
Controllable Neural Story Plot Generation via Reward Shaping

Pradyumna Tambwekar1∗ , Murtaza Dhuliawala1∗ , Lara J. Martin1 , Animesh Mehta1 ,
Brent Harrison2 and Mark O. Riedl1

1School of Interactive Computing, Georgia Institute of Technology
2Department of Computer Science, University of Kentucky

{ptambwekar3, murtaza.d.210, ljmartin, animesh.mehta}@gatech.edu,
harrison@cs.uky.edu, riedl@cc.gatech.edu

Abstract

Language-modeling–based approaches to story
plot generation attempt to construct a plot by sam-
pling from a language model (LM) to predict the
next character, word, or sentence to add to the story.
LM techniques lack the ability to receive guidance
from the user to achieve a specific goal, resulting in
stories that don’t have a clear sense of progression
and lack coherence. We present a reward-shaping
technique that analyzes a story corpus and produces
intermediate rewards that are backpropagated into
a pre-trained LM in order to guide the model to-
wards a given goal. Automated evaluations show
our technique can create a model that generates
story plots which consistently achieve a specified
goal. Human-subject studies show that the gener-
ated stories have more plausible event ordering than
baseline plot generation techniques.

1 Introduction
Automated plot generation is the problem of creating a se-
quence of main plot points for a story in a given domain and
with a set of specifications. Many prior approaches to plot
generation relied on planning [Lebowitz, 1987; Gervás et al.,
2005; Porteous and Cavazza, 2009; Riedl and Young, 2010].
In many cases, these plot generators are provided with a goal,
outcome state, or other guiding knowledge to ensure that the
resulting story is coherent. However, these approaches also
required extensive domain knowledge engineering.

Machine learning approaches to automated plot generation
can learn storytelling and domain knowledge from a corpus
of existing stories or plot summaries. To date, most existing
neural network-based story and plot generation systems lack
the ability to receive guidance from the user to achieve a spe-
cific goal. For example, one might want a system to create
a story that ends in two characters getting married. Neural
language modeling-based story generation approaches in par-
ticular [Roemmele and Gordon, 2015; Khalifa et al., 2017;
Gehring et al., 2017; Martin et al., 2018] are prone to gener-
ating stories with little aim since each sentence, event, word,

∗Denotes equal contribution.

or letter is generated by sampling from a probability distri-
bution. By themselves, large neural language models have
been shown to work well with a variety of short-term tasks,
such as understanding short children’s stories [Radford et al.,
2019]. However, while recurrent neural networks (RNNs) us-
ing LSTM or GRU cells can theoretically maintain long-term
context in their hidden layers, in practice RNNs only use a
relatively small part of the history of tokens [Khandelwal et
al., 2018]. Consequently, stories or plots generated by RNNs
tend to lose coherence as the generation continues.

One way to address both the control and the coherence is-
sues in story and plot generation is to use reinforcement learn-
ing (RL). By providing a reward each time a goal is achieved,
a RL agent learns a policy that maximizes the future expected
reward. For plot generation, we seek a means to learn a policy
model that produces output similar to plots found in the train-
ing corpus and also moves the plot along from a start state s0
towards a given goal sg . The system should be able to do this
even if there is no comparable example in the training corpus
where the plot starts in s0 and ends in sg .

Our primary contribution is a reward-shaping technique
that reinforces weights in a neural language model which
guide the generation of plot points towards a given goal. Re-
ward shaping is the automatic construction of approximate,
intermediate rewards by analyzing a task domain [Ng et al.,
1999]. We evaluate our technique in two ways. First, we com-
pare our reward-shaping technique to the goal achievement
rate and perplexity of a standard language modeling tech-
nique. Second, we conduct a human subject study to com-
pare subjective ratings of the output of our system against a
conventional language modeling baseline. We show that our
technique improves the perception of plausible event ordering
and plot coherence over a baseline story generator, in addition
to performing computationally better than the baseline.

2 Background and Related Work
Early story and plot generation systems relied on symbolic
planning [Meehan, 1977; Lebowitz, 1987; Cavazza et al.,
2002; Porteous and Cavazza, 2009; Riedl and Young, 2010;
Ware and Young, 2011] or case-based reasoning [Pérez y
Pérez and Sharples, 2001; Gervás et al., 2005]. These tech-
niques only generated stories for predetermined, well-defined
domains, conflating the robustness of manually-engineered
knowledge with algorithm suitability. Regardless, symbolic

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5982

planners in particular are able to provide long-term causal co-
herence. Early machine learning story generation techniques
include textual case-based reasoning trained on blogs [Swan-
son and Gordon, 2012] and probabilistic graphical models
learned from crowdsourced example stories [Li et al., 2013].

More recently, recurrent neural networks (RNNs) have
been promising for story and plot generation because they
can be trained on large corpora of stories and used to pre-
dict the probability of the next letter, word, or sentence in
a story. A number of research efforts have used RNNs to
generate stories and plots [Roemmele and Gordon, 2015;
Khalifa et al., 2017; Martin et al., 2018]. RNNs are also often
used to solve the Story Cloze Test [Mostafazadeh et al., 2016]
to predict the 5th sentence of a given story; our work differs
since we focus on the generation of the entire story to fit a
specified story ending. Similar to our task, Fan et al. [2018]
and Yao et al. [2019] focus on a form of controllability in
which a theme, topic, or title is given.

Reinforcement learning (RL) addresses some of the is-
sues of preserving coherence for text generation when sam-
pling from a neural language model. Additionally, it provides
the ability to specify a goal. Reinforcement learning [Sut-
ton and Barto, 1998] is a technique that is used to solve a
Markov decision process (MDP). An MDP is a tuple M =
〈S,A, T,R, γ〉 where S is the set of possible world states,
A is the set of possible actions, T is a transition function
T : S ×A→ P (S), R is a reward function R : S ×A→ R,
and γ is a discount factor 0 ≤ γ ≤ 1. The result of rein-
forcement learning is a policy π : S → A, which defines
which actions should be taken in each state in order to max-
imize the expected future reward. The policy gradient learn-
ing approach to reinforcement learning directly optimizes the
parameters of a policy model, which is represented as a neu-
ral network. One model-free policy gradient approach, REIN-
FORCE [Williams, 1992], learns a policy by sampling from
the current policy and backpropagating any reward received
through the weights of the policy model.

Deep reinforcement learning (DRL) has been used success-
fully for dialog–a similar domain to plot generation. Li et
al. [2016] pretrained a neural language model and then used
a policy gradient technique to reinforce weights that resulted
in higher immediate reward for dialogue. They also defined
a coherence reward function for their RL agent. Contrasted
with task-based dialog generation, story and plot generation
often require long-term coherence to be maintained. Thus we
use reward shaping to force the policy gradient search to seek
out longer-horizon rewards.

3 Reinforcement Learning for Plot
Generation

We model story generation as a planning problem: find a se-
quence of events that transitions the state of the world into one
in which the desired goal holds. In the case of this work, the
goal is that a given verb (e.g., marry, punish, rescue) occurs
in the final event of the story. While simplistic, it highlights
the challenge of control in story generation.

Specifically, we use reinforcement learning to plan out the
events of a story and use policy gradients to learn a policy

Figure 1: An example sentence and its event representation.

model. We start by training a language model on a corpus of
story plots. A language model P (xn|xn−1...xn−k; θ) gives
a distribution over the possible tokens xn that are likely to
come next given a history of tokens xn−1...xn−k and the
parameters of a model θ. This language model is a first ap-
proximation of the policy model. Generating a plot by itera-
tively sampling from this language model, however, provides
no guarantee that the plot will arrive at a desired goal ex-
cept by coincidence. We use REINFORCE [Williams, 1992]
to specialize the language model to keep the local coherence
of tokens initially learned and also to prefer selecting tokens
that move the plot toward a given goal.

If reward is only provided when a generated plot achieves
the given goal, then the rewards will be very sparse. Policy
gradient learning requires a dense reward signal to provide
feedback after every step. As such, our primary contribution
is a reward-shaping technique where the original training cor-
pus is automatically analyzed to construct a dense reward
function that guides the plot generator toward the given goal.

3.1 Initial Language Model
Martin et al. [2018] demonstrated that the predictive accuracy
of a plot generator could be improved by switching from nat-
ural language sentences to an abstraction called an event. An
event is a tuple e = 〈wn(s), vn(v), wn(o), wn(m)〉, where
v is the verb of the sentence, s is the subject of the verb, o is
the object of the verb, and m is a propositional object, indi-
rect object, causal complement, or any other significant noun.
The parameters o and m may take the special value of empty
to denote there is no object of the verb or any additional sen-
tence information, respectively. We use the same event repre-
sentation in this work. As in Martin et al., we stem all words
and then apply the following functions. The function wn(·)
gives the WordNet [Miller, 1995] Synset of the argument two
levels up in the hypernym tree (i.e. the grandparent Synset).
The function vn(·) gives the VerbNet [Schuler and Kipper-
Schuler, 2005] class of the argument. See Figure ?? for an
example of an “eventified” sentence. Where possible, we split
sentences into multiple events, which creates a potential one-
to-many relationship between a sentence and the event(s) it
produces. Once produced, events are used sequentially.

In this paper, we use an encoder-decoder network
[Sutskever et al., 2014] as our starting language model and
our baseline. Encoder-decoder networks can be trained to
generate sequences of text for dialogue or story generation
by pairing one or more sentences in a corpus with the suc-
cessive sentence and learning a set of weights that captures
the relationship between the sentences. Our language model
is thus P (ei+1|ei; θ) where ei = 〈si, vi, oi,mi〉.

3.2 Policy Gradient Descent
We seek a policy model θ such that P (ei+1|ei; θ) is the dis-
tribution over events according to the corpus and also that

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5983

increase the likelihood of reaching a given goal event in the
future. For each input event ei in the corpus, an action in-
volves choosing the most probable next event ei+1 from the
probability distribution of the language model. The reward is
calculated by determining how far the event ei+1 is from our
given goal event. The final gradient used for updating the pa-
rameters of the network and shifting the distribution of the
language model is calculated as follows:

∇θJ(θ) = R(v(ei+1))∇θlogP (ei+1|ei; θ) (1)

where ei+1 and R(v(ei+1)) are, respectively, the event cho-
sen at timestep i + 1 and the reward for the verb in that
event. The policy gradient technique thus gives an advan-
tage to highly-rewarding events by facilitating a larger step
towards the likelihood of predicting these events in the future,
over events which have a lower reward. In the next section we
describe how R(v(ei+1)) is computed.

3.3 Reward Shaping
For the purpose of controllability in plot generation, we wish
to reward the network whenever it generates an event that
makes it more likely to achieve the given goal. For the pur-
poses of this paper, the goal is a given VerbNet class that
we wish to see at the end of a plot. Reward shaping [Ng et
al., 1999] is a technique whereby sparse rewards—such as
rewarding the agent only when a given goal is reached—are
replaced with a dense reward signal that provides rewards at
intermediate states in the exploration leading to the goal.

To produce a smooth, dense reward function, we make the
observation that certain events—and thus certain verbs—are
more likely to appear closer to the goal than others in story
plots. For example, suppose our goal is to generate a plot
in which one character admires another (admire-31.2 is the
VerbNet class that encapsulates the concept of falling in love).
Events that contain the verb meet are more likely to appear
nearby events that contain admire, whereas events that con-
tain the verb leave are likely to appear farther away.

To construct the reward function, we pre-process the sto-
ries in our training corpus and calculate two key components:
(a) the distance of each verb from the target/goal verb, and
(b) the frequency of the verbs found in existing stories.

Distance
The distance component of the reward function measures how
close the verb v of an event is to the target/goal verb g, which
is used to reward the model when it produces events with
verbs that are closer to the target verb. The formula for es-
timating this metric for a verb v is:

r1(v) = log
∑
s∈Sv,g

ls − ds(v, g) (2)

where Sv,g is the subset of stories in the corpus that contain v
prior to the goal verb g, ls is the length of story s, and ds(v, g)
is the number of events between the event containing v and
the event containing g in story s (i.e., the distance within a
story). Subtracting from the length of the story produces a
larger reward when events with v and g are closer.

Story-Verb Frequency
Story-verb frequency rewards based on how likely any verb is
to occur in a story before the target verb. This component es-
timates how often a particular verb v appears before the target
verb g throughout the stories in the corpus. This discourages
the model from outputting events with verbs that rarely oc-
cur in stories before the target verb. The following equation
is used for calculating the story-verb frequency metric:

r2(v) = log
kv,g
Nv

(3)

where Nv is the count of verb v in the corpus, and kv,g is the
number of times v appears before goal verb g in any story.

Final Reward
The final reward for a verb—and thus event as a whole—is
calculated as the product of the distance and frequency met-
rics. The rewards are normalized across all the verbs in the
corpus. The final reward is:

R(v) = α× r1(v)× r2(v) (4)
where α is the normalization constant. When combined, both
r metrics advantage verbs that 1) appear close to the target,
while also 2) being present before the target in a story fre-
quently enough to be considered significant.

Verb Clustering
In order to discourage the model from jumping to the target
quickly, we cluster all verbs based on Equation 4 using the
Jenks Natural Breaks optimization technique [Jenks and Cas-
pall, 1971]. We restrict the vocabulary of vout—the model’s
output verb—to the set of verbs in the c + 1th cluster, where
c is the index of the cluster that verb vin—the model’s in-
put verb—belongs to. The rest of the event is generated by
sampling from the full distribution. The intuition is that by
restricting the vocabulary of the output verb, the gradient up-
date in Equation 1 takes greater steps toward verbs that are
more likely to occur next (i.e., in the next cluster) in a story
headed toward a given goal. If the sampled verb has a low
probability, the step will be smaller than if the verb is highly
probable according to the language model.

4 Automated Experiments
We ran experiments to measure three properties of our model:
(1) how often our model can produce a plot—a sequence of
events—that contains a desired target verb; (2) the perplex-
ity of our model; and (3) the average length of the stories.
Perplexity is a measure of the predictive ability of a model;
particularly, how “surprised” the model is by occurrences
in a corpus. We compare our results to those of a baseline
event2event story generation model from Martin et al. [2018].

4.1 Corpus Preparation
We use the CMU movie summary corpus [Bamman et al.,
2013]. However, this corpus proves to be too diverse; there
is high variance between stories, which dilutes event pat-
terns. We used Latent Dirichlet Analysis to cluster the sto-
ries from the corpus into 100 “genres”. We selected a clus-
ter that appeared to contain soap-opera–like plots. The sto-
ries were “eventified”—turned into event sequences, as ex-
plained in the Initial Language Model section of the paper.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5984

We chose admire-31.2 and marry-36.2 as two target verbs be-
cause those VerbNet classes capture the sentiments of “falling
in love” and “getting married”, which are appropriate for our
sub-corpus. The romance corpus was split into 90% training,
and 10% testing data. We used consecutive events from the
eventified corpus as source and target data, respectively, for
training the sequence-to-sequence network.

4.2 Model Training
For our experiments we trained the encoder-decoder network
using Tensorflow. Both the encoder and the decoder com-
prised of LSTM units, with a hidden layer size of 1024. The
network was pre-trained for a total of 200 epochs using mini-
batch gradient descent and batch size of 64.

We created three models:

• Seq2Seq: This pre-trained model is identical to the “gen-
eralized multiple sequential event2event” model in Mar-
tin et al. [2018]. This is our baseline.

• DRL-clustered: Starting with the weights from the
Seq2Seq, we continued training using the policy gradi-
ent technique and the reward function, along with the
clustering and vocabulary restriction in the verb position
described in the previous section, while keeping all net-
work parameters constant.

• DRL-unrestricted: This is the same as DRL-clustered but
without vocabulary restriction while sampling the verb
for the next event during training (§ Verb Clustering).

The DRL-clustered and DRL-unrestricted models are trained
for a further 200 epochs than the baseline.

4.3 Experimental Setup
With each event in our held-out dataset as a seed event, we
generated stories with our baseline Seq2Seq, DRL-clustered,
and DRL-unrestricted models. For all models, the story gen-
eration process was terminated when: (1) the model outputs
an event with the target verb; (2) the model outputs an end-
of-story token; or (3) the length of the story reaches 15 lines.

Goal achievement rate was calculated by measuring the
percentage of these stories that ended in the target verb (ad-
mire or marry). Additionally, we average generated story
lengths to compare to the average story length in our test data
where the goal event occurs (setting length to 15 if it doesn’t
occur). Finally, we measure the perplexity for all the models,
with the exception of the testing data since it is not a model.

4.4 Results and Discussion
Results are summarized in Table 1. Only 22.47% of the sto-
ries in the testing set, on average, end in our desired goals,
illustrating how rare the chosen goals were in the corpus.
The DRL-clustered model generated the given goals on aver-
age 93.82% of the time, compared to 37.72% on average for
the baseline Seq2Seq and 19.935% for the DRL-unrestricted
model. This shows that our policy gradient approach can di-
rect the plot to a pre-specified ending and that our cluster-
ing method is integral to doing so. Removing verb clustering
from our reward calculation to create the DRL-unrestricted
model harms goal achievement; the system rarely sees a verb

G
oa

l

Model
Goal

achievement
rate

Average
perplexity

Average
story

length

ad
m

ir
e Test Corpus 20.30% n/a 7.59

Seq2Seq 35.52% 48.06 7.11
Unrestricted 15.82% 5.73 7.32

Clustered 94.29% 7.61 4.90

m
ar

ry

Test Corpus 24.64% n/a 7.37
Seq2Seq 39.92% 48.06 6.94

Unrestricted 24.05% 9.78 7.38
Clustered 93.35% 7.05 5.76

Table 1: Results of the automated experiments, comparing the goal
achievement rate, average perplexity, and average story length for
the testing corpus, baseline Seq2Seq model, and our clustered and
unrestricted DRL models.

in the next cluster so the reward is frequently low, making
distribution shaping towards the goal difficult.

We use perplexity as a metric to estimate how accu-
rate the learned distribution is for predicting unseen data.
We observe that perplexity values drop substantially for the
DRL models (7.61 for DRL-clustered and 5.73 for DRL-
unrestricted with goal admire; 7.05 for DRL-clustered and
9.78 for DRL-unrestricted with goal marry) when compared
with the Seq2Seq baseline (48.06). This can be attributed to
the fact that our reward function is based on the distribution
of verbs in the story corpus, refining the model’s ability to
recreate the corpus distribution. Because DRL-unrestricted’s
rewards are based on subsequent verbs in the corpus instead
of verb clusters, it sometimes results in a lower perplexity, but
at the expense of not learning how to achieve the goal often.

The average story length is an important metric because it
is trivial to train a language model that reaches the goal event
in a single step. DRL models don’t have to produce stories
the same length as the those in the testing corpus, as long
as the length is not extremely short (leaping to conclusions)
or too long (the story generator is timing out). The baseline
Seq2Seq model creates stories that are about the same length
as the testing corpus stories, showing that the model is mostly
mimicking the behavior of the corpus it was trained on. The
DRL-unrestricted model produces similar behavior, due to
the absence of clustering or vocabulary restriction to prevent
the story from rambling. However, the DRL-clustered model
creates slightly shorter stories, showing that it is reaching the
goal quicker, while not jumping immediately to the goal.

5 Human Evaluation
The best practice in the evaluation of story/plot generation
is human subject evaluation. However, the use of the event
representation makes human subject evaluation difficult since
events are not easily readable. Martin et al. [2018] used a sec-
ond neural network to translate events into human-readable
sentences, but their technique did not have sufficient accuracy
to use in a human evaluation. The use of a second network
also makes it impossible to isolate the generation of events
from the generation of the final natural language sentence
in terms of human perception. To overcome this challenge,
we have developed an evaluation protocol that allows us to

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5985

directly evaluate plots with human judges. Specifically, we
recruited and taught individuals to convert event sequences
into natural language before giving generated plots to human
judges. By having concise, grammatically- and semantically-
guaranteed human translations of generated plot events we
know that the human judges are evaluating the raw events and
not the creative aspects of the way sentences are written.

5.1 Corpus Creation
We collected 5 stories generated by our DRL-clustered sys-
tem, 5 generated from our Seq2Seq baseline, and 3 from the
eventified testing corpus. The stories were selected by ran-
domly picking start events—keeping the same start events
across conditions—until we had stories that were 5-10 events
long. By keeping a story length limit, we guarantee having
DRL stories that reached the goal. The testing corpus was
mainly used to verify the translation process’s accuracy since
we do not expect our models to reach this upper bound; thus
only three stories were selected. We trained 26 unbiased peo-
ple to “translate” events into short natural language sentences.

Each translator was instructed that their “primary goal is
to produce faithful translations of stories from an abstract
‘event’ representation into a natural language sentence.” The
instructions then continued with: (1) a refresher on parts of
speech, (2) the format of the event representation, (3) ex-
amples of events and their corresponding sentences, (4) re-
sources on WordNet and VerbNet with details on how to use
both, and (5) additional general guidelines and unusual cases
they might encounter (e.g., how to handle empty parameters
in events). The translators were further instructed to not add
extraneous details, swap the order of words in the event, nor
choose a better verb even if the plot would be improved.

Pairs of people translated plots individually and then came
together to reach a consensus on a final version of the plot.
That is, human translators reversed the eventification process
to create a human-readable sentence from an event. Table 2
shows an example of an entire eventified story and the corre-
sponding human translations.

5.2 Experimental Setup
We recruited 175 participants on Amazon Mechanical Turk.
Each participant was compensated $10 for completing the
questionnaire. Participants were given one of the translated
plots at a time, rating each of the following statements on
a 5-point Likert scale for how much they agreed (Strongly
Agree, Somewhat Agree, Neither Agree nor Disagree, Some-
what Disagree, or Strongly Disagree):

1. This story exhibits CORRECT GRAMMAR.
2. This story’s events occur in a PLAUSIBLE ORDER.
3. This story’s sentences MAKE SENSE given sentences

before and after them.
4. This story AVOIDS REPETITION.
5. This story uses INTERESTING LANGUAGE.
6. This story is of HIGH QUALITY.
7. This story is ENJOYABLE.
8. This story REMINDS ME OF A SOAP OPERA.

9. This story FOLLOWS A SINGLE PLOT.

Through the equal interval assumption, we turn Likert values
into numerals 1 (Strongly Disagree) to 5 (Strongly Agree).

The first seven questions are taken from a tool designed
specifically for the evaluation of computer-generated stories
which has been validated against human judgments [Purdy
et al., 2018]. Each participant answered the questions for
all three story conditions. The question about the story be-
ing a soap opera was added to determine how the perfor-
mance of the DRL story generator affects reader perceptions
of the theme, since the system was trained on soap-opera–like
plots. The single plot question was added to determine if our
DRL model was maintaining the plot better than the Seq2Seq
model. The questions about correct grammar, interesting lan-
guage, and avoiding repetition are irrelevant to our evaluation
since the natural language was produced by the human trans-
lators but were kept for consistency with Purdy et al. [2018].

Finally, participants answered two additional prompts that
required short answer responses: (1) Please give a summary
of the story above in your own words; and (2) For THIS
STORY, please select which of the previous attributes (e.g.
enjoyable, plausible, coherent) you found to be the MOST
IMPORTANT and explain WHY. The answers to these ques-
tions were not evaluated, but if any participants failed to an-
swer the short answer questions, their data was removed from
the results. We removed 25 participants’ data in total.

5.3 Results and Discussion
We performed one-way repeated-measures ANOVA on the
data since each participant rated a story from each category,
using Tukey HSD as the post-test. We verified that the data is
normal, and the variances are not significantly different. The
data was collected independently. Average scores and their
significance across conditions can be seen in Figure 2.

Questions on interesting language and avoiding repetition
are not found to be significant across all three conditions.
Since these are not related to event generation model per-
formance this provides an indication that the translations are
fair across all conditions. Grammar was significantly differ-
ent between testing corpus stories and DRL-generated stories
(p < 0.05), which was unanticipated. Upon further analysis,
both the baseline Seq2Seq model and the DRL model gener-
ated empty values for the object and modifier at higher rates
than found in the corpus. It is harder to make complete, gram-
matical sentences with only two tokens in an event, namely
when a verb is transitive–requiring at least one object. Beyond
more expected results, such as having a better plausible order,
the testing corpus stories were also significantly more likely
to be perceived as being soap operas (p < 0.01), the genre
from which the corpus stories were drawn. It is unclear why
this would be the case, except that both the Seq2Seq and DRL
models could be failing to learn some aspect of the genre de-
spite being trained on the same corpus. It is also worth noting
that randomly-selecting 5 generated stories does not guaran-
tee that they will be representative of their respective models.

Stories in the DRL condition were significantly perceived
to have more plausible orderings than those in the baseline
Seq2Seq condition (p < 0.05) and were significantly more

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5986

Event Output (subject, verb, object, modifier) Translated Sentence
relative.n.01, disappearance-48.2, empty, empty My cousin died.
PERSON1, say-37.7-1, visit, empty Alexander insisted on a visit.
PERSON1, meet-36.3-1, female.n.02, empty Alexander met her.
PERSON0, correspond-36.1, empty, PERSON1 Barbara commiserated with Alexander.
physical entity.n.01, marry-36.2, empty, empty They hugged.
group.n.01, contribute-13.2-2, empty, LOCATION The gathering dispersed to Hawaii.
gathering.n.01, characterize-29.2-1-1, time interval.n.01, empty The community remembered their trip.
physical entity.n.01, cheat-10.6, pack, empty They robbed the pack.
physical entity.n.01, admire-31.2, social gathering.n.01, empty They adored the party.

Table 2: An example eventified story from the DRL-clustered system paired with the translation written by a pair of participants.

Figure 2: Participants rated a story from each category across nine different dimensions on a scale of 1-Strongly Disagree to 5-Strongly Agree.
Single asterisks stand for p<0.05. Double asterisks stand for p<0.01.

likely to be perceived as following a single plot (p < 0.05).
Since stories generated by the baseline Seq2Seq model be-
gin to lose coherence as the story progresses, these results
confirm our hypothesis that the DRL’s use of reward shaping
keeps the plot on track. The DRL is also perceived as gen-
erating stories with more local causality than the Seq2Seq,
although the results were not statistically significant.

For all other dimensions, the DRL stories are not found to
be significantly different than baseline stories. When further
training a pre-trained language model using a reward function
instead of the standard cross-entropy loss there is a non-trivial
chance that model updates will degrade any aspect of the
model that is not related to goal achievement. Thus, a positive
result is one in which DRL-condition stories are never signifi-
cantly lower than Seq2Seq-condition stories. This shows that
we are able to get to the goal state without any significant
degradation in other aspects of story generation.

6 Conclusions
Language model–based story and plot generation systems
produce stories that lack direction. Our reward shaping tech-

nique learns a policy that generates stories that are probabilis-
tically comparable with the training corpus while also reach-
ing a pre-specified goal ∼93% of the time. Furthermore, the
reward-shaping technique improves perplexity when gener-
ated plots are compared to the testing corpus. However, in
plot generation, the comparison to an existing corpus is not
the most significant metric because novel plots may also be
good. A human subject study showed that the reward shap-
ing technique significantly improves the plausible ordering of
events and the likelihood of producing a sequence of events
that is perceived to be a single, coherent plot. We thus demon-
strated for the first time that control over neural plot gener-
ation can be achieved in the form of providing a goal that
indicates how a plot should end.

Acknowledgements
This work is supported by DARPA W911NF-15-C-0246. The
views, opinions, and/or conclusions contained in this paper
are those of the authors and should not be interpreted as rep-
resenting the official views or policies, either expressed or
implied of the DARPA or the DoD.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5987

References
[Bamman et al., 2013] David Bamman, Brendan O’Connor,

and Noah A. Smith. Learning Latent Personas of Film
Characters. In ACL, pages 352–361, 2013.

[Cavazza et al., 2002] Marc Cavazza, Fred Charles, and
Steven J. Mead. Planning characters’ behaviour in inter-
active storytelling. Journal of Visualization and Computer
Animation, 13:121–131, 2002.

[Fan et al., 2018] Angela Fan, Mike Lewis, and Yann
Dauphin. Hierarchical Neural Story Generation. In ACL,
pages 889–898, 2018.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David
Grangier, Denis Yarats, and Yann N. Dauphin. Convolu-
tional Sequence to Sequence Learning. In ICML, 2017.

[Gervás et al., 2005] Pablo Gervás, Belen Dı́az-Agudo, Fed-
erico Peinado, and Raquel Hervás. Story plot generation
based on CBR. Journal of Knowledge-Based Systems,
18(4–5):235–242, 2005.

[Jenks and Caspall, 1971] George F. Jenks and Fred C Cas-
pall. Error on choroplethic maps: definition, measurement,
reduction. Annals of the Association of American Geogra-
phers, 61(2):217–244, 1971.

[Khalifa et al., 2017] Ahmed Khalifa, Gabriella AB Barros,
and Julian Togelius. Deeptingle. In ICCC, 2017.

[Khandelwal et al., 2018] Urvashi Khandelwal, He He, Peng
Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away: How
neural language models use context. In ACL, 2018.

[Lebowitz, 1987] Michael Lebowitz. Planning stories. In
CogSci, pages 234–242, 1987.

[Li et al., 2013] Boyang Li, Stephen Lee-Urban, George
Johnston, and Mark O. Riedl. Story generation with
crowdsourced plot graphs. In AAAI, July 2013.

[Li et al., 2016] Jiwei Li, Will Monroe, Alan Ritter, Michel
Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. In EMNLP, pages
1192–1202, 2016.

[Martin et al., 2018] Lara J. Martin, Prithviraj Am-
manabrolu, Xinyu Wang, William Hancock, Shruti
Singh, Brent Harrison, and Mark O. Riedl. Event Rep-
resentations for Automated Story Generation with Deep
Neural Nets. In AAAI, pages 868–875, 2018.

[Meehan, 1977] James R. Meehan. TALE-SPIN: An inter-
active program that writes stories. In IJCAI, pages 91–98,
1977.

[Miller, 1995] George A. Miller. Wordnet: a lexical database
for english. Communications of the ACM, 38(11):39–41,
1995.

[Mostafazadeh et al., 2016] Nasrin Mostafazadeh, Lucy
Vanderwende, Wen-tau Yih, Pushmeet Kohli, and James
Allen. Story Cloze Evaluator: Vector Space Representa-
tion Evaluation by Predicting What Happens Next. In 1st
Workshop on Evaluating Vector Space Representations
for NLP, pages 24–29, 2016.

[Ng et al., 1999] Andrew Y Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, vol-
ume 99, pages 278–287, 1999.

[Pérez y Pérez and Sharples, 2001] Rafael Pérez y Pérez and
Mike Sharples. MEXICA: A computer model of a cogni-
tive account of creative writing. Journal of Experimental
and Theoretical Artificial Intelligence, 13:119–139, 2001.

[Porteous and Cavazza, 2009] Julie Porteous and Marc
Cavazza. Controlling narrative generation with planning
trajectories: the role of constraints. In ICIDS, pages
234–245. Springer, 2009.

[Purdy et al., 2018] Christopher Purdy, Xinyu Wang, Larry
He, and Mark Riedl. Predicting story quality with quanti-
tative measures. In AIIDE, 2018.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners.
Technical report, OpenAI, 2019.

[Riedl and Young, 2010] Mark O. Riedl and R. Michael
Young. Narrative planning: Balancing plot and charac-
ter. Journal of Artificial Intelligence Research, 39:217–
268, 2010.

[Roemmele and Gordon, 2015] Melissa Roemmele and An-
drew S. Gordon. Creative help: A story writing assistant.
In ICIDS, pages 81–92, 2015.

[Schuler and Kipper-Schuler, 2005] Karin Kipper Schuler
and Karen Kipper-Schuler. VerbNet: A Broad-Coverage,
Comprehensive Verb Lexicon. PhD thesis, University of
Pennsylvania, 2005.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In NeurIPS, pages 3104–3112, 2014.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
press, 1998.

[Swanson and Gordon, 2012] Reid Swanson and Andrew
Gordon. Say Anything: Using textual case-based reason-
ing to enable open-domain interactive storytelling. ACM
TiiS, 2(3):16:1–16:35, 2012.

[Ware and Young, 2011] Stephen Ware and R. Michael
Young. CPOCL: A Narrative Planner Supporting Conflict.
In AIIDE, pages 97–102, 2011.

[Williams, 1992] Ronald J. Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, May
1992.

[Yao et al., 2019] Lili Yao, Nanyun Peng, Weischedel Ralph,
Kevin Knight, Dongyan Zhao, and Rui Yan. Plan-and-
write: Towards better automatic storytelling. In AAAI,
2019.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5988

