
The Parameterized Complexity of Motion Planning for Snake-Like Robots

Siddharth Gupta1∗ , Guy Sa’ar1† , Meirav Zehavi1‡
1Ben-Gurion University of the Negev, Israel

{siddhart, saag}@post.bgu.ac.il, meiravze@bgu.ac.il

Abstract
We study a motion-planning problem inspired by
the game Snake that models scenarios like the
transportation of linked wagons towed by a loco-
motor to the movement of a group of agents that
travel in an “ant-like” fashion. Given a “snake-
like” robot with initial and final positions in an en-
vironment modeled by a graph, our goal is to de-
cide whether the robot can reach the final position
from the initial position without intersecting itself.
Already on grid graphs, this problem is PSPACE-
complete [Biasi and Ophelders, 2018]. Neverthe-
less, we prove that even on general graphs, it is
solvable in time kO(k)|I|O(1) where k is the size of
the robot, and |I| is the input size. Towards this, we
give a novel application of color-coding to sparsify
the configuration graph of the problem. We also
show that the problem is unlikely to have a poly-
nomial kernel even on grid graphs, but it admits a
treewidth-reduction procedure. To the best of our
knowledge, the study of the parameterized com-
plexity of motion problems has been largely ne-
glected, thus our work is pioneering in this regard.

1 Introduction
A basic single-agent movement problem can be modeled by
an agent (representing a robot or a person) that has an initial
state (also called configuration), a description of valid tran-
sitions between states, and a task to accomplish. Common
tasks are to reach some geographical location while avoid-
ing unwelcome (mobile or static) obstacles, collecting or dis-
tributing a set of items, or rearranging the environment to
be of a specific form. The agent itself might have various
features or restrictions, which are reflected in the definition
of states and transitions. When several agents are present
(in a multi-agent movement problem), the coordination be-
tween them might also play a major role (see [Demaine et
al., 2018] and references within). Arguably, given that we
handle physical objects, the most basic requirement is that
∗Supported in part by the Zuckerman STEM Leadership Program
†Supported in part by the Frankel Foundation
‡Supported by Israel Science Foundation (ISF) grant no. 1176/18

the agent must never intersect itself as well as other objects.
Problems based on motion planning are ubiquitous in vari-
ous aspects of modern life. In recent years, the study of
such problems has gained increasing interest from both prac-
tical and theoretical viewpoints [Schwartz and Sharir, 1988;
Galceran and Carreras, 2013; Paden et al., 2016; Yang et
al., 2016]. Unfortunately, the perspective of parameter-
ized complexity—a central paradigm to design algorithms for
computationally hard problems—has been largely overlooked
in this context. In this paper, we present a comprehensive pic-
ture of the parameterized complexity of a single-agent move-
ment problem called SNAKE GAME, whose formulation is
inspired by the classic video game of the same name.

In the past decade, the study of the theory behind the com-
putational complexity of puzzles (such as video games) has
become very popular [Hearn and Demaine, 2009; Kendall et
al., 2008; Viglietta, 2014]. These puzzles are often based
on motion planning problems that can model tasks to be per-
formed by agents in real-life scenarios. Moreover, their for-
mulations are frequently simple enough to provide a clean ab-
straction of basic issues in this regard, therefore making them
attractive for laying foundations for general analysis. For ex-
ample, a very long line of work analyzed the complexity of
various push-block puzzles (see [Demaine et al., 2017] and
references within), where a box-shaped agent with the ability
to push/pull other boxes should utilize its ability in order to
reach one position from another. We remark that more of-
ten than not, studies of the theory behind the computational
complexity of puzzles only provide negative results that as-
sert NP-hardness or PSPACE-completeness.

The classic game Snake is among the most well-known
video games that involve the motion of a single agent. The
game dates back to 1978, and has enjoyed implementation
across a wide range of platforms since then. Unlike most
other video games, the popularity of Snake has hardly de-
creased despite its age—indeed, new versions of Snake still
appear to this day. We study the parameterized complexity
of a problem inspired by Snake that was introduced by [Biasi
and Ophelders, 2018], which we call SNAKE GAME. This
problem is of relevance to real-world motion planning prob-
lems for agents of a “snake-like” shape (as discussed below).
Given such a robot with an initial position and a final posi-
tion in an environment (modeled by a graph), our objective
is to determine whether the robot can reach the final position

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5670

from the initial position without intersecting itself. Roughly
speaking, the position of the robot is modeled by a simple or-
dered path in the graph, and one position P is reachable (in
one step) from another position P ′ if the path P can be ob-
tained from P ′ by adding one vertex to the beginning of P ′
and removing one vertex from its end. The (immobile) ob-
stacles in the environment are implicitly encoded in the input
graph—“obstacle-free” physical locations are represented by
vertices, and edges indicate which locations are adjacent.

Nowadays, robots of a “snake-like” shape are of substan-
tial interest–in particular, they are built and used in practice
for medical operations [Degani et al., 2006; Grifantini, 2008;
Berthet-Rayne et al., 2018] as well as various inspection and
rescue missions on both land and water [Pfotzer et al., 2017;
Ye et al., 2004; Lu et al., 2016]. A snake-like shape and
serpentine locomotion offer immediate advantages for such
purposes; the restricted area of mobility also makes the re-
quirement of the robot to avoid intersecting itself and other
obstacles a highly non-trivial issue that is mandatory to take
into account. Moreover, the SNAKE GAME problem is a nat-
ural abstraction to model a wide-variety of other scenarios,
which range from the transportation of linked wagons towed
by a locomotor at an airport or a supermarket to the move-
ment of a group of agents that travel in an “ant-like” fashion
and the construction of trains in amusement parks.

Biasi and Ophelders [Biasi and Ophelders, 2018] proved
that the SNAKE GAME problem is PSPACE-complete even
on grid graphs (see Section 2). Additionally, they consid-
ered the version aligned with the video game, where “food”
items are located on vertices. Here, the task is not to reach
a pre-specified position, but to collect all food items by visit-
ing their vertices—when a food item is collected, the size of
the snake increases by a fixed integer g ≥ 1. They showed
that this version is NP-hard even on rectangular grid graphs
without “holes”, and PSPACE-complete even when there are
only two food items, or the initial size of the snake is 1.

Related Works in Parameterized Complexity. To the best
of our knowledge, the only work in Parameterized Complex-
ity on single/multi-agent movement problems is by [Cesati
and Wereham, 1995]1. The input of the problem in [Cesati
and Wereham, 1995] is a set O of polyhedrons (obstacles),
and a set P of polyhedrons (the robot) that are freely linked
together at a set of linkage vertices V such that P has k de-
grees of freedom of movement. The objective is to decide
whether a given final position of the robot is reachable from a
given initial position of the robot where the robot is allowed to
intersect neither itself nor the obstacles. [Reif, 1979] proved
that this problem (in 3-dimensional space) is PSPACE-hard,
and [Cesati and Wereham, 1995] adapted Reif’s proof and
showed that the problem is W[SAT]-hard with respect to k.

Clearly, problems where intermediate states are unde-
fined/immaterial (such as SHORTEST PATH) can still concern
issues relevant to motion planning. Here, we point out a com-
prehensive work by [Demaine et al., 2014] on the parameter-
ized complexity of a wide-class of motion planning problems
for multiple agents in a “static sense” (similar to SHORTEST

1Simultaneously to our work, a paper on reconfiguration of undi-
rected paths has appeared [Demaine et al., 2019].

PATH): given a set of agents with types, an initial position (a
single vertex) for each agent and a target configuration (e.g.,
each agent of type “client” should have an agent of type “fa-
cility” nearby), the goal is to make the agents traverse min-
imum distance towards the formation of the target configu-
ration. Here, intermediate states are undefined/immaterial;
thus, on the way to form the target configuration, the agents
can be in arbitrary configurations such as being placed all to-
gether on the same vertex, or being as far apart as possible.

Our Contribution. We present a comprehensive picture of
the parameterized complexity of SNAKE GAME parameter-
ized by the size of the snake, k. The choice of this parameter
is the most natural and sensible one—in the real-life scenar-
ios mentioned earlier, the size of the snake-like robot is likely
to be substantially smaller than that of the entire environment.
To some extent, our paper is a pioneering work in the study
of the parameterized complexity of single-agent movement
problems, and may lay the foundations for further research of
this topic. Specifically, our contribution is threefold.

I. FPT Algorithm. Our main result asserts that SNAKE
GAME is fixed-parameter tractable (FPT) with respect to
k. Specifically, we develop an algorithm that solves SNAKE
GAME in time kO(k) · nO(1) where n is the number of ver-
tices in the input graph. Our algorithm can also output the
length of the shortest “route” from the initial position to the
final position (if any such route exists) within the same time
complexity. The design of our algorithm involves a novel ap-
plication of the method of color-coding [Alon et al., 1995]
to sparsify the ((k − 1)-th power of the) configuration graph
of the problem. Roughly speaking, the configuration graph is
the directed graph whose vertices represent the positions of
the snake in the environment, and where there is an arc from
one vertex u to another vertex v if the position represented
by v is reachable in one step from the position represented by
u. The number of vertices of the configuration graph equals
the number of (simple) ordered paths on k vertices in the in-
put graph, which can potentially be huge—for example, if the
input graph is a clique, then there are

(
n
k

)
k! configurations.

We first present a handy characterization of the reachabil-
ity of one configuration from another in t ≥ 1 steps, based
on which we elucidate the structure of certain triplets of con-
figurations. Then, we perform several iterations where we
color the vertices of the input graph based on the method
of color-coding, but where order between some of the col-
ors is of importance. Within each coloring iteration, we test
for every pair of vertices in the input graph whether there ex-
ists a particular path on k vertices between them—in which
case we pick one such path. The collection of paths found
throughout these iterations form the vertex set of our new
configuration graph (in addition to the initial and final posi-
tions), while our characterization of reachability determines
the arcs. In particular, this new configuration graph, unlike
the original configuration graph, has only kO(k) · nO(1) ver-
tices. We prove that this new configuration graph is a valid
“sparsification” of the (k − 1)-th power of the original con-
figuration graph—specifically, for any t ≥ 1, the initial posi-
tion can reach the final position in the original configuration
graph within (k − 1)t steps if and only if the initial position

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5671

can reach the final position in the new configuration graph
within t steps. Clearly, this is insufficient because the initial
position may reach the final position in the original configu-
ration graph within a number of steps that is not a multiple
of (k − 1)—however, we find that this technicality can be
overcome by adding, to the new configuration graph, a small
number of new vertices as well as arcs outgoing from these
new vertices to the vertex representing the final position.
II. Kernelization. Our second result shows that SNAKE
GAME is unlikely to admit a polynomial kernel even on grid
graphs. For this purpose, we present a non-trivial cross-
composition from HAMILTONIAN CYCLE on grid graphs to
SNAKE GAME. Our construction is inspired by the proof in
[Biasi and Ophelders, 2018] of NP-hardness of a version of
SNAKE GAME in the presence of food. Roughly speaking,
given t instances of HAMILTONIAN CYCLE on grid graphs,
we construct an instance of SNAKE GAME as follows. We
position the t input grid graphs so that they are aligned to ap-
pear one after the other, and connect them as “pendants” from
a long path L placed just above them. The initial position of
the snake is at the beginning of L, and its final position is at
a short path “protruding” from the beginning of L. Further,
the size of the snake is set to n, the number of vertices in
each input grid graph. Intuitively, we show that the snake can
reach the final position from the initial one if and only if it can
enter and exit one of the input grid graphs. In particular, to
reach the final position, the snake has to find a place to “turn
around”, which can only be (potentially) done inside one of
the input grid graphs. Entering and exiting one of the input
grid graphs would imply that at some state, the snake must be
fully inside that graph and hence exhibit a Hamiltonian cycle.
III. Treewidth-Reduction. Our last result is a treewidth-
reduction procedure: we develop a polynomial-time algo-
rithm that given an instance of SNAKE GAME, outputs an
equivalent instance of SNAKE GAME where the treewidth
of the graph is bounded by a polynomial in k. Our proce-
dure is based on the irrelevant vertex technique [Robertson
and Seymour, 1995]. First, we exploit the breakthrough re-
sult by [Chekuri and Chuzhoy, 2016] that states that for any
t ∈ N, any graph whose treewidth is at least d · tc (for some
constants c and d) has a t× t-grid as a minor, and hence also
a t-wall as a subgraph. (Currently, the best bound on c is
10 [Chuzhoy and Tan, 2019].) We utilize this result to argue
that if the treewidth of our input graph is too large, then it
has a ck-wall as a subgraph (for some constant c) such that
no vertex of this ck-wall belongs to the initial or final posi-
tions of the snake. The main part of our proof is a non-trivial
re-routing argument that shows that in such a wall, we can
arbitrarily choose any pair of adjacent vertices, contract the
edge between them and thereby obtain an equivalent instance
of SNAKE GAME. Thus, as long as we do not yet have a graph
of small treewidth at hand, we can efficiently find an edge to
contract, and eventually obtain a graph of small treewidth.
From this procedure, we also derive that m = kO(1)n.

2 Preliminaries
Let N0 = N ∪ {0}, and N4

0 = N0 × N0 × N0 × N0. For
a graph G, V (G) and E(G) denote its vertex and edge sets,

respectively. For v ∈ V (G), NG(v) = {u∈V (G) | {u, v}∈
E(G)}. The contraction of an edge e={u, v}∈E(G) is the
replacement of u and v by a new vertex w where NG(w) =
NG(u)∪NG(v), to obtain a new graph denoted by G/e. The
subdivision of an edge {u, v}∈E(G) is the deletion of {u, v}
and the addition of the edges {u,w} and {w, v} for a new
vertex w. A Hamiltonian cycle is a (simple) cycle that visits
all the vertices of G. For a path P , the size and the length of
P denote the number of vertices and edges in P , respectively.
Definition 2.1 (Grid Graph). A grid graph is a finite undi-
rected graph G with V (G) ⊆ {(i, j) | i, j ∈ N0}, and
{(i, j), (i′, j′)} ∈ E(G) if and only if |i− i′|+ |j − j′| = 1.

The treewidth of a graph G is a standard measure for its
distance to a tree, defined below. Any tree has treewidth 1,
and an n-vertex clique has treewidth n− 1.
Definition 2.2 (Treewidth). A tree decomposition of a graph
G is a tree T whose nodes, called bags, are subsets of V (G).
For each v ∈ V (G), the bags containing v form a nonempty
subtree of T , and for each {u, v} ∈ E(G), at least one bag
contains both u and v. The width of the decomposition is one
less than the maximum size of any bag, and the treewidth of
G is the minimum width of any of its tree decompositions.
Snake Game. We first define the notion of a configuration.
Definition 2.3 (Configuration). For an undirected graph G
and k ∈ N, a (G, k)-configuration (for short, configuration)
is a tuple (v1, v2, . . . , vk), where vi ∈ V (G) for all 1 ≤ i ≤
k, that satisfies two conditions: (i) for all 1 ≤ i ≤ k − 1,
{vi, vi+1} ∈ E(G), and (ii) for all 1 ≤ i < j ≤ k, vi 6= vj .

For a configuration conf, let V (conf) be its set of vertices.
Intuitively, a configuration (v1, v2, . . . , vk) is the sequence of
vertices of a simple path on k vertices in G traversed from
one endpoint to another; the path is termed a snake, and the
vertices v1 and vk are its head and tail, respectively. Now, we
define how a snake “moves” from one position to another.
Definition 2.4 (1-Transition). For an undirected graph G
and k ∈ N, a pair (conf = (v1, v2, . . . , vk), conf ′ = (v′1, v

′
2,

. . . , v′k)) of configurations is a 1-transition if (i) for all 1 ≤
i ≤ k − 1, v′1 6= vi, and (ii) for all 2 ≤ i ≤ k, v′i = vi−1.

We extend a transition in one step to ` steps as follows.
Definition 2.5 (`-Transition). Let G be an undirected graph,
and k, ` ∈ N. A pair (conf, conf ′) of configurations is
an `-transition if there is a tuple (conf1 = conf, conf2,
. . . , conf`+1 = conf ′) of ` + 1 configurations such that, for
every 1 ≤ i ≤ `, (confi, confi+1) is a 1-transition.

Based on the definition of a transition, we define the reach-
ability of one configuration from another.
Definition 2.6 (Reachability). Let G be an undirected graph,
and k ∈ N. Let conf and conf ′ be two configurations. We say
that conf can reach conf ′ (alternatively, conf ′ is reachable
from conf) if (conf, conf ′) is an `-transition for some ` ∈ N.

We are now ready to define the SNAKE GAME problem.
Definition 2.7 (Snake Game). An instance of SNAKE GAME
is quadruple SG = 〈G, k, init, fin〉 where G is an undirected
graph, k ∈ N, and init and fin are two configurations. We
say that SG is a Yes-instance if init can reach fin; otherwise,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5672

SG is a No-instance. To solve SG, it is required to determine
whether it is a Yes-instance or a No-instance.

We also define an auxiliary graph on configurations.
Definition 2.8 (`-Configuration Graph). Let G be an undi-
rected graph, and k, ` ∈ N. The `-configuration graph of
(G, k) is a directed graph with a vertex for every (G, k)-
configuration and an arc from a vertex conf to another vertex
conf ′ if (conf, conf ′) is an `-transition.

The notion of reachability can be analyzed via the 1-
configuration graph as implied by the following observation.
Observation 2.1. Let G be an undirected graph, and k ∈ N.
A configuration conf can reach a configuration conf ′ if and
only if there is a path from conf to conf ′ in the 1-configuration
graph. In particular, an instance SG = 〈G, k, init, fin〉 of
SNAKE GAME is a Yes-instance if and only if there is a path
from init to fin in the 1-configuration graph.
Parameterized Complexity. A problem Π is parameter-
ized if each instance of Π is associated with a parameter k.
A problem Π is FPT if any instance (I, k) of Π is solvable
in time f(k) · |I|O(1), where f is any computable function
of k. Furthermore, Π admits a polynomial compression if
there exists a (not necessarily parameterized) problem Π′ and
a polynomial-time algorithm that given an instance (I, k) of
Π, outputs an equivalent instance I ′ of Π′ (i.e. (I, k) is a Yes-
instance of Π if and only if I ′ is a Yes-instance of Π′) such
that |I ′| ≤ p(k) where p is any polynomial that depends only
on k. In case Π′ = Π, Π admits a polynomial kernel. For
more information, refer to [Cygan et al., 2015].

3 FPT Algorithm on General Graphs
In this section, we present our FPT algorithm for SNAKE
GAME. To begin our analysis, we give two conditions that
characterize when a pair of configurations is an `-transition.
(For an example, see Fig. 1.) The correctness can be proved
by induction on `. For lack of space, full proofs are omitted.
Lemma 3.1. For any ` ≤ k, a pair (conf = (v1, v2,
. . . , vk), conf ′ = (v′1, v

′
2, . . . , v

′
k)) of configurations is an `-

transition if and only if (i) for all 1 ≤ i ≤ `, v′i /∈ {v1, v2,
. . . , v(k+i)−(`+1)}, and (ii) for all ` + 1 ≤ i ≤ k, v′i = vi−`.

As a corollary, we obtain the following result.
Corollary 3.1. A pair (conf =(v1,v2,. . . ,vk), conf ′=(v′1,v

′
2,

. . . , v′k)) of configurations is a (k−1)-transition if and only if
(i) for all 1 ≤ i ≤ k − 1, v′i /∈ {v1, . . . , vi}, and (ii) v′k = v1.

In turn, this corollary gives rise to a simple test of whether
a pair of configurations is a (k − 1)-transition as follows.
Observation 3.1. It can be tested whether a pair (conf,
conf ′) of configurations is a (k−1)-transition in timeO(k2).

To sparsify the (k − 1)-configuration graph, we utilize the
method of color-coding [Alon et al., 1995]. While standard
applications are coupled with a derandomization object called
a splitter, we require a related object called a permuter.
Definition 3.1 (Permuter). Let t ∈ N, and S be a set. An
(S, t)-permuter G is a family of functions from S to {1, . . . , t}
such that for any ordered set W ⊆ S and for any i, j ∈ N
such that i ≤ j ≤ t and j − i + 1 = |W | ≤ t, there is a
function g ∈ G mapping W to the ordered set {i, i+1, . . . , j}.

v7 v6 v5 v4 v3 v2 v1

v5 v4 v3 v2 v1

v4 v3 v2 v1

v6 v5 v4 v3 v2 v1 v′1

v′1 v′′1

v′1 v′′1 v′′′1

confs

confe

v′1 /∈ {v1, v2, . . . , v6}

v′′1 /∈ {v′1, v1, . . . , v5}

v′′′1 /∈ {v′′1 , v′1, v1, . . . , v4}

Figure 1: An example of a 3-transition (confs, confe) where k = 7.

An efficient construction for an (S, t)-permuter follows
from the efficient construction of a splitter [Naor et al., 1995].
Lemma 3.2. Given t ∈ N and a set S of size n, an (S, t)-
permuter of size tO(t) log n can be found in time tO(t)n log n.

Given three configurations conf, conf ′ and conf ′′, we de-
fine a special ordering, called triplet order, on the vertices of
the triplet (conf, conf ′, conf ′′). (For an example, see Fig. 2.)
Definition 3.2 (Triplet Order). Let conf = (v1, v2, . . . , vk),
conf ′ = (v′1, v

′
2, . . . , v

′
k) and conf ′′ = (v′′1 , v

′′
2 , . . . , v

′′
k) be

three configurations. The triplet order of (conf, conf ′, conf ′′)
is the ordered set W obtained from the ordered multiset S =
{vk, vk−1, . . . , v1, v′k, v′k−1, . . . , v′1, v′′k , v′′k−1, . . . , v′′1} by re-
moving first the vertices of conf and conf ′′ that are common
to conf ′, and then the other vertices of conf common to conf ′′.

Note that W is an ordered set where each distinct vertex
in S occurs once. The relation between a triplet order and a
permuter is summarized as follows.
Lemma 3.3. For any `, r < k, let conf = (v1,..., vk), conf ′

= (v′1,..., , v
′
k) and conf ′′ = (v′′1 ,..., , v

′′
k) where (conf, conf ′)

is an `-transition, and (conf ′, conf ′′) is an r-transition. Let
G be a (V (G), 3k − 2)-permuter. Then, there is f ∈ G that
assigns distinct integers to the vertices in the triplet order W
of (conf, conf ′, conf ′′), and satisfies the following conditions.

(i) f maps W to an ordered set {i, i+1,..., k, k+1, ..., 2k−
1,..., j} where 1 ≤ i ≤ j ≤ 3k−2 and j−i+1 = |W |.
Moreover, for each 1 ≤ a ≤ k, f(v′a) = 2k−a.

(ii) If there is conf∗ = (w1 = v′1, w2,..., wk = v′k) such
that (1) for every 1 ≤ a ≤ k, f(wa) = 2k − a, (2) for
every ` + 1 ≤ a ≤ k, wa = va−`, and (3) for every
r + 1 ≤ a ≤ k, v′′a = wa−r, then (conf, conf∗) is an
`-transition and (conf∗, conf ′′) is an r-transition.

The sparsification also requires an efficient computation of
paths that will determine the vertices of the sparse configura-
tion graph. The proof is based on a BFS computation.
Lemma 3.4. There is a linear-time algorithm that, given an
undirected graph G, k, t, r ∈ N, a function f : V (G) →
{1, . . . , t}, and vertices u, v ∈ V (G), decides if G has a (sim-
ple) path P = (w1 = u,w2, . . . , wk = v) (of size k between
u and v) such that for every 1 ≤ i ≤ k, f(wi) = r + k− i; if
such a path exists, then the algorithm outputs one such path.

Given an instance SG = 〈G, k, init, fin〉 of SNAKE GAME,
we now give a procedure (Algorithm 1) to construct a new
configuration graph of SG, which invokes Observation 3.1
and Lemmata 3.2 and 3.4. We refer to the outputted graph
as a (k − 1)-sparse configuration graph. Unlike the (k − 1)-
configuration graph, a (k−1)-sparse configuration graph may
not be unique for SG even if the permuter is fixed. Indeed,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5673

W = {v5, v′7, v′6, . . . , v′1, v′′6 , v′′5 , . . . v′′1}
v′′3 = v4

conf

conf ′

conf ′′

v′7 = v3, v
′
6 = v2, v

′
5 = v1,

v′3 = v7, v
′
2 = v6, v

′
1 = v′′7

v7 v6 v5 v4 v3 v2 v1

v′7 v′6 v′5 v′4 v′3 v′2 v′1

v′′7 v′′6 v′′5 v′′4 v′′3 v′′2 v′′1

Figure 2: An illustration for Lemma 3.3 where ` = 4 and r = 6.

there may be exponentially many paths satisfying the con-
dition in line 5 of Algorithm 1, but we only add one of them
(chosen arbitrarily) to our (k−1)-sparse configuration graph.

We bound the size of the output and the running time of
Algorithm 1 as follows. (Here, n = |V (G)|.)

Lemma 3.5. Algorithm 1 runs in time kO(k)n3 log2 n,
and returns a (k − 1)-sparse configuration graph with
kO(k)n2 log n vertices and kO(k)n3 log2 n arcs.

Having Lemma 3.3, we derive a relation between the (k−1)
-configuration graph and a (k−1)-sparse configuration graph.

Lemma 3.6. Let C be the (k − 1)-configuration graph,
and C′ be a (k − 1)-sparse configuration graph. Then, (i)
C′ is an induced subgraph of C. Moreover, (ii) for any
conf, conf ′, conf ′′ ∈ V (C) where (conf, conf ′) and (conf ′,
conf ′′) are (k − 1)-transitions, there is conf∗ ∈ V (C′)where
(conf, conf∗) and (conf∗, conf ′′) are also (k−1)-transitions.

We now relate paths in the (k−1)-configuration graph and
a (k − 1)-sparse configuration graph. The “if” direction is
a consequence of item (i) in Lemma 3.6, and the “only if”
direction can be proved by a repeated application of item (ii).
Lemma 3.7. Let C be the (k − 1)-configuration graph,
C′ be a (k − 1)-sparse configuration graph, and confs,
confe ∈ V (C). For any t ∈ N, there is a path P =
(conf1 = confs, conf2, . . . , conft+1 = confe) from confs
to confe in C if and only if there is a path P ′ = (conf ′1 =
confs, conf ′2, . . . , conf ′t, conf ′t+1 = confe) from confs to
confe in C where conf ′i ∈ V (C′) for each 2 ≤ i ≤ t.

By substituting confs = init and confe = fin, we know
that there is a path from init to fin in C if and only if there
is a path of the same length from init to fin in C′. From this
corollary, we easily derive the following result.

Lemma 3.8. Let C′ be a (k− 1)-sparse configuration graph.
For any t ∈ N, there is a path of length t(k − 1) from init to
fin in the 1-configuration graph if and only if there is a path
of length t from init to fin in C′.

Thus, the sparsification of the (k − 1)-configuration graph
alone is insufficient—there may exist a path from init to fin
in the 1-configuration graph whose length is not a multiple of
k−1. This technicality is not difficult to overcome by adding
kO(k)n log n new vertices and arcs (incident to fin) to C′ and
thus deriving an enriched (k−1)-sparse configuration graph.

Lemma 3.9. There is an kO(k)n3 log2 n-time algorithm that
returns an enriched (k − 1)-sparse configuration graph C′′
with kO(k)n2 log n vertices and kO(k)n3 log2 n arcs. For any
t, r ∈ N where r < k−1, there is a path of length t(k−1)+r
from init to fin in the 1-configuration graph if and only if there
is a path of length t from init to fin in C′.

Algorithm 1: sparseConfigurationGraph(SG, k)

1 let C′ with V (C′) = {init, fin} and E(C′) = ∅;
2 construct a (V (G), 3k − 2)-permuter G;
3 for each g ∈ G do
4 for each pair (u, v) ∈ V (G)× V (G) do
5 if G has a path P =(w1 =u,w2,...,wk =v) s.t.

for each 1 ≤ a ≤ k, g(wa) = 2k − a then
6 add conf = (w1, . . . , wk) to V (C′);
7 end
8 end
9 end

10 for each pair (conf, conf ′) ∈ V (C′)× V (C′) that is a
(k − 1)-transition do

11 add the arc (conf, conf ′) toE(C′);
12 end
13 return C′.

Our theorem follows from this lemma and Observation 2.1.
Theorem 3.1. SNAKE GAME is solvable in time
kO(k)n3 log2 n, and a shortest path from init to fin (if
one exists) can be found within the same time complexity.

4 No Polynomial Kernel on Grid Graphs
In this section, we prove that SNAKE GAME is unlikely to
admit a polynomial kernel even on grid graphs, based on a
theorem on cross-compositions by [Bodlaender et al., 2009].
Definition 4.1 (Cross-Composition). A problem Π cross-
composes into a parameterized problem Π′ if there is a
polynomial-time algorithm, called a cross-composition, that
given t instances I1, I2, . . . , It of Π of the same size s, outputs
an instance (I, k) of Π′ where k ≤ p(s) for some polynomial
p in s, and (I, k) is a Yes-instance of Π′ if and only if at least
one of the instances I1, I2, . . . , It is a Yes-instance of Π.
Proposition 4.1. Let Π be an NP-hard problem that
cross-composes into a parameterized problem Π′. Unless
NP⊆coNP/poly, Π′ admits no polynomial compression.

In HAMILTONIAN CYCLE, the goal is to decide if a given
graph has a Hamiltonian cycle; on grid graphs, this problem
is NP-hard [Papadimitriou and Vazirani, 1984]. We present a
cross-composition, HamToSna, whose input consists of t in-
stances G1, . . . , Gt of HAMILTONIAN CYCLE on grid graphs
on n vertices where t, n ∈ N, and its output is an instance SG
of SNAKE GAME. Without loss of generality, let each Gi be
connected. To construct SG, we need the following notion.
Definition 4.2 (Boundary Square). A boundary square of a
grid graph G is a tuple (rmin,rmax,cmin,cmax)∈N4

0 where:
1. rmin = min{r∈N0 | ∃c∈N0 such that (r, c)∈V (G)}.
2. cmin = min{c∈N0 | ∃r∈N0 such that (r, c)∈V (G)}.
3. rmax − rmin = cmax − cmin = |V (G)| − 1.

Observation 4.1. Any connected grid graph has a unique
boundary square.

We preprocess each Gi as follows: by Observation 4.1, Gi

has a unique boundary square (r̂imin, r̂
i
max, ĉ

i
min, ĉ

i
max); we

replace each vertex (a, b) ∈ V (Gi) by the vertex (a−r̂imin+

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5674

0

0

n

n n n

c1 c2 ct

(n+ 1) 2(n+ 1) t(n+ 1)

(n− 1)

(n− 1)

(n− 2)

(n+ 1)

init

fin

G1 G2 Gt

Boundary Square of Boundary Square of Boundary Square of

Figure 3: The graph constructed by the reduction HamToSna.

(n+1), b−ĉimin+i(n+1)). Intuitively, this operation “pushes”
Gi in parallel to the axes. It is easy to see that the new bound-
ary square (rimin, r

i
max, c

i
min, c

i
max) of Gi has the following

properties: rimin = n + 1 and cimin = i(n+1). Moreover,
there exists (a, b)∈V (Gi) where a= rimin; we choose (arbi-
trarily) such a vertex in V (Gi), and denote it by (rimin, ci).

Now, HamToSna(G1, . . . , Gt) = 〈G,n, init, fin〉 is de-
fined as follows (see Fig. 3).

1. G is the grid graph on V (G) = V̂ ∪V conn∪V inst, where:
V̂ = {(n−1, j) | 0≤j≤n−1}∪{(i, n−2) | 0≤ i≤n−1};
V conn = {(n− 1, j) | n≤j≤ct} ∪ {(n, ci) | 1≤ i≤ t};
V inst =

⋃t
i=1 V (Gi).

2. init = ((n− 1, n− 1), (n− 1, n− 2), . . . , (n− 1, 0)).
3. fin = ((0, n− 2), (1, n− 2), . . . , (n− 1, n− 2)).
The intuition underlying this construction is given in Sec-

tion 1. For lack of space, we directly summarize the result.
Lemma 4.1. HAMILTONIAN CYCLE on grid graphs cross-
composes into SNAKE GAME on grid graphs.

Thus, by Proposition 4.1, we derive the following theorem.
Theorem 4.1. SNAKE GAME on grid graphs does not admit
a polynomial compression unless NP ⊆ coNP/poly.

5 Treewidth-Reduction on General Graphs
In this section, we present a treewidth-reduction procedure
for SNAKE GAME. Our algorithm is based on the analysis of
walls, defined as follows (see Fig. 4).
Definition 5.1 (r-Wall). For r ∈ N, the elementary r-wall
is the graph obtained from the r × 2r-grid by deleting all
edges {(2i− 1, 2j− 1), (2i, 2j− 1)} for i ∈ {1,..., br/2c}
and j ∈ {1,..., r} and all edges {(2i, 2j), (2i+ 1, 2j)} for
i ∈ {1,..., b(r−1)/2c} and j ∈ {1,..., r}, and then deleting
the two resulting degree-1 vertices. An r-wall is any graph
obtained from the elementary r-wall by subdividing edges.

From the work of [Chekuri and Chuzhoy, 2016], we de-
duce that to develop our treewidth-reduction procedure, we
can focus on the case where G contains an 7k-wall.
Proposition 5.1. There is a polynomial-time algorithm that,
given a graph G and t ∈ N, either finds a t-wall H in G, or
reports that G has treewidth tO(1).

We need our wall not only to be “large”, but also to inter-
sect neither init nor fin. To this end, we have the following
lemma, proved by the pigeonhole principle (see Fig. 4).

Figure 4: Four distinct elementary 3-walls in an elementary 7-wall.

Lemma 5.1. Given an instance 〈G, k, init, fin〉 of SNAKE

GAME where G contains a 7k-wall, a 3
√
k-wall that has ver-

tices from neither init nor fin can be found in time kO(1).

Now, we aim to show that if G contains a 3
√
k-wall, then

we can efficiently decrease the number of vertices in G and
still retain an equivalent instance of SNAKE GAME. Having a
3
√
k-wall will be useful for us due to its following property.

Lemma 5.2. Let H be a 3
√
k-wall. Let e = {u, v} ∈ E(H).

For any s, t ∈ V (H/e), there is a (simple) path P (or cycle
if s = t) in H/e between s and t whose size is at least k.

A routing argument proves the lemma below, see Fig. 5.
Lemma 5.3. Let conf1 = (u1, . . . , uk) and conf2 =
(a1, . . . , ak) be two configurations, and P = (v1, . . . , v`)
be a simple path/cycle in G of size at least k such that (i)
v1 = u1 and v` = ak, (ii) for all 2 ≤ i ≤ k and 2 ≤ j ≤ `,
ui 6= vj , and (iii) for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ` − 1,
ai 6= vj . Then, conf1 can reach conf2.

The proof of the main lemma of this section, stated below,
is based on Lemmata 5.2 and 5.3. In particular, to prove the
“only if” direction, we consider the first and last configura-
tions in a “solution” transition that intersect H , and modify
the sequence of configurations that occur between them.
Lemma 5.4. Let 〈G, k, init, fin〉 be an instance of SNAKE

GAME where G contains a 3
√
k-wall H having vertices

from neither init nor fin. Let e = {u, v} ∈ E(H).
Then, 〈G, k, init, fin〉 is a Yes-instance if and only if
〈G/e, k, init, fin〉 is a Yes-instance.

Our treewidth-reduction procedure repeatedly invokes
Proposition 5.1 and Lemma 5.1 to find a 3

√
k-wall H having

vertices from neither init nor fin (in which case it contracts
an edge of H), or conclude that the treewidth of G is kO(1).
Correctness follows from Lemma 5.4.
Theorem 5.1. There is a polynomial-time algorithm that,
given an instance 〈G, k, init, fin〉 of SNAKE GAME, returns
an equivalent instance 〈G′, k, init, fin〉 of SNAKE GAME

where G′ has treewidth kO(1).

conf1

conf2

u7 u6 u5 u4 u3 u2 u1

a7 a6 a5 a4 a3 a2 a1

v1 v2

v3

v4

v5

v6

v7

v8

P

Figure 5: The conditions of Lemma 5.3 for k = 7 and ` = 8.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5675

References
[Alon et al., 1995] Noga Alon, Raphael Yuster, and Uri

Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[Berthet-Rayne et al., 2018] Pierre Berthet-Rayne, Gauthier
Gras, Konrad Leibrandt, Piyamate Wisanuvej, Andreas
Schmitz, Carlo A. Seneci, and Guang-Zhong Yang. The
i2snake robotic platform for endoscopic surgery. Annals
of Biomedical Engineering, 46(10):1663–1675, Oct 2018.

[Biasi and Ophelders, 2018] Marzio De Biasi and Tim
Ophelders. The complexity of snake and undirected NCL
variants. Theor. Comput. Sci., 748:55–65, 2018.

[Bodlaender et al., 2009] Hans L. Bodlaender, Rodney G.
Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst.
Sci., 75(8):423–434, 2009.

[Cesati and Wereham, 1995] Marco Cesati and H. Todd
Wereham. Parameterized complexity analysis in robot mo-
tion planning. In The 25th IEEE International Conference
on Systems, Man and Cybernetics, pages 1–6, 1995.

[Chekuri and Chuzhoy, 2016] Chandra Chekuri and Julia
Chuzhoy. Polynomial bounds for the grid-minor theorem.
J. ACM, 63(5):40:1–40:65, 2016.

[Chuzhoy and Tan, 2019] Julia Chuzhoy and Zihan Tan. To-
wards tight(er) bounds for the excluded grid theorem. In
The Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1445–1464, 2019.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Degani et al., 2006] Amir Degani, Howie Choset, Alon
Wolf, and Marco A Zenati. Highly articulated robotic
probe for minimally invasive surgery. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 4167–4172, 2006.

[Demaine et al., 2014] Erik Demaine, Mohammad Taghi
Hajiaghayi, and Dániel Marx. Minimizing movement:
Fixed-parameter tractability. ACM Trans. Algorithms,
11(2):14:1–14:29, 2014.

[Demaine et al., 2017] Erik Demaine, Isaac Grosof, and
Jayson Lynch. Push-pull block puzzles are hard. In Al-
gorithms and Complexity - 10th International Conference,
CIAC, pages 177–195, 2017.

[Demaine et al., 2018] Erik Demaine, Sándor P. Fekete,
Phillip Keldenich, Christian Scheffer, and Henk Meijer.
Coordinated motion planning: Reconfiguring a swarm of
labeled robots with bounded stretch. In 34th International
Symposium on Computational Geometry (SoCG), pages
29:1–29:15, 2018.

[Demaine et al., 2019] Erik D. Demaine, David Eppstein,
Adam Hesterberg, Kshitij Jain, Anna Lubiw, Ryuhei Ue-
hara, and Yushi Uno. Reconfiguring Undirected Paths.
arXiv e-prints, page arXiv:1905.00518, May 2019.

[Galceran and Carreras, 2013] Enric Galceran and Marc
Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61:1258–1276, 2013.

[Grifantini, 2008] Kristina Grifantini. Snakelike robots for
heart surgery. MIT Technology Review, 2008.

[Hearn and Demaine, 2009] Robert Hearn and Erik De-
maine. Games, puzzles and computation. Peters, 2009.

[Kendall et al., 2008] Graham Kendall, Andrew J. Parkes,
and Kristian Spoerer. A survey of np-complete puzzles.
ICGA Journal, 31(1):13–34, 2008.

[Lu et al., 2016] Zhenli Lu, Dayu Feng, Yafei Xie, Huigang
Xu, Limin Mao, Changkao Shan, Bin Li, Petr Bilik, Jan
Zidek, Radek Martinek, and Zdenek Rykala. Study on the
motion control of snake-like robots on land and in water.
Perspectives in Science, 7:101 – 108, 2016. 1st Czech-
China Scientific Conference 2015.

[Naor et al., 1995] Moni Naor, Leonard J. Schulman, and
Aravind Srinivasan. Splitters and near-optimal derandom-
ization. In 36th Annual Symposium on Foundations of
Computer Science (FOCS), pages 182–191, 1995.

[Paden et al., 2016] Brian Paden, Michal Cáp, Sze Zheng
Yong, Dmitry S. Yershov, and Emilio Frazzoli. A survey
of motion planning and control techniques for self-driving
urban vehicles. IEEE Trans. Intelligent Vehicles, 1(1):33–
55, 2016.

[Papadimitriou and Vazirani, 1984] Christos H. Papadim-
itriou and Umesh V. Vazirani. On two geometric problems
related to the traveling salesman problem. J. Algorithms,
5(2):231–246, 1984.

[Pfotzer et al., 2017] L. Pfotzer, S. Klemm, A. Roennau,
J.M. Zöllner, and R. Dillmann. Autonomous navigation
for reconfigurable snake-like robots in challenging, un-
known environments. Robotics and Autonomous Systems,
89:123 – 135, 2017.

[Reif, 1979] John H. Reif. Complexity of the mover’s prob-
lem and generalizations. In 20th Annual Symposium on
Foundations of Computer Science (FOCS), pages 421–
427, 1979.

[Robertson and Seymour, 1995] Neil Robertson and Paul D.
Seymour. Graph minors .xiii. the disjoint paths problem.
J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

[Schwartz and Sharir, 1988] Jacob T. Schwartz and Micha
Sharir. A survey of motion planning and related geometric
algorithms. Artif. Intell., 37(1-3):157–169, 1988.

[Viglietta, 2014] Giovanni Viglietta. Gaming is a hard job,
but someone has to do it! Theory Comput. Syst.,
54(4):595–621, 2014.

[Yang et al., 2016] Liang Yang, Juntong Qi, Dalei Song,
Jizhong Xiao, Jianda Han, , and Yong Xia. Survey of robot
3d path planning algorithms. Journal of Control Science
and Engineering, 2016(7426913):22, 2016.

[Ye et al., 2004] Changlong Ye, Shugen Ma, Bin Li, and
Yuechao Wang. Turning and side motion of snake-like
robot. In IEEE International Conference on Robotics and
Automation (ICRA), pages 5075–5080, 2004.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5676

