
A Refined Understanding of Cost-optimal Planning with Polytree Causal Graphs∗

Christer Bäckström1† , Peter Jonsson1 and Sebastian Ordyniak2

1Linköping University
2University of Sheffield

{christer.backstrom, peter.jonsson}@liu.se, sordyniak@gmail.com

Abstract
Complexity analysis based on the causal graphs of
planning instances is a highly important research
area. In particular, tractability results have led to
new methods for constructing domain-independent
heuristics. Important early examples of such re-
sults were presented by, for instance, Brafman &
Domshlak and Katz & Keyder. More general re-
sults based on polytrees and bounding certain pa-
rameters were subsequently derived by Aghighi et
al. and Ståhlberg. We continue this line of re-
search by analyzing cost-optimal planning for in-
stances with a polytree causal graph, bounded do-
main size and bounded depth. We show that no fur-
ther restrictions are necessary for tractability, thus
generalizing the previous results. Our approach is
based on a novel method of closely analysing op-
timal plans: we recursively decompose the causal
graph in a way that allows for bounding the number
of variable changes as a function of the depth, using
a reording argument and a comparison with prefix
trees of known size. We then transform the plan-
ning instances into tree-structured constraint satis-
faction instances.

1 Introduction
A common approach for identifying tractable fragments of
planning is to analyse the causal graph [Knoblock, 1994], a
directed graph where the vertices represent variables and the
arcs represent certain dependencies between variables. By
combining restrictions on the structure of this graph with
bounds on certain problem-specific parameters, many dif-
ferent tractability results have been obtained. It was early
noted that if the causal graph is acyclic, then all actions
are unary, i.e. change one variable only, yet such re-
stricted instances can be useful even in practice [Williams
and Nayak, 1997]. Helmert [2006] pioneered the idea of
defining heuristics based on subgraphs of the causal graph.
∗This is an extended abstract of the paper “A Refined Under-

standing of Cost-optimal Planning with Polytree Causal Graphs”
which won the best-paper award at the SoCS-2018 conference.
†Contact Author

He removed arcs in the graph to be able to find acyclic sub-
graphs, which made it easier to define heuristics. However,
not even acyclicity is sufficient in the general case; plan-
ning is still PSPACE-complete even when restricted to ar-
bitrary acyclic causal graphs [Jonsson et al., 2014]. Hence,
there has been much focus on various restricted types of
acyclic graphs, for example forks, inverted forks and hour-
glasses. Cost-optimal planning is NP-hard if the causal graph
is of either of these types with no further restrictions, but
becomes tractable for all three types if we also bound the
variable domain size by a constant [Katz and Keyder, 2012;
Katz and Domshlak, 2010].

A directed graph is a polytree if it is acyclic and its un-
derlying undirected graph is a tree. Problems with causal
graphs that are polytrees have been intensively studied in the
literature. It is easy to verify that (inverted) forks and hour-
glasses are polytrees. Aghighi et al. [2015] show that cost-
optimal planning is tractable for instances with bounded do-
main size and a polytree causal graph with bounded diam-
eter, the length of the longest path in the underlying undi-
rected graph. Another popular parameter is the in-degree of
the causal graph, i.e. the maximum number of arcs that go
into a vertex. The in-degree is 1 for forks but unbounded
for inverted forks and hourglasses. Cost-optimal planning is
tractable for instances with polytree causal graphs, domain
size 2 and bounded in-degree [Katz and Domshlak, 2008].
This result cannot be generalised to arbitrarily large domains:
even satisficing planning is NP-hard for domain size 5 and
in-degree 1 [Giménez and Jonsson, 2009]. Ståhlberg [2017]
considered the depth of the causal graph, i.e. the length of
the longest directed path (which is obviously upper bounded
by the diameter). He showed that cost-optimal planning is
tractable for instances with bounded domain size and poly-
tree causal graphs with bounded depth and in-degree. We
improve on his result, showing that it is sufficient to bound
only the depth and the domain size to achieve tractability.
The resulting tractable fragment is maximal for polytrees in
the sense that we cannot drop the domain size bound nor the
depth bound with retained tractability; it is known that cost-
optimal planning is NP-hard for causal graphs of arbitrary
depth, even if the domain size is 2 [Giménez and Jonsson,
2008] and for inverted-fork causal graphs and unbounded do-
main size [Domshlak and Dinitz, 2001].

The structure of this extended abstract follows the original

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6126

full paper [Bäckström et al., 2018], using the same sections
and the same numbering of results.

2 Preliminaries
A SAS+ planning instance is a tuple P = 〈V,A, sI , sG, c〉
where V is a set of variables, with an implicit domain D, A
is a set of actions and c : A → Q≥0 is a cost function. The
initial state sI is a total state and the goal sG is a partial state.
Each action a ∈ A has two partial states the precondition
pre(a) and the effect eff(a). An action sequence ω is a plan
for P if transforms sI to a state s that satisfies sG. The length
|ω| of ω is the number of actions in ω and the cost c(ω) is
the total cost of the actions in ω. We also define C(v, ω) as
the number of value changes of v when executing ω. Further-
more, ω is a cost-optimal plan for P if there is no plan ω′ for
P such that c(ω′) < c(ω); and ω is a shortest cost-optimal
plan for P if it is cost optimal and there is no plan ω′ for P
such that c(ω′) = c(ω) and |ω′| < |ω|. The latter concept is
important in the presence of zero-cost actions, since a cost-
optimal plan can then be arbitrarily long. In order to find a
cost-optimal plan, it is obviously sufficient to find a shortest
cost-optimal plan. The projection of P to a subset V ′ ⊆ V is
denoted P[V ′] and is identical to P except that all components
are restricted to the variables in V ′. The projection ω[V ′] of
a plan ω to a set V ′ ⊆ V of variables is the subsequence of
actions in ω with an effect on at least one variable in V ′.

The causal graphCG(P) for P describes how the variables
depend on each other, as implicitly defined by the actions. It
is defined as the directed graph CG(P) = 〈V,E〉 where for
all distinct v, w ∈ V , 〈v, w〉 ∈ E if there is some action
that either has a precondition on v and an effect on w or it
has effects on both v and w. An action is unary if it has an
effect on exactly one variable, and it is immediate that all
actions must be unary if CG(P) is acyclic, and the following
proposition is immediate since a shortest (cost-optimal) plan
cannot have any redundant actions.

Proposition 1. Let P be a unary SAS+ instance. If ω is a
shortest or shortest cost-optimal plan for P, then |ω[v]| =
C(v, ω) for all v ∈ V .

A directed graph G = 〈V,E〉 is a polytree if it is acyclic
and the undirected variant of it is a tree, i.e. if we ignore the
direction of the edges then G must be connected and contain
no cycles. The depth d(v) of a vertex v ∈ V is the length of
the longest directed path from v to any sink in G.

3 Planning for Polytrees
We focus on planning for instances where the causal graph is
a polytree, first deriving a bound on the complexity of cost-
optimal planning for such instances given that we know how
many variable changes we must consider. Then we present
such a bound as a function B(s, d) of the domain size and the
depth, such that for every variable v and every shortest cost-
optimal plan ω, it holds that C(v, ω) ≤ B(s, d(v)). Finally,
we combine this into our main result (Theorem 4).

3.1 Planning as CSP
We first improve a known complexity result.

Lemma 2. Let P = 〈V,A, sI , sG, c〉 be a SAS+ instance
such that CG(P) is a polytree. Let B be an upper bound
on C(v, ω) for all v ∈ V and all shortest cost-optimal plans
ω for P. Then cost-optimal planning can be solved in time
O((BsB+1)6n), where n = ‖P‖ is the instance size.

Proof. If we know an upper bound k on the number of
walks that has to be considered in any domain-transition
graph (DTG), then plan satisfiability can be solved in time
O((ks)6n) Bäckström [2014]. This result uses a CSP en-
coding based on a tree decomposition of the causal graph,
exploiting that CSP can be solved in time O(NCD

2
C) for

tree primal graphs [Dechter and Pearl, 1989], where NC
is the number of CSP variables and DC their domain size.
Bäckström [2014] also shows how to solve cost-optimal plan-
ning this way, but no explicit complexity figure is given.
However, since also cost-optimal CSP can be solved in time
O(NCD

2
C) [Cooper and Schiex, 2004, Theorem 5.4] for tree

primal graphs, it follows from the proof of Theorem 12 in
Bäckström [2014] that also cost-optimal planning can be
solved in time O((ks)6n). Let B be an upper bound on
the length of the subplan for any variable in a shortest cost-
optimal plan. Then there are at most

∑B
i=0(s − 1)i ≤ BsB

walks of length B in any DTG, so it follows that we can find
a shortest cost-optimal plan in time O((BsB+1)6n)

3.2 Bounds for Polytree Causal Graphs
In the derivation and definition of the bound function B, we
need a function τ , defined such that τ(s, h) is the number
of nodes in a maximal tree of height h where the root has
branching factor s and all other interior nodes have branching
factor s− 1. The reason for this definition will become clear
later. For all s ≥ 2 and h ≥ 1, we thus have

τ(s, h) = 1 + s

h−1∑
i=0

(s− 1)i

which can be bounded from above as τ(s, h) ≤ 3(s − 1)h.
We can now define the bound function B of the domain size
s and the depth d as

B(s, d) =

{
s− 1, if d = 0
τ
(
s,B(s, d− 1) + 1

)
+ (s− 2), if d > 0.

We will show that this function is an upper bound on the num-
ber of variable changes in all shortest cost-optimal plans, and
it can itself be upper bounded by a ’tower function’ with d
levels of exponentiation of the form

4(s− 1)4(s−1)
· · ·4(s−1)s

.

Lemma 3. Let P = 〈V,A, sI , sG, c〉 be a SAS+ instance with
a polytree causal graph. If ω is a shortest cost-optimal plan
for P, then C(v, ω) ≤ B(s, d(v)) for all v ∈ V .
We will sketch the proof of this lemma in Sec. 4, and can now
state our main result.
Theorem 4 (Main result). Let P = 〈V,A, sI , sG, c〉 be a
SAS+ instance such that CG(P) is a polytree with maximum
depth d. If P is solvable, we can find a cost-optimal plan for
it in time O

(
(B(s, d) · sB(s,d)+1)6 · ‖P‖

)
.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6127

Proof. It is sufficient to find a shortest cost-optimal plan, so
the result follows from Lemmas 2 and 3.

4 Plan Lengths for Polytree Causal Graphs
In this section we will informally sketch the proof of
Lemma 3 using examples (we refer the reader to the origi-
nal publication [Bäckström et al., 2018] for the full formal
proof). The proof is by induction over the depth of vertices
(i.e. variables) in the causal graph. Figure 1 shows an ex-
ample of a polytree which is drawn such that the vertices are
aligned according to depth. We will use this polytree as an
example for illustrating the induction.

1 2 3 4 5

6 7

8 9 10

11 12 13 14

15

v1

v2

u

d=0

d=1

d=2

d=3

d=4

Figure 1: An example polytree causal graph.

The base case consists of all variables at depth 0 (1–5 in the
example). Since a variable v at depth 0 has no outgoing arcs,
no other variables depend on it. Hence, the subplan ω[v] for
this variable cannot contain any cycles, since ω is a shortest
cost-optimal plan. Thus, in the worst case ω[v] is a Hamilton
cycle in the DTG for v, i.e. of length s − 1. It follows that
C(v, ω) ≤ s− 1 = B(s, 0) for all v such that d(v) = 0.

In the induction step, we must prove that if C(v, ω) ≤
B(s, d(v)) for all v ∈ V with d(v) ≤ d, for some d, then
it also holds that C(v, ω) ≤ B(s, d(v)) for all v ∈ V with
d(v) = d+1. We will explain the induction step by example,
assuming the claim holds up to depth 1, i.e. we want to prove
the claim for depth 2. We assume an arbitrary variable u at
depth d + 1 and let v1, . . . , vm denote the incident variables
of its outgoing arcs. As an example, we choose u = 9 as an
arbitrary variable at this depth, so we get v1 = 2 and v2 = 7.
At least one of v1, . . . , vm must be at depth d, while the oth-
ers can be at any depth ≤ d. In the example we have v2 at
depth 1 but v1 at depth 0. If we were to remove the outgo-
ing arcs from u, we would partition the graph into three sets
V1, V2 and U such that v1 ∈ V1, v2 ∈ V2 and u ∈ U . This
partitioning is illustrated in Figure 2.

The remainder of this proof sketch is divided into three
steps as in the original full proof.

Step I. Let χ1 be the sequence of defined preconditions on
u in the actions in subplan ω[v1] and define χ2 analogously
for v2. Also let ψ be the sequence of values that u passes,
from the initial value to the goal value. We define a release-
time function r that maps the indices of χ1 and χ2 to indices
of ψ, witnessing that χ1 and χ2 are subsequences of ψ. We
write r1 and r2 for the restrictions of r to χ1 and χ2 respec-
tively. We further say that r1 is minimal if every index in χ1

is mapped as early as possible in χ. Note that if there exists

U

V1 V2
1 2 3 4 5

6 7

8 9 10

11 12 13 14

15

v1

v2

u

d=0

d=1

d=2

d=3

d=4

Figure 2: Variable partition of the polytree causal graph.

a release-time function for χ1, then there must also exist a
unique minimal one. Figure 3 shows two different release-
time functions, r1 and r′1, for χ1, where r′1, but not r1, is
minimal. Furthermore, the function r is minimal if both r1
and r2 are minimal.

ψ = 1 2 1 3 1 2 3

χ1 = 2 1 3
r1

ψ = 1 2 1 3 1 2 3

χ1 = 2 1 3
r′1

Figure 3: Example release-time functions.

We further note that the minimal release-time function al-
ways maps each sequence χi to the shortest possible prefix of
ψ. In Figure 3 we see that r′1 maps χ1 to a shorter prefix than
r1 does. Furthermore, if two consecutive elements in χ1 have
the same value, then the minimal release-time function must
map these to the same index in ψ. Hence, we may assume
that χ1 is an alternating sequence in the worst case. Clearly,
χ1 and χ2 must be subsequences of ψ in this case.

We note that the partition of V into the sets V1, V2 and
U also implies a corresponding partition of the plan ω into
three subplans ω[V1], ω[V2] and ω[U], where every action oc-
curence in ω belongs to exactly one of these three subplans
since all actions are unary. In Figure 2 we see that the only
arc from U to V1 is from u to v1, so the only variable in V1
that depends on some variable in U is v1 and it depends only
on u. Analogously, only v2 in V2 depends on u. Further-
more, no variable in V1 depend on any variable in V2 and vice
versa. It follows that the subplans ω[V1] and ω[V2] are inde-
pendent of each other, but both depend on the subplan ω[U].
However, since there are only arcs from u to v1 and v2, we
only need to syncrhonise the subplans ω[v1] and ω[v2] with
the subplan ω[u], which will be exploited later in the proof.
Since ω[V1] and ω[V2] do not depend on each other, the corre-
sponding release-time functions r1 and r2 are independent of
each other, i.e. we can choose subsequences in ψ for χ1 and
χ2 independently of each other. It follows that it is always
possible to reorder ω into a plan ω′ that contains exactly the
same action occurences as ω but where the release-time func-
tion for χ1 and χ2 is minimal. This is illustrated in Figure 4.
We first split ω into ω[V1], ω[V2] and ω[U]. We retain the in-
ternal order of each of these three subplans, but reorder them
with respect to each other. More precisely, we can interleave
these subplans freely as long as we syncrhonise ω[v1] with

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6128

ω[u] and ω[v2] with ω[u]. In particular, we can interleave
them such that the release time functions r1 and r2 are both
minimal. The point of this reordering is that ω′ is a permu-
tation of ω, so it has the same length and cost as ω, but it is
easier to analyse since we know that the release-time func-
tions are minimal.

ω

ω[V1]
ω[v1]

ω[V2]
ω[v2]

ω[U]
ω[u]

ω′

minimal mappings

Split Resync Interleave

Figure 4: Plan reordering.

Step II. For this step we need a slightly more com-
plex example, so assume that variable u has four outgoing
arcs to variables v1, . . . , v4, with corresponding sequences
χ1, . . . , χ4 of preconditions on u. Also suppose that χ1 =
131, χ2 = 132, χ3 = 312, χ4 = 323 and ψ = 123123. We
can then build a prefix tree T that contains a node for every
prefix of these four sequences, and then define a minimal tree
mapping rT from the nodes of T to ψ as follows. The root
of the prefix tree is the empyt prefix ε, which we map to 0,
i.e. rT (ε) = 0. For all other nodes n, if n = x1 . . . xm is
a child of n′ in T , then n′ = x1 . . . xm−1, so we let rT (n)
be the smallest index such that rT (n′) < rT (n) and position
rT (n) in ψ has value xm. That is, rT is a witness for the ear-
liest occurence in ψ of each prefix in T . This minimal tree
mapping is unique. Note that we can always reconstruct the
unique minimal release-time function from this minimal tree
mapping. Furthermore, let Tmax be the maximal prefix tree
with the same depth as T , i.e. it contains all possible alternat-
ing prefixes of this length. Then T must be a subtree of Tmax.
Figure 5 shows Tmax in green overlayed by the subtree T in
thick black lines, and the unique minimal tree mapping from
T to ψ is shown with blue dashed arrows.

ε

1

2

3

12

13

21

23

31

32

121
123
131
132
212
213
231
232
312
313
321
323

Ψ = 1 2 3 1 2 3

Figure 5: Tree embedding.

Step III. Let rT be the unique minimal tree mapping from
T to ψ. In Figure 5, rT does not map any node in T to the
second index in ψ, marked in red. Since we do not know how

many such unmapped indices may exist in general, we cannot
use the size of T to bound the length of ψ. However, we can
use Tmax to provide such a bound. We construct a partial
tree mapping r′T from Tmax to ψ such that r′T is minimal and
extends rT . For each index i in ψ which is not mapped by rT ,
we can always find at least one unique node n in Tmax which
is not in T such that if r′T is defined for n, then r′T (n) = i
must hold. In the example we can choose either n = 2 or
n = 12 as the node to map to index 2. Hence, the number of
indices in ψ that are not mapped by R are at most as many
as the number of nodes in Tmax that are not in T . Since
T is a subtree of Tmax, the length of ψ is bounded by the
size of Tmax (plus ≤ s − 1 actions for achieving the goal).
If Tmax has height h, the size of Tmax is τ(s, h) so |ψ| ≤
τ(s, h+ 1) + (s− 1). We thus get that C(u, ω) = |ψ| − 1 ≤
τ(s, h+1)+(s−1)−1 = τ(s, h+1)+s−2 ≤ τ(s,B(s, d)+
1) + s− 2 = B(s, d+ 1) which ends the induction.

5 Concluding Remarks
We have presented a polynomial-time algorithm for cost-
optimal planning restricted to polytree causal graphs,
bounded depth, and bounded domain size. It, thus, advances
the tractability frontier since previous tractability results us-
ing these restrictions also require further restrictions. Our
algorithm is based on transforming cost-optimal planning
into VCSP, using a transformation originally suggested by
Bäckström [2014]. The main technical result is a bound on
the number of variable changes defined in terms of the depth
of the causal graph and the domain size. This result is max-
imal in the sense that dropping the domain size bound or
the depth bound size leads to an NP-hard problem. A nat-
ural open question is thus how to generalise the tractability
result to larger classes of planning instances. It is not ob-
vious what other parameter bounds would lead to tractabil-
ity so it may be easier to consider larger classes of causal
graphs than polytrees. The obvious generalisation is to con-
sider causal graphs that have bounded tree-width—this is a
method that have led to a large number of tractability re-
sults in many different areas of computer science, with a few
examples also in planning [Brafman and Domshlak, 2006;
Domshlak and Nazarenko, 2013; Bäckström, 2014]. The very
same planning algorithm would be useful also in this case: it
runs in polynomial time whenever the tree-width of the causal
graph and the number of variable changes are bounded. Un-
fortunately, it is not at all clear how to generalise the bound
on variable changes when the causal graph has bounded tree-
width larger than one. Although our algorithm is polynomial-
time, its running time is admittedly not impressive. However,
previous tractability results like Aghighi et al. [2015] and
Ståhlberg [2017], have similar tower functions despite using
more restrictions than we do. We believe that our bounds can
be considerably improved by an even more careful analysis,
combining these proof techniques with others to give an even
more refined picture of optimal plans.

Acknowledgments
Bäckström is partially supported by the Swedish Research
Council (VR) under grant 621-2014-4086.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6129

References
[Aghighi et al., 2015] Meysam Aghighi, Peter Jonsson, and

Simon Ståhlberg. Tractable cost-optimal planning over re-
stricted polytree causal graphs. In Proc. 29th AAAI Con-
ference on Artificial Intelligence (AAAI 2015), Austin, TX,
USA, pages 3225–3231, 2015.

[Bäckström et al., 2018] Christer Bäckström, Peter Jonsson,
and Sebastian Ordyniak. A refined understanding of
cost-optimal planning with polytree causal graphs. In
Proc. 11th Int’l Symp. Combinatorial Search, SOCS 2018,
Stockholm, Sweden, 2018, pages 19–27, 2018.

[Bäckström, 2014] Christer Bäckström. Parameterising the
complexity of planning by the number of paths in the
domain-transition graphs. In Proc. 21st Eur. Conf. Artif.
Intell. (ECAI-14), Prague, Czech Rep., pages 33–38, 2014.

[Brafman and Domshlak, 2006] Ronen I. Brafman and
Carmel Domshlak. Factored planning: How, when, and
when not. In Proc. 21st Nat’l Conf. Artif. Intell. 2006,
Boston, MA, USA, pages 809–814, 2006.

[Cooper and Schiex, 2004] Martin C. Cooper and Thomas
Schiex. Arc consistency for soft constraints. Artif. Intell.,
154(1-2):199–227, 2004.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl.
Tree clustering for constraint networks. Artif. Intell.,
38(3):353–366, 1989.

[Domshlak and Dinitz, 2001] Carmel Domshlak and Yefim
Dinitz. Multi-agent off-line coordination: Structure and
complexity. In Proc. 6th European Conference on Plan-
ning (ECP 2001), Toledo, Spain, pages 34–43, 2001.

[Domshlak and Nazarenko, 2013] Carmel Domshlak and
Anton Nazarenko. The complexity of optimal monotonic
planning: The bad, the good, and the causal graph. J.
Artif. Intell. Res., 48:783–812, 2013.

[Giménez and Jonsson, 2008] Omer Giménez and Anders
Jonsson. The complexity of planning problems with sim-
ple causal graphs. J. Artif. Intell. Res., 31:319–351, 2008.

[Giménez and Jonsson, 2009] Omer Giménez and Anders
Jonsson. Planning over chain causal graphs for variables
with domains of size 5 is NP-hard. J. Artif. Intell. Res.,
34:675–706, 2009.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. J. Artif. Intell. Res., 26:191–246, 2006.

[Jonsson et al., 2014] Anders Jonsson, Peter Jonsson, and
Tomas Lööw. Limitations of acyclic causal graphs for
planning. Artif. Intell., 210:36–55, 2014.

[Katz and Domshlak, 2008] Michael Katz and Carmel
Domshlak. New islands of tractability of cost-optimal
planning. J. Artif. Intell. Res., 32:203–288, 2008.

[Katz and Domshlak, 2010] Michael Katz and Carmel
Domshlak. Implicit abstraction heuristics. J. Artif. Intell.
Res., 39:51–126, 2010.

[Katz and Keyder, 2012] Michael Katz and Emil Keyder.
Structural patterns beyond forks: Extending the complex-
ity boundaries of classical planning. In Proc. 26th AAAI

Conf. Artif. Intell. (AAAI 2012), Toronto, ON, Canada,
2012.

[Knoblock, 1994] Craig A. Knoblock. Automatically gener-
ating abstractions for planning. Artif. Intell., 68(2):243–
302, 1994.

[Ståhlberg, 2017] Simon Ståhlberg. Methods for Detecting
Unsolvable Planning Instances using Variable Projection.
PhD thesis, Linköping University, Sweden, 2017.

[Williams and Nayak, 1997] Brian C. Williams and P. Pan-
durang Nayak. A reactive planner for a model-based ex-
ecutive. In Proc. 15th International Joint Conference on
Artificial Intelligence (IJCAI 1997), Nagoya, Japan, pages
1178–1185, 1997.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6130

