
Evaluating the Interpretability of the Knowledge Compilation Map:
Communicating Logical Statements Effectively

Serena Booth1 , Christian Muise2,3 and Julie Shah1

1MIT Computer Science and Artificial Intelligence Laboratory
2IBM Research

3MIT-IBM Watson AI Lab
{serenabooth, julie a shah}@csail.mit.edu, christian.muise@ibm.com

Abstract
Knowledge compilation techniques translate proposi-
tional theories into equivalent forms to increase their
computational tractability. But, how should we best
present these propositional theories to a human? We
analyze the standard taxonomy of propositional the-
ories for relative interpretability across three model
domains: highway driving, emergency triage, and
the chopsticks game. We generate decision-making
agents which produce logical explanations for their
actions and apply knowledge compilation to these
explanations. Then, we evaluate how quickly, accu-
rately, and confidently users comprehend the gener-
ated explanations. We find that domain, formula size,
and negated logical connectives significantly affect
comprehension while formula properties typically
associated with interpretability are not strong pre-
dictors of human ability to comprehend the theory.

1 Introduction
Given a propositional theory and a set of queries to resolve,
knowledge compilation techniques translate the theory to a
target compilation representation. This translation is typically
expensive, but, if the compiled form is well suited to its
application, subsequent querying and transformations can be
guaranteed to be efficient. Knowledge compilation is useful
in AI system diagnosis and state estimation.

Darwiche and Marquis introduced the knowledge compila-
tion map, which relates each logical form to its succinctness and
tractable computations [2002]. They argued that some logical
languages are representation languages suitable for humans to
read and write, while other logical languages are target compi-
lation languages. They claimed that neither the intersection nor
the union of these sets is null; however, they did not formally
define representation languages. To our knowledge, there has
been no systematic study of the separation of representation
and compilation languages. Alongside the succinctness and the
class of queries and transformations the language can support
in polytime, we propose extending the knowledge compilation
map to consider the relative interpretability of each form.

While it is typically unreasonable to present a large logical
formula to a human user, the question of how to best present
even a small formula remains open. There are two principle
unresolved questions in how knowledge compilation relates
to human cognition: is it worth the expense of translating
a formula to an alternate representation before presenting
it to a human user? And, are the same properties which
enable tractable machine computation also useful for human
computation? We conduct a user study to evaluate whether
knowledge compilation can aid logic interpretability. We find
only sparse effects of knowledge compilation properties on
interpretability. We discover some languages considered to
be compilation-only are acceptable, while disjunctive normal
form—a representation assumed to be interpretable—is not
significantly more interpretable than other forms.

Figure 1: We evaluate the interpretability of equivalent propositional theories, here shown as directed acyclic graphs where each connective and
each variable is a node. NOT can be represented as a node with an edge to the connective or to the variable it is negating, or it can be represented
through the connectives NAND, NOR, or directly applied to a variable (e.g. ¬A). In disjunctive normal form (left), this statement is written
(¬A∧C∧¬E)∨(¬A∧D∧¬E), where A,C,D, and E are variables.
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2 Background
2.1 Explainable Systems
The importance of explainability is exemplified by GDPR,
wherein the European Union ruled that users have a
“right to an explanation” [Goodman and Flaxman, 2017].
However, there is currently no consensus on precise defi-
nitions of interpretability or explainability [Lipton, 2016;
Gilpin et al., 2018]. Doshi-Velez and Kim presented a
taxonomy of interpretability evaluation which supports using
“human-grounded metrics” to evaluate the general quality of
an explanation [2017]. We adhere to their taxonomy, and, in
line with prior studies [Huysmans et al., 2011], we define the
relevant metrics for interpretability of propositional theories to
be accuracy, speed, and confidence of interpretation. We claim
that individual propositional theories can be evaluated for their
interpretability, while a system which reasons over proposi-
tional theories is explainable if every reachable state and action
can be described through such an interpretable statement.

Absent a precise definition of interpretability, succinctness
could be considered as a proxy metric. Though the amount of in-
formation that humans can process is constrained, i.e., 7±2 cog-
nitive entities at once [Miller, 1956], below this the succinctness
proxy metric is less clear. Further, the literature demonstrates
that this view of interpretability is misleading: Freitas argued
against using model size as the only criteria for interpretability,
and discussed the usefulness of monotonicity constraints in
which the value of a predictor attribute monotonically increases
or decreases the probability of class membership [2014].

2.2 Propositional Theories as Explanations
Knowledge compilation has proven useful in domains where
explainable AI collaboration with a human is essential. One
compiled representation has been used for system state
estimation [Barrett, 2005; Elliott and Williams, 2006], and the
task of system diagnosis has been accomplished by making
use of several languages from the knowledge compilation
map [Sztipanovits and Misra, 1996; Torasso and Torta, 2006;
Huang and Darwiche, 2005; Siddiqi and Huang, 2011].

Motivated by the conventional wisdom that disjunctive nor-
mal form (DNF) is an interpretable representation, Hayes and
Shah demonstrated a system which summarizes embedded con-
trol logic as a DNF explanation [2017]. An example explanation
from a robot part inspection task is: “I look in the middle when
the stock feed is off or when the stock feed is on and I have not
detected a part and I am looking high.” Wang et al. likewise built
DNF models for classification tasks under the premise that such
a model should be interpretable to experts [2015]. Due in part to
its expressiveness, DNF has also become standard for decision
models in the marketing community [Hauser et al., 2010].

Miller argued that any explanations should be contrastive
and include only the most pertinent information [2018]. Propo-
sitional theories are well suited to these properties and offer
expressive flexibility. However, prior works raise the questions
of whether DNF is always the most expressive and interpretable
representation, and whether an alternate knowledge compila-
tion form enables both scalability and interpretability. To help
answer these questions, this work aims to extend the knowledge
compilation map to understand the interpretability of each form.

2.3 Presentation Formats and Interpretability
Huysmans et al. compared the interpretability of decision tables,
binary decision trees, and propositional rules for the domain
of evaluating credit applications [2011]. Using the metrics of
accuracy, speed, and confidence of interpretation as a proxy for
interpretability, they found that decision tables were the most
interpretable for their 51 non-expert participants. Subramanian
et al. [1992] and Allahyari and Lavesson [2011] similarly com-
pared the interpretability of decision tree models and rule-based
models and determined that decision trees were more inter-
pretable. Several factors may contribute to this discrepancy.
Each study defined interpretability differently: Huysmans et
al. combined accuracy, speed, and confidence; Allahyari and
Lavesson used perceived understandability; and Subramanian
et al. used accuracy only. These studies’ populations also
differed: Huysmans et al. considered non-experts while Sub-
ramanian et al. and Allahyari and Lavesson considered experts.

Our work presents propositional theories as text sentences.
While interpretability could potentially be increased by explor-
ing alternative presentations, we use text to establish a baseline
of interpretability across classes of propositional theories.

3 Knowledge Compilation
3.1 Properties
Any propositional theory can be represented as a directed
acyclic graph (see Figure 1). If Σ is a propositional theory, we
defineVars(Σ) to be all variables in Σ. WhereC is any node in
a graph, we define Vars(C), to be the set of all variables used
in composingC and its descendants. We define the properties:

• Flat. A sentence is flat if in its graph representation the
distance from the root to any leaf is at most 2.

– Simple Disjunction. A flat sentence has simple dis-
junction if it consists of a conjunction of disjunctive
clauses. For example: (A∨B)∧(¬A∨D).

– Simple Conjunction. A flat sentence has simple con-
junction if it consists of a disjunction of conjunctive
clauses. For example: (A∧B)∨(¬A∧D).

• Decomposable. A sentence is decomposable if, for each
AND node in the graph, its children do not share variables.
If AND nodeC has children c0,c1,...,cn, then ∀i,j∈ [0,n],
where i 6=j, Vars(ci) ∩ Vars(cj) = ∅.
• Deterministic. A sentence is deterministic if, for each OR

node in the graph, its children are logically contradictory.
If OR node C has children c0,c1,...,cn, then ∀i,j ∈ [0,n],
where i 6=j, ci∧cj≡False.

• Decisive. A sentence is decisive if each OR node in the
graph is a decision node.

– Decision Node. A node labeled True or False, or
an OR node with the form (X∧α)∨(¬X∧β), where
X is a decision variable and α,β are nodes. If α or β
is an OR node, it must be a decision node. α or β may
be NULL or AND nodes.

• Ordered. A sentence is ordered if, on every path from the
root to each leaf, decision variables follow the same order.
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• Smooth. A sentence is smooth if, for each OR node in
the graph, its children are composed of the same set of
variables. If OR node C has children c0, c1, ..., cn, then
∀i,j∈ [0,n], Vars(ci) = Vars(cj).

The above properties only apply to sentences in which
negation is not applied to logical connectives. As this may be
a limitation of the interpretability of these theories, we define:

• ε-inverted. A sentence is ε-inverted if children of OR and
AND nodes have no more than an ε ratio of negated nodes.

• Inverted. A sentence is inverted if it meets the ε-inverted
criteria for ε = 1/2. The sentence “A ∧ ¬(B ∨ C)” is
inverted, but the sentence “A∧¬B∧¬C” is not.

3.2 Languages
Based on these properties, we define the logical languages:

• NNF: Negation Normal Form. A sentence in which
negation is only applied to literals and not to logical
connective (AND or OR) nodes.
• DNF: Disjunctive Normal Form. Every NNF sentence

which is flat and satisfies the criteria for simple conjunction.
• CNF: Conjunctive Normal Form. Every NNF sentence

which is flat and satisfies the criteria for simple disjunction.
• ODNF: Orthogonal Disjunctive Normal Form. Every

NNF sentence which is deterministic, flat, and satisfies the
criteria for simple conjunction. Deterministic DNF.

• d-DNNF: Deterministic Decomposable Negation Nor-
mal Form. Every NNF sentence which is deterministic
and decomposable.

• sd-DNNF: Smooth Deterministic Decomposable
Negation Normal Form. Every NNF sentence which is
smooth, deterministic, and decomposable.

• OBDD: Ordered Binary Decision Diagram. Every NNF
sentence which is ordered, decisive, and decomposable.

• MODS: Models. Every NNF sentence which is deter-
ministic, smooth, and satisfies the criteria for simple
conjunction.

• INNF: Inverted Negation Normal Form. Every sen-
tence which meets the inverted criteria. Note this is not
a subset of NNF.

While this list describes the set of languages we set out
to evaluate, we ultimately removed two languages (and their
corresponding properties) due to incomprehensibly large for-
mulae: during our pilot studies, participants were unwilling to
engage with the lengthy sd-DNNF and MODS representations.

4 Testing Interpretability of Logical Sentences
We conducted a user study to evaluate the interpretability
of logical sentences of different forms. We evaluate human
response to AI agents in three model domains: (1) highway
driving, (2) emergency triage based on one of Hodgetts
and Porter’s sieve procedures [2002], and (3) chopsticks, a
combinatorial hand game similar in nature to Tic-Tac-Toe
(Figure 2). For each domain, we create a “good” agent which
behaves in an intuitive but not necessarily optimal manner, and
a “bad” agent which behaves in a faulty or unintuitive manner.

4.1 Generating and Translating Explanations
Using the technique of Hayes and Shah [2017], we define
predicates of interest as annotations to the control logics of
these AI agents. For example, in the highway driving scenario,
the natural language form of the predicates may be {vehicle
to my left, vehicle to my right, vehicle in front of me, vehicle
behind me, my exit is next}. The control logic of the agent may
be rule-based or sub-symbolic. We simulate the agents and
generate traces detailing each state experienced, action under-
taken, and new state encountered by the agent: (s,a,s′). Given
a state, we can look up the truth assignment to the annotated
predicates. From these traces, we generate disjunctive normal
form control logic summaries for each behavior.

For the highway driving scenario in which the agent has
the action set {slow down, speed up, merge left, merge right,
do nothing}, we might query “When do you merge left?” In
response, the good agent may provide the summary “when not
a vehicle is to my left and a vehicle is in front of me —or— not
a vehicle is to my left and a vehicle is to my right.” The bad
agent may respond, “when there is a vehicle to my left and my
exit is not next —or— not a vehicle is in front of me.” In this
scenario, the bad agent could cause a crash on the road.

For each action-agent pair, we query “when do you
a” and create DNF explanations. We convert each DNF
representation into CNF by applying the distributive laws,
then we simplify the resulting CNF representation with
the PMC PREPROCESSOR [Lagniez and Marquis, 2014].
We convert these CNF representations into d-DNNF using
DSHARP [Muise et al., 2012]. We directly convert to ODNF,
OBDD, and INNF forms. In total, we consider DNF, CNF,
d-DNNF, INNF (converted from DNF), INNF (converted from
CNF), INNF (converted from d-DNNF), ODNF, and OBDD.

For each “good” agent and each representation, we present
two scenarios: one with an action the agent would take and
one with an action the agent would not take. For each “bad”
agent, we select the subset of languages {INNF (converted
from CNF), d-DNNF, DNF, and ODNF}, and randomly
selected actions which the agent either would or would not
take. Our interleaved “bad” agents prevent users from relying
on domain intuition to resolve logical formulae and instead
require comprehension of the presented logical explanations.

4.2 User Study Presentation
We present participants with natural language forms of these
explanations. We replace logical connective “and” with “both”
or “all of” depending on the number of child nodes; “or” with
“one or both of” or “one or more of”; “nand” with “not both of”
or “not all of”; and “nor” with “neither of” or “none of.” We also
push negation into the natural position in the predicate, e.g., “a
vehicle is not to my left” instead of “not a vehicle is to my left.”
We present the formulae as bulleted indented lists (Figure 2).

Over the duration of the study, participants answer 60 sce-
nario questions. Domains were presented in random order, with
questions randomized per domain. At the beginning of each
domain section, participants read instructions and responded to
a sample question. For each scenario and formula presented, we
record accuracy, time spent, and a 5-point Likert scale measure
of confidence in their answer. To measure overall workload, at
the end of each domain section we present the participant with
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I speed up when
 • One or both of:

￮ Both of:
 ▪ a vehicle is not in front of me
 ▪ the next exit is not 42

￮ All of:
 ▪ a vehicle is to my right
 ▪ a vehicle is not in front of me
 ▪ a vehicle is behind me 

I triage as urgent when
 • All of:

￮ patient is breathing
￮ respiratory rate is between 10 and 30
￮ One or both of:

 ▪ pulse is between 40 and 70
 ▪ Both of:
 ▪ pulse is not between 40 and 70
 ▪ capillary refill takes less than 2 seconds 

I add my right hand to my opponent's left hand when
 • All of:

￮ One or both of:
 ▪ my left hand is out
 ▪ my right hand outs my opponent's left

￮ One or both of:
 ▪ my right hand is not out
 ▪ my right hand outs my opponent's left

￮ One or both of:
 ▪ my right hand does not out my opponent's left
 ▪ my right hand outs my opponent's left

Figure 2: Example scenarios from each domain with behavior explanations. Participants must decide whether (1) the purple car will speed
up, (2) to triage as urgent, and (3) to add their right hand to their opponent’s left hand. In these example explanations, the car scenario is in
DNF, the triage scenario is in d-DNNF, the hand game is in CNF, and all propositional theories resolve to true.

a NASA raw-TLX questionnaire [Hart and Staveland, 1988;
Grier, 2015], with a scale set from 0 (very low) to 100
(very high). Finally, participants completed a qualitative
questionnaire and were invited to discuss their experiences
interpreting the logical forms.

4.3 Hypotheses
As discussed, DNF is considered the de facto representation for
building interpretable models. Due to the popularity and multi-
discipline convergence on this representation, we hypothesize:

• [H1] Participants will resolve the truth value of DNF rep-
resentations more accurately, more confidently, and faster.

Propositional theory predicates can be abstracted to variables,
and between domains these underlying representations can be
identical. However, the effort required to parse a natural lan-
guage predicate may vary by domain. For example, in the emer-
gency triage domain, participants must evaluate mathematical
inequalities to resolve the predicates. Thus, we hypothesize:

• [H2]: Domain and Interpretability

– [H2 accuracy] Domain will not affect accuracy in
resolving the truth value of a propositional theory.

– [H2 confidence] Domain will not affect confidence
in resolving the truth value of a propositional theory.

– [H2 time] Domain will affect time spent resolving
the truth value of a propositional theory.

Lastly, we consider the existence of the contraction “nor”
in natural language and in contrast the lack of the word
“nand” [van Wijk, 2006]. Due to familiarity with “nor” and lack
of familiarity with “nand,” we hypothesize:

• [H3] The presence of “nor” will not affect accuracy,
confidence, or speed in resolving propositional theories.
The presence of “nand” will decrease interpretability.

5 Analysis
5.1 Demographics
We recruited 25 participants from a local university, MIT.
Participants completed the study on-site in approximately
one hour. The study was within-subjects; all participants
considered all domains and all questions. Age ranged from 19
to 66 (µ= 28,SD= 10). 17 participants identified as female;
8 as male. Participants ranged in education level from high
school graduates to PhDs; most commonly, participants had
Bachelor’s degrees (11/25). On a 5-point scale to evaluate
familiarity with logic, participants provided a self-assessed
mean of 3.6 (between neutral and some experience), with
standard deviation 0.9. Most participants (18/25) identified
as native English speakers. The study size and population must
be kept in mind when considering the results presented here.

5.2 Measures & Methods
• Accuracy. Did participants correctly evaluate the truth

value of a logical statement?
• Self-reported confidence. “How confident are you of

your answer?” Participants responded on a 5-point Likert
scale, from “1—very unconfident” to “5—very confident.”
• Time. How long participants spent evaluating each

question measured as time to webpage submit.
We code accuracy as a binary variable, confidence as a

categorical variable, and time as a continuous variable. As the
relative weightings of these proxy measures of interpretability
are unknown, we construct a model for each measure. For
our analysis, we use generalized linear mixed models which
allow us to account for our repeated measures design [Kaptein,
2016]. The expectation is that any given participant will be
consistently faster or slower, more or less accurate, and more or
less confident over the course of the evaluation when compared
with the larger population. ANOVA is only applicable when
the measured variable is continuous; as such, it cannot be used
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Fixed Factor Accuracy Time Confidence
χ2 df p χ2 df p χ2 df p

Domain 21.118 2 <0.001 74.533 2 <0.001 124.08 2 <0.001
Formula Size 0.005 8 0.946 66.047 8 <0.001 15.767 8 <0.001
Inverted 3.975 1 0.046 0.061 1 0.806 0.390 1 0.532
Simple Disjunction 0.043 1 0.836 0.154 1 0.695 0.638 1 0.424
Simple Conjunction 0.284 1 0.594 0.111 1 0.739 0.518 1 0.472
Deterministic 0.451 1 0.502 0.151 1 0.698 0.427 1 0.513
Decomposable 0.000 1 0.996 1.830 1 0.176 4.239 1 0.040
Decisive 0.884 1 0.347 5.015 1 0.025 0.070 1 0.404

Table 1: Generalized linear mixed model comparisons. Domain affects accuracy, time, and confidence, while formula size affects time and
confidence. Though some language properties show significant effects, such as invertedness on accuracy, most properties do not.

to predict accuracy or confidence. We use repeated measures
ANOVA to analyze the effect of each domain on the perceived
workload, measured through the NASA-RTLX.

For the generalized linear mixed models to predict accu-
racy, confidence, and time, each language property (ε-inverted,
simple disjunction, simple conjunction, deterministic, decom-
posable, and decisive) is considered to be a fixed effect. This
set is restricted to non-overlapping properties for our selected
languages; flat, smooth, and ordered are removed. In addition,
some generated explanations may be larger than others, and so
we consider the size of the formula as a fixed effect (measured
as the number of nodes in the directed acyclic graph representa-
tion). Lastly, the domain is considered as a fixed effect. The par-
ticipant identifier is a random effect, allowing us to account for
the different subject baselines. To evaluate each fixed effect, we
perform likelihood ratio tests of two model variants: one includ-
ing the fixed effect of interest and one not. In all analysis, we
report results for α=0.05. Table 1 summarizes these models.

Interpretability Proxy: Accuracy
Overall, participants achieved an average accuracy rate of
92.6% (SD = 9.1%). In our generalized linear mixed mod-
els for accuracy, we find the significant fixed factors to be
domain (χ2(2, 1492) = 21.118, p < 0.001) and inversion
(χ2(1,1492)=3.975,p=0.046). Notably, the presence of sim-
ple conjunction, the fixed effect which distinguishes Disjunc-
tive Normal Form, was not a significant predictor of accuracy
(χ2(1,1492)=0.284,p=0.594). In constrast to our hypothesis
[H1], this suggests that languages other than DNF may be as in-
terpretable from the perspective of accuracy. The significance
of inversion relates to our hypothesis [H3], though inverted
formulae here include both nor and nand logical connectives.

Interpretability Proxy: Time
On average, participants answered each question in 32.5
seconds (SD=27.8). Figure 3 shows the impact of each fixed
effect on time. We find the significant fixed factors in our
generalized linear mixed model to be domain (χ2(2,1492) =
74.533,p < 0.001), formula size (χ2(8,1492) = 66.047,p <
0.001), and decisiveness (χ2(1,1492) = 5.015,p= 0.025). In
contrast to our hypothesis [H1], we find simple conjunction is
not a significant predictor for time spent resolving propositional
theories (χ2(1,1492)=0.111,p=0.739).

Interpretability Proxy: Confidence
On average, participants were “very confident” across all
questions (M=4.56,SD=0.84). From our generalized linear
mixed models, we find the significant predictors of confidence
to be domain (χ2(2, 1492) = 124.08, p < 0.001), formula
size (χ2(8,1492) = 15.767,p < 0.001), and decomposability
(χ2(1,1492)=4.239,p=0.040). Once more, we find evidence
against [H1], as simple conjunction is not a significant
predictor for confidence (χ2(1,1492)=0.518,p=0.472).

Adding accuracy as a fixed effect in our generalized linear
mixed model for confidence shows accuracy to be a strong pre-
dictor (χ2(1,1492) = 59.942,p<0.001). Similarly, if we add
time as a fixed effect, it too is a strong predictor of confidence
(χ2(1,1492) = 10.186,p = 0.001). Intuitively, when partic-
ipants are less confident, they take longer and are less accurate
when resolving the truth value of a propositional theory.

Impact of Different Domains
Across domains, task complexity varies. The highway domain
requires a spatial frame of reference (left, right, front, back).
The emergency domain requires evaluation of inequalities (e.g.,
“pulse is not between 40 and 70”). The chopsticks domain re-
quires a spatial frame of reference (left, right) and addition. We
compare RTLX-measured workload across the domains using
repeated measures ANOVA. We find we likely can reject the
null hypothesis that the domain did not affect the experienced
workload (F (1.656,368.574)=6.882,p=0.004). In pairwise
comparisons, we see a significant difference between the
chopsticks domain (M=40.35, SD=12.23) and the highway
domain (M = 33.74, SD = 12.20; p= 0.016), and between
the chopsticks and emergency triage domains (M = 35.09,
SD=11.35; p=0.046). We do not see a significant difference
between the highway and emergency triage domains.

We further consider domain, modeled as a fixed effect, in the
generalized linear mixed models for accuracy, time, and confi-
dence. We find domain significantly affects all three metrics: ac-
curacy (χ2(2,1492)=21.118,p<0.001), time (χ2(2,1492)=
74.533,p<0.001), and confidence (χ2(2,1492)=124.08,p<
0.001). While the correlation between higher experienced
workload and increased time spent resolving propositional
theories is expected and supports [H2 time], accuracy and
confidence likewise drop in contrast with [H2 accuracy],
[H2 confidence]. As these metrics collectively proxy inter-
pretability, a change in one metric may affect the other metrics.
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Figure 3: Time spent per domain, per formula size, and per language
property, normalized by individual participant performance. Only
domain, formula size, and decisiveness have significant effects on
time. Error bars are standard deviation.

5.3 Qualitative Results & Discussion

Disjunctive Normal Form

Conventional wisdom presumes an interpretable propo-
sitional theory should be written either in Disjunctive
Normal Form [Hayes and Shah, 2017; Wang et al., 2015;
Hauser et al., 2010] or, perhaps, in Conjunctive Normal
Form [Darwiche and Marquis, 2002]. Our analysis suggests
there is more flexibility in the presentation of propositional the-
ories than previously assumed. Neither simple disjunction nor
simple conjunction is a significant fixed effect in predicting the
accuracy, time, or confidence in resolving a propositional the-
ory (Table 1). While interpretability varied across domains and
inversion, it appears somewhat robust across the tested subset of
the knowledge compilation map. Decomposability resulted in
a statistically significant increase in confidence, while decisive-
ness resulted in a statistically significant increase in time spent.

In follow-up discussions with participants, we showed four
language examples (DNF, INNF, CNF, and d-DNNF). Most
participants identified either the DNF or the CNF form as
the “easiest.” Nonetheless, when specifically asked about the
d-DNNF form with four layers of nesting (e.g., the longest path
from the root of the directed acyclic graph to a leaf was 4), par-
ticipants said it would be “not too hard; but it may take longer
due to nesting,” or that it may be “tedious but easy to follow.”
Participants discussed the trade-offs between the different
forms; for example, many participants mentioned that the DNF
form allowed them to stop evaluating the theory earlier, while
the d-DNNF forms sometimes required even less evaluation.

The Importance of Domain
In follow-up discussions, 17/25 participants identified the
chopsticks hand game as the hardest domain. Their explana-
tions ranged from “it came last so I was tired” to “it came first,
and was challenging to understand the framework.” Some par-
ticipants mentioned that having to perform arithmetic increased
the difficulty of the task; other participants mentioned the dif-
ficulty in keeping track of the frame of reference; others still
mentioned the complexity of the rule set. These comments are
supported by the results of the evaluation of the NASA-RTLX
workload scores, as well as by all three metrics of interpretabil-
ity. This suggests that differences in domains may require differ-
ent presentation of propositional theories, including the deter-
mination of potential costs associated with resolving predicates.

Negation Applied to Logical Connectives
In follow-up discussions with participants, we asked, “Which,
if any, logical connectives were hard?” 23/25 participants said
that “none of” was particularly challenging, while only one
participant explicitly mentioned “not both of.” Due to the fre-
quency with which participants responded that “none of” was
the hardest logical connective, study operators stopped listing it.
In spite of this, participants continued to identify it as the most
challenging connective, contrasting with [H3]. Participants
described “none of” as “counterintuitive,” and explained that
it required them to “flip the logic.” One participant explained
that, as they are “usually looking for true statements, none of
was especially hard to track.” 10/25 participants also identified
double-negatives as challenging. When viewing an INNF
example with two negated logical connectives, one participant
exclaimed, “Yikes, I hate negatives!” In cognitive psychology,
Chase and Clark found that participants were slower to resolve
the truth value of a single predicate when it was negated [1972].
Both our qualitative and quantitative results suggest explana-
tions should aim to avoid inverted framing wherever possible.

Knowledge Compilation and Human Cognition
Darwiche and Marquis map the queries and transformations
each logical language supports in polytime (assuming P 6=
NP) [2002]. Ordered by query expressivity, CNF supports the
fewest polytime queries while OBDD supports the most: CNF
<ODNF≤DNF< d-DNNF≤OBDD. INNF is not evaluated.
Considering human cognition, decomposability (of d-DNNF,
sd-DNNF, and OBDD) had a significant effect on increased con-
fidence, while decisiveness (of OBDD) had a significant effect
on increased time spent. Increased computational tractability
appears to neither help nor hinder human computation.

6 Conclusion
We revisit the knowledge compilation map to investigate how to
best present propositional theories to humans. We find proper-
ties associated with interpretability such as simple conjunction
did not have significant effects, suggesting translations to these
forms may be unnecessary. Further, we find sparse effects
across other knowledge compilation properties; only inversion
(on accuracy), decisiveness (on time spent), and decomposabil-
ity (on confidence) had significant effects. Our work moves to-
ward determining how logic can be used in the design of an inter-
pretable language of AI. Our study procedures and source code
are available at github.com/serenabooth/logic-interpretability.
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