′ = qo, o ∈ O)
)}
.

We call nodes in Ã And nodes, while nodes in Õ ∪ {0} are
called Or nodes. The tree is rooted at node 0.

Based on E , we order nodes in V following the standard
depth-first search order. More precisely, let G′(j, i) ⊆ G rep-
resent the subtree induced by j-th node in that order, the first
i children of j and all their successors, and all vertices in
V such that their indices are lower than j. In other words,
G′(j, i) is the expanded subtree using the depth first search
at node j after fully expanding its i-th child. For simplic-
ity, we say node j instead of the j-th node in the depth
first search order. With a slight abuse of notation, we write
V = {0, 1, . . . ,m}, where j ∈ V refers to a sequence in
Ã∪Õ∪{0} in that order. Let n = |Ã| (andm−n = |Õ|). In
the following, we use subscript j instead of q to refer to nodes
in V . We write rj and uj to denote the risk and reward of the
respective sequence. Let δ(j) ⊆ V denote the set of children
of j in G. As a slight practical generalization, we can allow
|δ(j)| to be different for each j.

5.1 Pseudo Polynomial-time Algorithm
We provide an exact algorithm to solve MPKP based on a
novel dynamic program. The running time is polynomial in
L, defined as the set of all possible objective values. In gen-
eral the size of L is exponential, but it could be polynomial
for certain applications, e.g., when uj = 1 for all j ∈ Ã then
|L| = n. We show in the subsection below that with a proper
rounding scheme, one can obtain an FPTAS for any large L.

Define a 3D table D(j, i, `), where each cell corresponds
to the minimum weight feasible solution within the subtree
G′(j, i) that achieve an objective value of at least ` ∈ L, ac-
cording to following rules. For ` ∈ L,
R1: j ∈ O ∪ {0} and i = 0,

D(j, 0, `) ,∞.

R2: j ∈ δ(0) ⊆ Ã and i = 0,

D(j, 0, `) ,

{
rj if uj ≥ `,
∞ otherwise.

R3: j ∈ Ã ∪ Õ ∪ {0} and i > 0,

D(j, i, `) , min
{
D(j, i−1, `),D(ji, |δ(ji)|, `)

}
,

where ji ∈ δ(j) is the i-th child of j.

R4: j ∈ Ã\δ(0) and i = 0,

D(j, 0, `) ,

 D(k′, t− 1, [`− uj ]+) + rj ,
if D(k′, t− 1, [`− uj ]+) + rj ≤ C
∞, otherwise,

where [β]+ = β if β ≥ 0, and [β]+ = 0 if β < 0; j is a
child of k, and k is the t-th child of k′. Notice that by the
definition of G, j ∈ Ã implies that k ∈ Õ and k′ ∈ Ã.

Algorithm 1 MPKP-FPTAS[(uj , rj)j∈Ã, C,G, ε]

Input: Rewards and risks (uj , rj)j∈Ã; capacity C; And-Or
graph G; accuracy parameter ε

Output: (1− ε)-solution x′ to MPKP
1: Let K = εP

n

2: ūj ←
⌊uj

K

⌋
for all j ∈ Ã

3: x′ ← MPKP-Exact
[{

1, 2, . . .
⌊
nP
K

⌋}
, (uj , rj)j∈Ã, C,G

]
4: return x′

By the condition in R4, the process always maintains fea-
sibility with respect to the capacity Cons. (11). Note
that the precedence constraints are systematically main-
tained throughout the entire process. The optimum solu-
tion value corresponds to the maximum value ` ∈ L for
which D(0, |δ(0)|, `) < ∞. Through out the above steps,
one can compute the corresponding binary vector x′ such
that

∑
j∈Ã ujx

′
j = `. We denote the algorithm that com-

putes x′ for any instance I = ((uj , rj)j∈Ã, C,G, Ã, Õ) by
MPKP-Exact[L, (uj , rj)j∈Ã, C,G]. The running time of
MPKP-Exact[L, (uj , rj)j∈Ã] is O(n|L|). (In the context

of constant horizon (C)C-POMDP, n =
∑h
t=1 |A|t|O|t−1.)

Hence, we state the following lemma.
Lemma 5.3. MPKP-Exact[L, (uj , rj)j∈Ã, C,G] obtains
optimal solutions for MPKP in O(n|L|).

5.2 FPTAS
In this section we present our (1 − ε)-approximation algo-
rithm for MPKP. We follow a standard rounding technique
for knapsack [Vazirani, 2013]. The basic idea is to round
all rewards uj such that the set of all possible objective
values L has polynomial cardinality, while closely approxi-
mates the actual set of all possible rewards. Then, we en-
voke MPKP-Exact[·] with the new L. More precisely, let
P , maxj∈Ã uj be the maximum reward. Note that nP is a
trivial upper bound on OPT. Now, divide all rewards uj by a
factor K , εP

n and then round down. As a result, the set of
all possible rewardsL = {0, 1, 2, . . .

⌊
nP
K

⌋
} has a polynomial

length, |L| = bn
2

ε c + 1. Theorem 5.4 shows such rounding
yields a good approximation. The pseudocode is provided in
Alg. 1, denoted by MPKP-FPTAS.
Theorem 5.4. MPKP-FPTAS is a fully polynomial time ap-
proximation scheme for MPKP and runs in O( 1

εn
3).

A proof can be obtained following a standard rounding
scheme [Vazirani, 2013]. Due to the lack of space, we omit
our proof.
Remark. One can speedup the algorithm in practice using a
smaller set L with a tighter upper bound on the optimal. For
example, instead of nP , one can use the objective value of the
linear relaxation of MPKP, such that xj ∈ [0, 1], as an upper
bound, which can be obtained using a standard LP solver.
Corollary 5.5. MPKP-FPTAS is a fully polynomial time
approximation scheme for (C)C-POMDP and runs in
O( 1

ε |A|
3h|O|3(h−1)).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5589



6 Conclusion
In this work, we provide a fundamental study for constant-
horizon (C)C-POMDP problem. A reduction is given from
CC-POMDP problem to C-POMDP, and a novel ILP for-
mulation that can be solved using standard ILP solvers. We
show that CC-POMDP (consequently, C-POMDP) is NP-
Hard even for the fully observable case and a planning hori-
zon of two. We provide an FPTAS that can solve a general-
ization of constant-horizon C-POMDP called MPKP (and
hence solve (C)C-POMDP) in polynomial time, within a
bounded optimally gap given as input. We believe our results
provide fundamental insights into the problem and can lead
to future development of faster heuristics for (C)C-POMDP
without compromising optimality.

References
[Altman, 1999] Eitan Altman. Constrained Markov decision

processes, volume 7. CRC Press, 1999.
[Aras et al., 2007] Raghav Aras, Alain Dutech, François

Charpillet, et al. Mixed integer linear programming for
exact finite-horizon planning in decentralized pomdps. In
ICAPS, pages 18–25, 2007.

[Dolgov and Durfee, 2005] Dmitri Dolgov and Edmund
Durfee. Stationary deterministic policies for constrained
mdps with multiple rewards, costs, and discount factors. In
International Joint Conference on Artificial Intelligence,
volume 19, page 1326, 2005.

[Feinberg and Shwartz, 1996] Eugene A Feinberg and Adam
Shwartz. Constrained discounted dynamic program-
ming. Mathematics of Operations Research, 21(4):922–
945, 1996.

[Howard, 1960] Ronald A Howard. Dynamic programming
and markov processes. 1960.

[Isom et al., 2008] Joshua D Isom, Sean P Meyn, and
Richard D Braatz. Piecewise linear dynamic programming
for constrained pomdps. In AAAI, volume 1, pages 291–
296, 2008.

[Johnson and Niemi, 1983] David S Johnson and KA Niemi.
On knapsacks, partitions, and a new dynamic program-
ming technique for trees. Mathematics of Operations Re-
search, 8(1):1–14, 1983.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L
Littman, and Andrew W Moore. Reinforcement learn-
ing: A survey. Journal of artificial intelligence research,
4:237–285, 1996.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L
Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intel-
ligence, 101(1-2):99–134, 1998.

[Kellerer et al., 2004] Hans Kellerer, Ulrich Pferschy, and
David Pisinger. Knapsack Problems. Springer, 2004.

[Kim et al., 2011] Dongho Kim, Jaesong Lee, Kee-Eung
Kim, and Pascal Poupart. Point-based value iteration for
constrained pomdps. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[Kress-Gazit et al., 2009] Hadas Kress-Gazit, Georgios E
Fainekos, and George J Pappas. Temporal-logic-based re-
active mission and motion planning. IEEE transactions on
robotics, 25(6):1370–1381, 2009.

[Lusena et al., 2001] Christopher Lusena, Judy Goldsmith,
and Martin Mundhenk. Nonapproximability results for
partially observable markov decision processes. Journal
of artificial intelligence research, 14:83–103, 2001.

[Ono et al., 2012] Masahiro Ono, Yoshiaki Kuwata, and
J Balaram. Joint chance-constrained dynamic program-
ming. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pages 1915–1922. IEEE, 2012.

[Papadimitriou and Tsitsiklis, 1987] Christos H Papadim-
itriou and John N Tsitsiklis. The complexity of markov
decision processes. Mathematics of operations research,
12(3):441–450, 1987.

[Poupart et al., 2015] Pascal Poupart, Aarti Malhotra, Pei
Pei, Kee-Eung Kim, Bongseok Goh, and Michael Bowl-
ing. Approximate linear programming for constrained par-
tially observable markov decision processes. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

[Puterman, 2014] Martin L Puterman. Markov decision pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[Russell and Norvig, 2016] Stuart J Russell and Peter
Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[Santana and Williams, 2015] Pedro Henrique Santana and
Brian C Williams. Dynamic execution of temporal plans
with sensing actions and bounded risk. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

[Santana et al., 2016] Pedro Santana, Sylvie Thiébaux, and
Brian Williams. Rao*: an algorithm for chance con-
strained pomdps. In Proc. AAAI Conference on Artificial
Intelligence, 2016.

[Sondik, 1971] Edward J Sondik. The optimal control of par-
tially observable markov decision processes. PhD the sis,
Stanford University, 1971.

[Timmons and Williams, 2015] Eric Timmons and Brian C
Williams. Enumerating preferred solutions to conditional
simple temporal networks quickly using bounding con-
flicts. In Workshops at the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[Trevizan et al., 2016] Felipe Trevizan, Sylvie Thiébaux, Pe-
dro Santana, and Brian Williams. Heuristic search in dual
space for constrained stochastic shortest path problems.
In Twenty-Sixth International Conference on Automated
Planning and Scheduling, 2016.

[Undurti and How, 2010] Aditya Undurti and Jonathan P
How. An online algorithm for constrained pomdps. In
2010 IEEE International Conference on Robotics and Au-
tomation, pages 3966–3973. IEEE, 2010.

[Vazirani, 2013] Vijay V Vazirani. Approximation algo-
rithms. Springer Science & Business Media, 2013.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5590


