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Abstract
This paper contributes a new machine learning so-
lution for stock movement prediction, which aims
to predict whether the price of a stock will be up or
down in the near future. The key novelty is that we
propose to employ adversarial training to improve
the generalization of a neural network prediction
model. The rationality of adversarial training here
is that the input features to stock prediction are typ-
ically based on stock price, which is essentially a
stochastic variable and continuously changed with
time by nature. As such, normal training with static
price-based features (e.g., the close price) can easi-
ly overfit the data, being insufficient to obtain reli-
able models. To address this problem, we propose
to add perturbations to simulate the stochasticity of
price variable, and train the model to work well un-
der small yet intentional perturbations. Extensive
experiments on two real-world stock data show that
our method outperforms the state-of-the-art solu-
tion [Xu and Cohen, 2018] with 3.11% relative im-
provements on average w.r.t. accuracy, validating
the usefulness of adversarial training for stock pre-
diction task.

1 Introduction
Stock market is one of the largest financial markets, hav-
ing reached a total value of 80 trillion dollars1. Predicting
the future status of a stock has always been of great inter-
est to many players in a stock market. While the exact price
of a stock is known to be unpredictable [Walczak, 2001;
Nguyen et al., 2015], research efforts have been focused
on predicting the stock price movement — e.g., whether
the price will go up/down, or the price change will ex-
ceed a threshold — which is more achievable than stock
price prediction [Adebiyi et al., 2014; Feng et al., 2018;
Xu and Cohen, 2018].

Stock movement prediction can be addressed as a classi-
fication task. After defining the label space and features to
∗Corresponding author.
1https://data.worldbank.org/indicator/CM.MKT.TRAD.C

D?view=chart

(a) Train (b) Validation
Figure 1: Training process of Attentive LSTM with L2 regulariza-
tion coefficient of 0, 0.01, and 0.1.

describe a stock at a time, we can apply standard supervised
learning methods such as support vector machines [Huang et
al., 2005] and neural networks [Xu and Cohen, 2018] to build
the predictive model. Although technically feasible, we argue
that such methods could suffer from weak generalization due
to the highly stochastic property of stock market. Figure 1
provides an empirical evidence on the weak generalization,
where we split the data into training and validation by time,
and train an Attentive LSTM model [Qin et al., 2017] on the
historical prices of stocks to predict their movements. From
Figure 1(a), we can see the training loss gradually decreases
with more training epochs, which is as expected. However,
the validation loss shown in Figure 1(b) does not exhibit a
decreasing trend; instead, it only fluctuates around the initial-
ization state without a clear pattern. In other words, the bene-
fits of the model learned on training examples do not translate
to improvements on predicting unknown validation examples.
We have thoroughly explored the L2 regularization (results of
different lines), a common technique to improve model gen-
eralization, however, the situation has not improved.

We postulate the reason is that standard classification meth-
ods are assumed to learn from static inputs, such as pixel
values in images and term frequencies in documents. When
dealing with stochastic variable such as stock price, the stat-
ic input assumption does not hold and such methods fail to
generalize well. Specifically, existing methods for stock pre-
diction typically feed into price-based features, such as the
price at a particular time-step or average price on multiple
time-steps [Edwards et al., 2007; Nelson et al., 2017]. S-
ince a stock’s price continuously changes with time (during
market hours), price-based features are essentially stochastic
variables, being fundamentally different from the traditional
static inputs. To be more specific, the features of a training in-
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stance can be seen as a “sample” drawn from the distribution
of input variables at a particular time-step. Without properly
handling the stochasticity of input variables, the method can
easily overfit the training data and suffer from weak general-
ization ability.

In this work, we propose to employ adversarial training to
account for the stochastic property of stock market to learn s-
tock movement prediction model. Our primary consideration
is that given a training example at a particular time-step with
fixed input features, the trained model is expected to generate
the same prediction on other samples drawn from the inheren-
t distribution of input variables. To implement this idea, we
can generate additional samples (simulation of the stochas-
ticity) by adding small perturbations on input features, and
train the model to perform well on both clean examples and
perturbed examples. It is the adversarial training method that
has been commonly used in computer vision tasks [Kurakin
et al., 2017]. However, the problem is that the features to s-
tock prediction models are usually sequential (see Figure 2),
such that adding perturbations on the features of all time units
can be very time-consuming; moreover, it may cause uninten-
tional interactions among the perturbations of different units
which are uncontrollable. To resolve the concern, we instead
add perturbations on the high-level prediction features of the
model, e.g., the last layer which is directly projected to the
final prediction. Since most deep learning methods learn ab-
stract representation in the higher layers, their sizes are usual-
ly much smaller than the input size. As such, adding perturba-
tions to high-level features is more efficient, and meanwhile
it can also retain the stochasticity.

We implement our adversarial training proposal on an At-
tentive LSTM model, which is a highly expressive model for
sequential data. We add perturbations to the prediction fea-
tures of the last layer, and dynamically optimize the pertur-
bations to make them change the model’s output as much as
possible. We then train the model to make it perform well
on both clean features and perturbed features. As such, the
adversarial training process can be understood as enforcing a
dynamic regularizer, which stabilizes the model training and
makes the model perform well under stochasticity.

The main contributions of this paper are summarized as:
• We investigate the generalization difficulty in stock move-

ment prediction and highlight the necessity of dealing with
the stochastic property of input features.

• We propose an adversarial training solution to address the
stochastic challenge, and implement it on a deep learning
model for stock movement prediction.

• We conduct extensive experiments on two public bench-
marks, validating improvements over several state-of-the-
art methods and showing that adversarial learning makes
the classifier more robust and more generalizable.

2 Problem Formulation
We use bold capital letters (e.g., X) and bold lower letters
(e.g., x) to denote matrices and vectors, respectively. In ad-
dition, normal lower case letters (e.g., x) and Greek letters
(e.g., λ) are used to represent scalars and hyper-parameters,
respectively. All vectors are in column form, if not otherwise

Figure 2: Illustration of the Attentive LSTM.

specified. The symbols tanh and σ stand for the hyperbolic
tangent function and sigmoid function, respectively.

The formulation of stock movement prediction task is to
learn a prediction function ŷs = f(Xs; Θ) which maps a
stock (s) from its sequential features (Xs) to the label s-
pace. In other words, the function f with parameters Θ aim-
s to predict the movement of stock s at the next time-step
from the sequential features Xs in the latest T time-steps.
Xs = [xs1, · · · ,xsT ] ∈ RD×T is a matrix which represents
the sequential input features (e.g., open and close prices, as
detailed in Table 1) in the lag of past T time-steps, where D
is the dimension of features.

Assuming that we have S stocks, we learn the pre-
diction function by fitting their ground truth labels y =
[y1, · · · , yS ] ∈ RS , where ys (1/-1) is the ground truth la-
bel of stock s in the next time-step. We then formally define
the problem as:
Input: A set of training examples {(Xs, ys)}.
Output: A prediction function f(Xs; Θ), predicting the
movement of stock s in the following time-step.

In the practical scenario, we could typically access a long
history of each stock, and construct many training examples
for each stock by moving the lag along the history. Never-
theless, we use a simplified formulation without loss of gen-
erality by only considering one specific lag (i.e., one training
example for each stock) for briefness of presenting the pro-
posed method.

3 Adversarial Attentive LSTM (Adv-ALSTM)
3.1 Attentive LSTM
The Attentive LSTM (ALSTM) mainly contains four compo-
nents: feature mapping layer, LSTM layer, temporal atten-
tion, and prediction layer, as shown in Figure 2.

Feature mapping layer. Previous work shows that a deeper
input gate would benefit the modeling of temporal structures
of LSTM [Graves et al., 2013; Wu et al., 2018]. Inspired by
their success, we employ a fully connected layer to project the
input features into a latent representation. At each time-step,
it performs as ms

t = tanh(Wmxs
t + bm), which projects

the input features to a latent space with dimensionality of E.
Wm ∈ RE×D and bm ∈ RE are parameters to be learned.

LSTM layer. Owing to its ability to capture long-term de-
pendency, LSTM has been widely used to process sequen-
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tial data [Qin et al., 2017; Chen et al., 2018a]. The general
idea of LSTM is to recurrently project the input sequence in-
to a sequence of hidden representations. At each time-step,
the LSTM learns the hidden representation (hst ) by jointly
considering the input (ms

t ) and previous hidden representa-
tion (hst−1) to capture sequential dependency. We formulate
it as hst = LSTM(ms

t ,h
s
t−1) of which the detailed for-

mulation can be referred to [Hochreiter and Schmidhuber,
1997]. To capture the sequential dependencies and tempo-
ral patterns in the historical stock features, an LSTM layer
is applied to map [ms

1, · · · ,ms
T ] into hidden representations

[hs1, · · · ,hsT ] ∈ RU×T with the dimension of U .

Temporal Attention Layer. The attention mechanism has
been widely used in LSTM-based solutions for sequential
learning problems[Cho et al., 2014; Chen et al., 2018a]. The
idea of attention is to compress the hidden representations at
different time-steps into an overall representation with adap-
tive weights. The attention mechanism aims to model the fact
that data at different time-steps could contribute differently
to the representation of the whole sequence. For stock repre-
sentation, status at different time-steps might also contribute
differently. For instance, days with maximum and minimum
prices in the lag might have higher contributions to the over-
all representation. As such, we use an attention mechanism
to aggregate the hidden representations as,

as =
T∑
t=1

αsth
s
t , α

s
t =

expα̃
s
t∑T

t=1 exp
α̃s

t

,

α̃st = uTa tanh(Wah
s
t + ba),

(1)

where Wa ∈ RE′×U , ba and ua ∈ RE′ are parameters to be
learned; and as is the aggregated representation that encodes
the overall patterns in the sequence.

Prediction Layer. Instead of directly making prediction
from as, we first concatenate as with the last hidden state
hsT into the final latent representation of stock s,

es = [asT ,hsT
T ]T , (2)

where es ∈ R2U . The intuition behind is to further emphasize
the most recent time-step, which is believed to be informative
for the following movement [Fama and French, 2012]. With
es, we use a fully connected layer as the predictive function
to estimate the classification confidence ŷs = wT

p e
s + bp.

Note that the final prediction is sign(ŷs).

3.2 Adversarial Training
As with most classification solutions, the normal way of
training the ALSTM is to minimize an objective function Γ:

S∑
s=1

l(ys, ŷs) +
α

2
‖Θ‖2F , l(ys, ŷs) = max(0, 1− ysŷs). (3)

The first term is hinge loss [Rosasco et al., 2004], which is
widely used for optimizing classification models (more rea-
sons of choosing it is further explained in the end of the sec-
tion). The second term is a regularizer on the trainable pa-
rameters to prevent overfitting.

Figure 3: Illustration of the Adversarial Attentive LSTM.

Despite the wide usage of normal training, we argue that
it is inappropriate for learning stock prediction models. This
is because normal training assumes that the inputs are static,
ignoring the stochastic property of these features (a training
example is a sample drawn from the stochastic distribution of
input variables). Note that the features are calculated from
stock price, which continuously changes with time and is af-
fected by stochastic trading behaviours at a particular time-
step [Musgrave, 1997]. As such, normal training might lead
to model that overfits the data and lacks generalization abil-
ity (as shown in Figure 1). Note that is a model perform-
s well under stochasticity would make same predictions for
samples drawn from the inherent distribution. Considering
that stock price is continuous, our intuition is to intentionally
simulate samples by adding small perturbations on static in-
put features. By enforcing the predictions on the simulated
samples to be same, the model could capture stochasticity.

Adversarial training [Goodfellow et al., 2015; Kurakin et
al., 2017] implements the aforementioned intuition. It train-
s a model with both clean examples (i.e., examples in the
training set) and adversarial examples (AEs) [Szegedy et al.,
2013]. The AEs are malicious inputs generated by adding
intentional perturbations to features of clean examples. The
perturbation, named as adversarial perturbation (AP) is the
direction that leads to the largest change of model predic-
tion. Despite its success in image classification [Kurakin et
al., 2017], it is infeasible to be directly applied to stock pre-
diction. This is because calculating perturbations relies on
calculation of the gradients regarding the input, which would
be time-consuming (caused by the back-propagation through
time-step of the LSTM layer). Besides, considering the fact
that the gradients of the input are dependent across different
time-steps, there might be unintentional interactions among
the perturbations on different time-steps, which are uncon-
trollable. To address these problems, we propose to generate
AEs from latent representation es, as shown in Figure 3.

Before introducing the calculation of AEs, we first elabo-
rate the objective function of Adv-ALSTM:

Γadv =
S∑
s=1

l(ys, ŷs) + β
S∑
s=1

l(ys, ŷsadv) +
α

2
‖Θ‖2F . (4)

The second term is an adversarial loss where ŷsadv is the clas-
sification confidence of the AE of stock s. β is a hyper-
parameter to balance the losses of clean and adversarial ex-
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amples. By minimizing the objective function, the model is
encouraged to correctly classify both clean and adversarial
examples. Note that a model correctly classifying an AE can
make right predictions for examples with arbitrary perturba-
tions at the same scale. This is because AP is the direction
leading to the largest change of model prediction. Therefore,
adversarial learning could enable ALSTM to capture the s-
tochastic property of stock inputs.

At each iteration, the latent representation of an AE (esadv)
is generated by the following formulation,

esadv = es + rsadv , rsadv = arg max
rs,‖rs‖≤ε

l(ys, ŷsadv), (5)

where es (introduced in Equation 2) is the final latent repre-
sentation of stock s. rsadv is the associated AP. ε is a hyper-
parameter to explicitly control the scale of perturbation. S-
ince it is intractable to directly calculate rsadv , we employ
the fast gradient approximation method [Goodfellow et al.,
2015], rsadv = ε gs

‖gs‖ , gs = ∂l(ys,ŷs)
∂es . Specifically, the cal-

culated perturbation is the gradient of loss function regarding
the latent representation es under a L2-norm constraint. Note
that the gradient denotes the direction where the loss function
increase the most at the given point es, i.e., , it would lead to
the largest change on the model prediction.

Figure 4 illustrates the generation of adversarial examples.
In a training iteration, given a clean example having loss larg-
er than 0 (i.e., ysŷs < 1), an AE is generated. The model is
then updated to jointly minimize the losses for clean and ad-
versarial examples, which would enforce the margin between
clean examples and the decision boundary2. As such, it would
benefit the model to predict examples with perturbations in-
to the same class as the clean one. That is, the model could
correctly predict samples drawn from the inherent stochastic
distribution of inputs, capturing the stachasticity. While tra-
ditional models like support vector machines also push the
decision boundary far from clean examples, the adversarial
training adaptively adjusts the strength of enforcing margins
during the training process since the AP (rsadv) varies across
iterations. Note that we select the hinge loss to encourage the
training process to focus more on the examples close to the
decision boundary.

4 Experiments
4.1 Experimental Settings
We evaluate the proposed method on two benchmarks on s-
tock movement prediction, ACL18 [Xu and Cohen, 2018] and
KDD17 [Zhang et al., 2017].

ACL18 contains historical data from Jan-01-2014 to Jan-
01-2016 of 88 high-trade-volume-stocks in NASDAQ and
NYSE markets. Following [Xu and Cohen, 2018], we first
align the trading days in the history, i.e., removing weekends
and public holidays that lack historical prices. We then move

2Minimizing the hinge loss of the AE is adjusting wp to
enlarge ysŷsadv = ys(wT

p e
s + b) + yswT

p r
s
adv , which would

increase the first term ys(wT
p e

s + b) = ysŷs. The results in
Figure 5 (in Section 4) empirically demonstrate the effect of
enforcing margins.
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Figure 4: Intuitive illustration of adversarial examples.

Features Calculation
c open, c high, c low e.g., c open = opent/closet − 1
n close, n adj close e.g., n close = (closet/closet−1 − 1

5-day, 10-day, 15-day,
20-day, 25-day, 30-day e.g., 5-day =

∑4
i=0 adj closet−i/5

adj closet
− 1

Table 1: Features to describe the daily trend of a stock.

a lag with length of T along the aligned trading days to con-
struct candidate examples (i.e., one example for a stock on
every trading day). We label the candidate examples accord-
ing to the movement percent of stock close prices. Given a
candidate example of stock s in the lag of [T ′ − T + 1, T ′],
the movement percent is calculated as psT ′+1/p

s
T ′ − 1, where

psT ′ is the adjusted close price of stock s on day T ′. Examples
with movement percent≥ 0.55% and≤ −0.5% are identified
as positive and negative examples, respectively. We tempo-
rally split the identified examples into training (Jan-01-2014
to Aug-01-2015), validation (Aug-01-2015 to Oct-01-2015),
and testing (Oct-01-2015 to Jan-01-2016).

KDD17 includes longer history ranging from Jan-01-2007
to Jan-01-2016 of 50 stocks in U.S. markets. As the dataset
is originally collected for predicting stock prices rather than
movements, we follow the same approach as ACL18 to iden-
tify positive and negative examples. We then temporally s-
plit the examples into training (Jan-01-2007 to Jan-01-2015),
validation (Jan-01-2015 to Jan-01-2016) and testing (Jan-01-
2016 to Jan-01-2017).

Features. Instead of using the raw EOD data, we define 11
temporal features (xst ) to describe the trend of a stock s at
trading day t. Table 1 elaborates the features associated with
calculation. Our aim of defining these features are to: 1) nor-
malize the prices of different stocks; 2) and explicitly capture
the interaction of different prices (e.g., open and close).

Baselines. We compare the following methods:

• Momentum (MOM) is a technical indicator that predicts
negative or positive for each example with the trend in the
last 10 days.

• Mean reversion (MR) predicts the movement of each ex-
ample as the opposite direction of latest price towards the
30-day moving average.

• StockNet uses a Variational Autoencoder (VAE) to encode
the stock input so as to capture the stochasticity, and a tem-
poral attention to model the importance of different time-
steps [Xu and Cohen, 2018]. Here we take our tempo-
ral features in Table 1 as inputs and tune its hidden size,
dropout ratio, and auxiliary rate (α).
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Method ACL18 KDD17
Acc MCC Acc MCC

MOM 47.01±—– -0.0640±—– 49.75±—– -0.0129±—–
MR 46.21±—– -0.0782±—– 48.46±—– -0.0366±—–

StockNet 54.96±—– 0.0165±—– 51.93±4e-1 0.0335±5e-3
LSTM 53.18±5e-1 0.0674±5e-3 51.62±4e-1 0.0183±6e-3

ALSTM 54.90±7e-1 0.1043±7e-3 51.94±7e-1 0.0261±1e-2
Adv-ALSTM 57.20±—– 0.1483±—– 53.05±—– 0.0523±—–

RI 4.02% 42.19% 2.14% 56.12%

Table 2: Performance comparison on the two datasets. RI de-
notes the relative improvement of Adv-ALSTM compared to the
best baseline. We copy StockNet from the origin paper.

Datasets Acc MCC
ACL18 55.08±2e0 0.1103±4e-2
KDD17 52.43±5e-1 0.0405±8e-3

Table 3: Performance of Rand-ALSTM on the two datasets.

• LSTM is a neural network with an LSTM layer and a pre-
diction layer [Nelson et al., 2017]. We tune three hyper-
parameters, number of hidden units (U ), lag size (T ), and
weight of regularization term (λ).

• ALSTM is the Attentive LSTM [Qin et al., 2017], which is
optimized with normal training. Similar as LSTM, we also
tune U , T , and λ.

Evaluation Metrics. We evaluate the prediction perfor-
mance with two metrics, Accuracy (Acc) and Matthews Cor-
relation Coefficient (MCC) [Xu and Cohen, 2018] of which
the ranges are in [0, 100] and [−1, 1]. Note that better perfor-
mance is evidenced by higher value of the metrics.
Parameter Settings. We implement the Adv-ALSTM
with Tensorflow and optimize it using the mini-batch
Adam[Diederik and Jimmy, 2015] with a batch size of 1,024
and an initial learning rate of 0.01. We search the opti-
mal hyper-parameters of Adv-ALSTM on the validation set.
For U , T , and λ, Adv-ALSTM inherits the optimal settings
from ALSTM, which are selected via grid-search within the
ranges of [4, 8, 16, 32], [2, 3, 4, 5, 10, 15], and [0.001,
0.01, 0.1, 1], respectively. We further tune β and ε with-
in [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1] and [0.001, 0.005,
0.01, 0.05, 0.1], respectively. We report the mean testing per-
formance when Adv-ALSTM performs best on the validation
set over five different runs. Code could be accessed through
https://github.com/hennande/Adv-ALSTM.

4.2 Experimental Results
Performance Comparison. Tables 2 shows the prediction
performance of compared methods on the two datasets re-
garding Acc and MCC, respectively. From the table, we have
the following observations:
• Adv-ALSTM achieves the best results in all cases. Com-

pared to the baselines, Adv-ALSTM exhibits an improve-
ment of 4.02% and 42.19% (2.14% and 56.12%) on the
ACL18 (KDD17) dataset regarding Acc and MCC, respec-
tively. It justifies the effectiveness of adversarial training,
which might be due to enhancing the model generalization
via adaptively simulating perturbations during training.

• Specifically, compared to StockNet, which captures s-
tochasticity of stock inputs with VAE, Adv-ALSTM
achieves significant improvements. We postulate the rea-
son is that StockNet cannot explicitly model the scale and

(a) Validation of ACL18 (b) Testing of ACL18
Figure 5: Distributions of classification confidences assigned by AL-
STM and Adv-ALSTM for clean examples.

direction of stochastic perturbation since it relies on Monte
Carlo sampling during the training process.

• Among the baselines, ALSTM outperforms LSTM by
1.93% and 48.69% on average w.r.t. Acc and MCC, which
validates the impact of attention [Qin et al., 2017]. Be-
sides, MOM and MR performs worse than all the machine
learning-based methods as expected, which justifies that
historical patterns help in stock prediction task.

Stochastic Perturbation VS. Adversarial Perturbation
We further investigate the effectiveness of adversarial train-
ing via comparing adversarial perturbations and random ones.
Rand-ALSTM is a variance of Adv-ALSTM, which generates
additional examples by adding random perturbations to the
input of clean examples. Table 3 shows the performance of
Rand-ALSTM on the two datasets. By cross comparing it with
Table 2, we observe that: 1) Compared to Rand-ALSTM, Adv-
ALSTM achieves significant improvements. For instance, its
performance w.r.t. Acc on ACL18 is 3.95% better than that of
Rand-ALSTM. It demonstrates that adversarial perturbations
are helpful for stock prediction, similar to that reported in the
original image classification tasks [Goodfellow et al., 2015].
2) Rand-ALSTM outperforms ALSTM, which is purely trained
with clean examples, with an average improvement of 0.64%
w.r.t. Acc on the two datasets. This highlights the necessity
of dealing with stochastic property of stock features.

We now investigate the impacts of adversarial training to
answer: 1) Whether the adversarial training enforces the mar-
gin between clean examples and the decision boundary. 2)
Whether the adversarial training enhances the robustness of
the model against adversarial examples. Note that we only
show the results on the ACL18 dataset as the results on KD-
D17 admit the same observations.

Recall that the difference between Adv-ALSTM and ALST-
M is learning parameters with adversarial training or stan-
dard training. We answer the first question by comparing
the classification confidence of clean examples (larger val-
ue denotes larger margin to the decision boundary) assigned
by Adv-ALSTM and ALSTM. Figure 5 shows the distribution-
s of the classification confidences assigned by ALSTM and
Adv-ALSTM. As can be seen, the confidences of Adv-ALSTM
distribute in a range ([-0.6, 0.6] roughly), which is about 1.5
times larger than that of ALSTM ([-0.2, 0.3]). It indicates that
adversarial training pushes the decision boundary far from
clean examples, which is believed to help enhance the robust-
ness and generalization ability of the model.
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(a) Acc (b) MCC
Figure 6: Robustness against adversarial example of ALSTM and
Adv-ALSTM. Each plotted number is the RPD of a model on adver-
sarial examples compared to clean ones.

We then investigate the second question via comparing the
performance of ALSTM and Adv-ALSTM on the clean and as-
sociated adversarial examples. Figures 6(a) and 6(b) illustrate
the relative performance decrease (RPD) of ALSTM and Adv-
ALSTM on adversarial examples regarding the one on clean
examples, respectively. Note that larger absolute value of R-
PD indicates that the model is more vulnerable to adversarial
perturbations. As can be seen, the average RPD of ALSTM
is 4.31 (6.34) times larger as compared to Adv-ALSTM re-
garding Acc (MCC). This justifies the potential of enhancing
model robustness with adversarial training.

5 Related Work
Stock Movement Prediction methods mainly fall under two
categories, technical analysis and fundamental analysis (FA).
TA takes historical prices of a stock as features to forecast
its movement. Most of recent TA methods mine stock move-
ments with deep models [Lin et al., 2017; Nelson et al., 2017;
Chong et al., 2017]. Among them, recurrent neural net-
works like LSTM have become key components to capture
the temporal patterns of stock prices [Nelson et al., 2017;
Lin et al., 2017]. Besides, other advanced neural models,
such as convolution neural network (CNN) [Lin et al., 2017]
and deep Boltzmann machine [Chong et al., 2017], are also
evidenced to be beneficial for capturing the non-linearity of
stock prices.

In addition to price features, FA also examines related eco-
nomic, financial, and other qualitative and quantitative fac-
tors [Hu et al., 2018; Zhang et al., 2018; Li et al., 2018;
Xu and Cohen, 2018]. For instance, Xu and Cohen [2018] in-
corporate signals from social media, which reflects opinions
from general users, to enhance stock movement prediction.
Specifically, they employ a VAE to learn a stock representa-
tion by jointly encoding the historical prices and tweets men-
tioning it. Moreover, Zhang et al. [2018] further consider
news events related to a stock or the associated company via
a coupled matrix and tensor factorization framework.

Both TA and FA studies show that price features play cru-
cial roles in stock movement prediction. However, most of
the existing works assume stock price as stationary, which
thus lack the ability to deal with its stochastic property. S-
tockNet [Xu and Cohen, 2018] is the only exception which
tackles this problem via VAE. VAE encodes the inputs into a
latent distribution and enforces samples from the latent dis-
tribution to be decoded with the same prediction. Generally,

the philosophy behind is similar as the simulation of stochas-
tic perturbations since one sample from the latent distribution
can be seen as adding stochastic perturbation to the latent rep-
resentation. As compared to our method, our perturbation is
intentionally generated which indicates leads to hardest ex-
amples for the model to obtain the target prediction. In ad-
dition, the proposed method can be easily adapted to other
solutions of stock movement predictions.

Adversarial Learning has been intensively studied by train-
ing a classification model to defense adversarial examples,
which are intentionally generated to perturb the model. The
existing works mainly concentrate on computer vision tasks
like image classification [Goodfellow et al., 2015; iyato et
al., 2017; Kurakin et al., 2017; Yang et al., 2018; Chen et al.,
2018b]. Owing to the property that image features are typi-
cally continued real values, adversarial examples are directly
generated in the feature space. Recently, several works extend
the adversarial learning to tasks with discrete inputs such as
text classification (a sequence of words) [iyato et al., 2017],
recommendation (user and item IDs) [He et al., 2018], and
graph node classification (graph topology) [Dai et al., 2018;
Feng et al., 2019]. Rather than in the feature space, these
works generate adversarial examples from embedding of in-
puts such as word, user (item), and node embeddings. Al-
though this work is inspired by these adversarial learning re-
search efforts, it targets a distinct task—stock movement pre-
diction, of which the data are time series with stochastic prop-
erty. To the best of our knowledge, this work is the first one
to explore the potential of adversarial training in time-series
analytics.

6 Conclusion
We showed that neural network solutions for stock movement
prediction could suffer from weak generalization ability since
they lack the ability to deal with the stochasticity of stock
features. To solve this problem, we proposed an Adversarial
Attentive LSTM solution, which leverages adversarial train-
ing to simulate the stochasticity during model training. We
conducted extensive experiments on two benchmark datasets
and validated the effectiveness of the proposed solution, sig-
nifying the importance of accounting for the stochasticity of
stock prices in stock movement prediction. Morever, the re-
sults showed that adversarial training enhances the robustness
and generalization of the prediction model.

In future, we plan to explore the following directions: 1)
we are interested in testing Adv-ALSTM in movement pre-
diction of more assets such as commodities. 2) We plan to
apply adversarial training to stock movement solutions with
different structures such as the CNNs [Lin et al., 2017]. 3)
We will explore the effect of adversarial training over funda-
mental analysis methods of stock movement prediction.
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