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Abstract
Static classification has been the predominant focus
of the study of fairness in machine learning. While
most models do not consider how decisions change
populations over time, it is conventional wisdom
that fairness criteria promote the long-term well-
being of groups they aim to protect. This work
studies the interaction of static fairness criteria with
temporal indicators of well-being. We show a sim-
ple one-step feedback model in which common cri-
teria do not generally promote improvement over
time, and may in fact cause harm. Our results high-
light the importance of temporal modeling in the
evaluation of fairness criteria, suggesting a range
of new challenges and trade-offs.

1 Introduction
Machine learning commonly considers static objectives de-
fined on a snapshot of the population at one instant in time;
consequential decisions, in contrast, reshape the population
over time. Lending practices, for example, can shift the dis-
tribution of debt and wealth in the population. Job adver-
tisements allocate opportunity. School admissions shape the
level of education in a community.

Existing scholarship on fairness in automated decision-
making criticizes unconstrained machine learning for its po-
tential to harm historically underrepresented or disadvan-
taged groups in the population [Executive Office of the Presi-
dent, 2016; Barocas and Selbst, 2016]. Consequently, a vari-
ety of fairness criteria have been proposed as constraints on
standard learning objectives. Even though, in each case, these
constraints are clearly intended to protect the disadvantaged
group by an appeal to intuition, a rigorous argument to that
effect is often lacking.

In this work, we formally examine under what circum-
stances fairness criteria do indeed promote the long-term
well-being of disadvantaged groups measured in terms of a
temporal variable of interest. Going beyond the standard clas-
sification setting, we introduce a one-step feedback model of

∗This paper is an abridged version of the paper of the same name
which appeared at the 35th International Conference of Machine
Learning [Liu et al., 2018]. The interested reader is referred to the
full version for extended results and discussion.

decision-making that exposes how decisions change the un-
derlying population over time.

Our running example is a hypothetical lending scenario.
There are two groups in the population with features de-
scribed by a summary statistic, such as a credit score, whose
distribution differs between the two groups. The bank can
choose thresholds for each group at which loans are offered.
While group-dependent thresholds may face legal challenges
[Ross and Yinger, 2006], they are generally inevitable for
some of the criteria we examine. The impact of a lending
decision has multiple facets. A default event not only dimin-
ishes profit for the bank, it also worsens the financial situation
of the borrower as reflected in a subsequent decline in credit
score. A successful lending outcome leads to profit for the
bank and also to an increase in credit score for the borrower.

When thinking of one of the two groups as disadvantaged,
it makes sense to ask what lending policies (choices of thresh-
olds) lead to an expected improvement in the score distribu-
tion within that group. An unconstrained bank would maxi-
mize profit, choosing thresholds that meet a break-even point
above which it is profitable to give out loans. One frequently
proposed fairness criterion, sometimes called demographic
parity, requires the bank to lend to both groups at an equal
rate. Subject to this requirement the bank would continue
to maximize profit to the extent possible. Another criterion,
originally called equality of opportunity, equalizes the true
positive rates between the two groups, thus requiring the bank
to lend in both groups at an equal rate among individuals who
repay their loan. Other criteria are natural, but for clarity we
restrict our attention to these three.

Do these fairness criteria benefit the disadvantaged group?
When do they show a clear advantage over unconstrained
classification? Under what circumstances does profit max-
imization work in the interest of the individual? These are
important questions that we begin to address in this work.

2 Problem Setting
We introduce a one-step feedback model that allows for the
quantification of the long-term impact of classification on
different groups in the population. Individuals are assigned
scores in X := {1, . . . , C}, where a score highlights one
variable of interest in a specific domain such that higher score
values correspond to a higher probability of a positive out-
come. This score is used by an institution, which makes a
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binary decision for each individual in each group. The insti-
tution designs selection policies τ : X → [0, 1] that assign
to each possible score a number representing the rate of se-
lection for that value. In our example, these policies specify
the lending rate at a given credit score. We consider policies
designed to maximize the utility of the institution, potentially
subject to fairness constraints.

To measure the impact of decisions, we assume the avail-
ability of a function ∆ : X → R that provides the expected
change in score for a selected individual at a given score. The
central quantity we study is the expected difference ∆µ in
the mean score that results from the selection policy. When
modeling the problem, the expected mean difference can also
absorb external factors so long as they are mean-preserving.

We focus on the impact of a selection policy over a sin-
gle epoch. The motivation is that the designer of a system
usually has an understanding of the time horizon after which
the system is evaluated and possibly redesigned. Formally,
nothing prevents the repeated application of our model and
to trace changes over multiple epochs. In reality, however,
it is plausible that over greater time periods, economic back-
ground variables might dominate the effect of selection.

To compare the impact of classification for different
groups, we consider two groups A and B, which comprise
a gA and gB = 1 − gA fraction of the total population. We
use subscripts on previously defined quantities to denote the
group-specific values, e.g. πA denotes the distribution of
A over scores. We assume that that there exists a function
u : X → R, such that the institution’s expected utility for a
policy τ is additive over individuals:

U(τ ) =
∑

j∈{A,B} gj
∑

x∈X τ j(x)πj(x)u(x). (1)

Then we consider how the outcome of the decision differs
between groups. The average change of the mean score µj
for group j is given by

∆µj(τ ) :=
∑

x∈X πj(x)τ j(x)∆(x) . (2)

We remark that many of our results also go through if ∆µj(τ )
simply refers to an abstract change in group well-being, not
necessarily a change in the mean score. Lastly, we assume
that the success of an individual is independent of their group
given the score; that is, the score summarizes all relevant in-
formation about the success event, so there exists a function
ρ : X → [0, 1] such that individuals of score x succeed with
probability ρ(x).

Example 2.1 (Credit scores). In the setting of loans, scores
x ∈ [C] represent credit scores, and the bank serves as the
institution. The bank chooses to grant or refuse loans to in-
dividuals according to a policy τ . Both the profit and the
change in credit score are given as functions of loan repay-
ment, and therefore depend on the success probabilities ρ(x),
representing the probability that any individual with credit
score x can repay a loan within a fixed time frame. The
expected utility to the bank is given by the expected return
from a loan, which can be modeled as an affine function of
ρ(x): u(x) = u+ρ(x) + u−(1 − ρ(x)), where u+ denotes
the profit when loans are repaid and u− the loss when they
are defaulted on. Individual outcomes of being granted a loan
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Figure 1: The above figure shows the outcome curve. The horizontal
axis represents the selection rate for the population; the vertical axis
represents the mean change in score.

are based on whether or not an individual repays the loan,
and a simple model for ∆(x) may also be affine in ρ(x):
∆(x) = c+ρ(x) + c−(1 − ρ(x)), modified accordingly at
boundary states. The constant c+ > 0 denotes the gain in
credit score if loans are repaid and c− < 0 is the score penalty
in case of default.

2.1 The Outcome Curve
We now introduce important outcome regimes, stated in terms
of the change in average group score. In particular, we focus
on these outcomes for a disadvantaged group, and from this
point forward, we take A to be the disadvantaged or protected
group. We denote the policy that maximizes the institution’s
utility in the absence of constraints as MaxUtil. Under our
model, MaxUtil policies can be chosen in a standard fashion
which applies the same threshold τ MaxUtil for both groups,
and is agnostic to the distributions πA and πB. Hence, if we
define

∆µMaxUtil
j := ∆µj(τ

MaxUtil) (3)

we say that a policy causes relative harm to the protected
group if ∆µA(τA) < ∆µMaxUtil

A , relative improvement if
∆µA(τA) > ∆µMaxUtil

A , and active harm if ∆µA(τA) < 0.
Figure 1 displays the important outcome regimes in terms

of selection rates βj :=
∑

x∈X πj(x)τ j(x). This succinct
characterization is possible when considering decision rules
based on score thresholding, in which all individuals with
scores above a threshold are selected. To explicitly connect
selection rates to decision policies, we define the rate func-
tion rπj(τ j) which returns the proportion of group j selected
by the policy. In the following, we will abuse notation to ab-
breviate ∆µj(r

−1
πj

(β)) as ∆µj(β). Now we define the values
of β that mark boundaries of the outcome regions:
Definition 2.1 (Selection rates of interest). Given the pro-
tected group A, the following selection rates are of interest in
distinguishing between qualitatively different classes of out-
comes (Figure 1): βMaxUtil is the selection rate for A under
MaxUtil; β0 is the harm threshold, such that ∆µA(β0) = 0;
β∗ is the selection rate such that ∆µA is maximized; β
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Figure 2: Outcomes ∆µ and institution utilities U are plotted as a
function of selection rate for one group. The maxima of the utility
curves determine the selection rates.

is the outcome-complement of the MaxUtil selection rate,
∆µA(β) = ∆µA(βMaxUtil) with β ≥ βMaxUtil.

2.2 Decision Rules and Fairness Criteria
We will consider policies that maximize the institution’s total
expected utility, potentially subject to a constraint set C which
enforces some notion of “fairness”. Formally, the institution
selects τ∗ ∈ argmax U(τ ) s.t. τ ∈ C. We consider the three
following constraints:
Definition 2.2 (Fairness criteria). The maximum utility
(MaxUtil) policy corresponds to the null-constraint, so that
the institution is free to focus solely on utility. The de-
mographic parity (DemParity) policy results in equal se-
lection rates between both groups. Formally, the constraint
is C =

{
(τA, τB) :

∑
x∈X πA(x)τA =

∑
x∈X πB(x)τB

}
.

The equal opportunity (EqOpt) policy results in equal true
positive rates (TPR) between both group, where TPR is
defined as TPRj(τ ) :=

∑
x∈X πj(x)ρ(x)τ (x)∑

x∈X πj(x)ρ(x)
. EqOpt en-

sures that the conditional probability of selection given
that the individual will be successful is independent of
the population, formally enforced by the constraint C =
{(τA, τB) : TPRA(τA) = TPRB(τB)} .

Just as the expected outcome ∆µ can be expressed in terms
of selection rate for threshold policies, so can the total utility
U . In the unconstrained case, U varies independently over the
selection rates for group A and B; however, in the presence
of fairness constraints the selection rate for one group deter-
mines the allowable selection rate for the other. The selection
rates must be equal for DemParity, and for EqOpt there is
a one-to-one mapping. Therefore, when considering thresh-
old policies, decision rules amount to maximizing functions
of single parameters. This idea is expressed in Figure 2, and
underpins the results to follow.

3 Results
In order to clearly characterize the outcome of applying fair-
ness constraints, we make the following assumption.

Assumption 1 (Institution utilities). The institution’s individ-
ual utility function is more stringent than the expected score
changes, u(x) > 0 =⇒ ∆(x) > 0. (For the linear form
presented in Example 2.1, u−

u+
< c−

c+
is necessary and suffi-

cient.)
This simplifying assumption quantifies the intuitive notion

that institutions take a greater risk by accepting than the in-
dividual does by applying. For example, in the credit setting,
a bank loses the amount loaned in the case of a default, but
makes only interest in case of a payback. Using Assump-
tion 1, we can restrict the position of MaxUtil on the outcome
curve in the following sense.
Proposition 3.1 (MaxUtil does not cause active harm). Un-
der Assumption 1, 0 ≤ ∆µMaxUtil ≤ ∆µ∗.

We direct the reader to the full version of this paper [Liu
et al., 2018] for the proof of the above proposition, and all
subsequent theorems presented in this section.

3.1 Prospects and Pitfalls of Fairness Criteria
We begin by characterizing general settings under which fair-
ness criteria act to improve outcomes over unconstrained
MaxUtil strategies.
Proposition 3.2 (Fairness criteria can cause relative improve-
ment). Assume that group A is disadvantaged in the sense
that the MaxUtil acceptance rate for B is large compared to
relevant acceptance rates for A. Then there are general set-
tings under which g0, g1, g2, g3 exist such that (a) DemParity
causes relative improvement as long as gA ∈ [g0, g1], and (b)
EqOpt causes relative improvement as long as gA ∈ [g2, g3].

A full description of conditions under which we can guar-
antee that fairness criteria cause improvement relative to
MaxUtil is given in [Liu et al., 2018]. The result follows
from comparing the position of optima on the utility curve to
the outcome curve. Figure 2 displays an illustrative exam-
ple of both the outcome curve and the institution’s utility U
as a function of the selection rates in group A. In the utility
function (1), the contributions of each group are weighted by
their population proportions gj, and thus the resulting selec-
tion rates are sensitive to these proportions. As we see in the
remainder of this section, fairness criteria can achieve nearly
any position along the outcome curve under the right condi-
tions. This fact comes from the potential mismatch between
the outcomes, controlled by ∆, and the institution’s utility u.

The next theorem implies that DemParity can be bad for
long term well-being of the protected group by being over-
generous.
Proposition 3.3 (DemParity can cause harm by being
over-eager). Assume that ∆µA(βMaxUtilB ) < 0. Then
there are general settings under which a g0 exists such that
DemParity cases active or relative harm as long as gA ∈
[0, g0].

Notice that both the assumption and the condition encode
notions that could be taken to mean ‘disadvantage:’ The as-
sumption says that a policy which selects individuals from
group A at the selection rate that MaxUtil would have used
for group B necessarily lowers average score in A. The con-
dition requires that gA is small enough.
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Using credit scores as an example, Theorem 3.3 tells us
that an overly aggressive fairness criterion will give too many
loans to people in a protected group who cannot pay them
back, hurting the group’s credit scores on average. An analo-
gous result holds for EqOpt, and is stated in [Liu et al., 2018].

3.2 Comparing EqOpt and DemParity

It is difficult to compare DemParity and EqOpt on general
terms. In fact, we have found that settings exist both in which
DemParity causes harm while EqOpt causes improvement
and in which DemParity causes improvement while EqOpt
causes harm.
Proposition 3.4 (EqOpt may avoid active harm where
DemParity fails). For a simple example of distributions,
there exists g0, g1 such that for gA ∈ [g0, g1], DemParity
causes active harm while EqOpt causes improvement.

In the simple geometry of the example for the above result,
EqOpt is better than DemParity at avoiding active harm be-
cause it is more conservative. A natural question then is: can
EqOpt cause relative harm by being too stingy?
Theorem 3.5 (DemParity never loans less than MaxUtil,
but EqOpt might). Suppose that the MaxUtil policy is
such that βMaxUtilA < βMaxUtilB and TPRA(τ MaxUtil) >
TPRB(τ MaxUtil). Then EqOpt causes relative harm by se-
lecting at a rate lower than MaxUtil.

4 Simulations
We examine the outcomes induced by fairness constraints
in the context of FICO scores for two race groups. FICO
scores are a proprietary classifier widely used in the United
States to predict credit worthiness. Our FICO data is based
on a sample of 301,536 TransUnion TransRisk scores from
2003 [US Federal Reserve, 2007], preprocessed by [Hardt et
al., 2016]. Empirical data labeled by race allows us to esti-
mate the distributions πj, where j represents race, which is
restricted to two values: white non-Hispanic (labeled “white”
in figures), and black. We use the outcome and profit models
from Example 2.1, with individual penalties as a score drop
of c− = −150 in the case of a default, and in increase of
c+ = 75 in the case of successful repayment. We also model
the utility ratio of the bank as u−

u+
= −4. Further details of

the presented simulations are in [Liu et al., 2018].
Figure 3 displays the outcome and utility curves for both

the white and the black group. In this figure, the top panel
corresponds to the average simulated change in credit scores
for each group under different loaning rates β; the bottom
panels shows the corresponding total utility U (summed over
both groups and weighted by group population sizes) for the
bank. Although one might hope for decisions made under
fairness constraints to positively affect the black group, we
observe the opposite behavior for DemParity, which causes
a decrease in the average credit score. This behavior stems
from a discrepancy in the outcome and profit curves for the
black population.

5 Conclusion
Reflecting on our findings, we argue that careful temporal
modeling is necessary in order to accurately evaluate the im-

0.0 0.2 0.4 0.6 0.8 1.0

-60

-40

-20

0

20

40

sc
or

e
ch

an
ge

Black

0.0 0.2 0.4 0.6 0.8 1.0

-60

-40

-20

0

20

40
White

0.0 0.2 0.4 0.6 0.8 1.0

selection rate
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

pr
ofi

t

0.0 0.2 0.4 0.6 0.8 1.0

selection rate
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00
MU
DP
EO

Outcome Curves

Utility Curves
Black White

Figure 3: The outcome and utility curves are plotted for both groups
against the group selection rates. The relative positions of the utility
maxima determine the position of the decision rule thresholds. We
hold u−

u+
= −4 as fixed.

pact of different fairness criteria on the population. The nu-
ances of our characterization underline how intuition may be
a poor guide in judging the long-term impact of fairness con-
straints. Our formal framework exposes a concise, yet ex-
pressive way to model outcomes via the expected change in a
variable of interest caused by an institutional decision. This
leads to the natural concept of an outcome curve that allows
us to interpret and compare solutions effectively. In essence,
the formalism we propose requires us to understand the two-
variable causal mechanism that translates decisions to out-
comes. Depending on the application, such an understanding
might necessitate greater domain knowledge and additional
research into the specifics of the application. This is consis-
tent with much scholarship that points to the context-sensitive
nature of fairness in machine learning [Green and Hu, 2018].
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