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Abstract
We propose to formulate physical reasoning and
manipulation planning as an optimization prob-
lem that integrates first order logic, which we call
Logic-Geometric Programming.

1 Introduction
Physical reasoning is a corner stone of intelligence in hu-
mans and animals. A large body of animal behavior stud-
ies that aim at characterizing intelligence in animals focus
on experiments related to physical reasoning in novel situa-
tions, such as tool use, means-end sequential object manipu-
lation, an the anticipation of physical effects [Köhler, 1917;
Wimpenny et al., 2009]. Fundamentally, we are interested in
AI representations and methods that would enable such gen-
eral physical reasoning.

Evidence from cognitive science suggests that people have
an “intuitive physics engine” [Battaglia et al., 2013] which
can be used to simulate the outcome of an action or tool ma-
nipulation [Osiurak and Badets, 2016], and have dedicated
neural architectures near the motor cortex for implementing
this capability [Fischer et al., 2016]. But a typical physics en-
gine only predicts outcomes for an action, not how to choose
those actions.

Physical reasoning can be viewed as a problem of inverting
physics, which means that we can formulate any objectives
or constraints on the end result or trajectory of the simula-
tion and solve for the inputs (control signals of an embedded
robot, or parameters of the scene or kinematics) that render
the desired constraints true. Fully (auto-) differentiable phys-
ical simulations are currently discussed as candidates for in-
verting physics [Todorov, 2011; Filipe de Avila Belbute-Peres
and J. Zico Kolter, 2017], and could be embedded in end-to-
end trainable systems [Tamar et al., 2016].

However, we argue that gradients alone cannot solve the
problem of inverting physics, for several reasons. From the
NLP theory we know that their solutions are only piece-wise
differentiable, where pieces are defined by stable constraint
∗The original paper “Differentiable Physics and Stable Modes
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activity (discussed below). From the theory on path planning
we know that our problem is NP complete [LaValle, 2006].
Finally, the problem is highly non-unimodal, where different
contact sequences imply different local optima. Overall the
structure inverse problem includes a combinatorics of local
optimal and discontinuities in physical effects.

Our approach is to use logic to explicitly represent the
combinatorics of possible physical interactions and respec-
tive local optima and differentiable modes. This follows the
paradigm of Mixed-Integer Program (MIP) formulations in
hybrid control synthesis [Deits and Tedrake, 2014]. How-
ever, it extends this to 1st-order logic, leveraging the strong
generalization over objects of classical AI formulations. It
also follows the standard task and motion planning (TAMP)
approach of using logic to describe the task level, but now
describes the combinatorics of possible physical interactions.

Given this general approach, the core of our method is to
introduce explicit predicates and a PDDL-style decision rules
that describe possible sequences of modes, as well as ground-
ing these modes in differentiable constraints on the resulting
path optimization problem.

In this extended abstract we focus on aspects that could not
be discussed thoroughly in the original presentation [Tous-
saint et al., 2018]. In particular, we first discuss why physics
is only piece-wise differentiable, which we believe is key to
understand the limitations of purely gradient-based methods.
We then summarize the technical approach, including Multi-
Bound Tree Search (MBTS), which was previously only de-
scribed in [Toussaint and Lopes, 2017]. More specifically, we
present the simplified version of MBTS that reflects the cur-
rent implementation of our Logic-Geometric Program (LGP)
solver3, which pinpoints that the key for efficiency currently
is in the formulation and solver of the various optimization
sub-problems (the bounds, or “heuristics”), rather than in
logic search itself. We then briefly summarize our experimen-
tal results, and discuss in more depth limitations and chal-
lenges with the current solver.

2 Physics Is Only Piece-Wise Differentiable
Physics can be described by a differential equation ẋ =
f(x) (neglecting external controls u). One of the core chal-
lenges for physical simulation is to integrate physical dy-
namics when hard objects interact. There are roughly three
approaches: (1) smoothly modeling contact interactions as

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6231



x∗

θ

(a) (b) (c) (d)

Figure 1: Illustrations for non-differentiable physics: (a) The solu-
tion map for minx(x − θ)2 s.t. x ≥ 0, (b) a ball dropping close to
a corner, (c) a ball might be touched or not by a robot, (d) jumping
contact points for a cube.

spring-dampers and choosing very small time steps for in-
tegration; (2) detecting events (by backtracking penetra-
tions) and applying impulse exchanges there (which leads to
non-regular time stepping); and (3) choosing a fixed coarse
time stepping scheme but formulating the next state xt+1 =
argminx P(x, xt) as the solution of a non-linear constrained
mathematical program P, typically a so-called linear comple-
mentary problem (LCP) [Posa et al., 2014]. The latter is the
standard in control and many physical simulations.

In all cases, physical simulation is a forward iteration of
computing xt+1 as a function of xt. If each iteration is differ-
entiable, we can back-propagate and compute gradients dxT

dxt

of any configuration xT w.r.t. any previous configuration xt
(and analogously, any control signal or configuration param-
eter). A series of recent works aim to embed such differ-
entiable physics simulation in trainable computation graphs
[Filipe de Avila Belbute-Peres and J. Zico Kolter, 2017].

However, first, physics is not differentiable; it is only
piece-wise differentiable. And second, typical objective func-
tions have a combinatorics of local optima—and unlike to
what seems to be the case in neural networks, here the ma-
jority of local optima are likely to be infeasibility traps and
only one of many local optima might be an acceptable solu-
tion to the problem.

2.1 Differentiability of NLP Solutions
Concerning differentiability, let us consider the case
where we simulate physics by iteratively solving xt+1 =
argminx P(x, xt), for some non-linear mathematical pro-
gram (NLP) P. Each xt+1 fulfills the (Karush-Kuhn-Tucker)
KKT conditions of P. The classical literature on sensitivity
analysis of NLPs considers the quasi-solution map S : θ 7→
{x : KKT hold for P(θ)} of a parametrized NLPs P(θ), and
investigates how S(θ) varies with a change in θ. E.g., [Levy
and Rockafellar, 1995] show that “under a standard constraint
qualification [...], S is differentiable in a generalized sense,
and we present a formula for its derivative”. Also earlier
work provides differentiability results [Fiacco and Kypari-
sis, 1985], and later work generalizations [Izmailov, 2010].
This classical work gives more insight in the role of con-
straint qualification for differentiability than more recent re-
discoveries [Filipe de Avila Belbute-Peres and J. Zico Kolter,
2017]. As a conclusion, NLPs are only piece-wise differen-
tiable. They are not differentiable across a change of con-
straint activity, e.g., a change of contact configuration in a
physical simulation.

It is straight-forward to give simple illustrations of the non-

differentiability of physical interaction. As a first minimal
example, consider the problem minx(x − θ)2 s.t. x ≥ 0. It
has the solution map S : θ 7→ x∗ = max{0, x}, which is
the ReLu illustrated in Fig. 1(a). This principle translates to
physical settings: Figure (b) illustrates a ball dropping close
to a corner, where the end state will bifurcate depending on
whether it hits the corner or not. Figure (c) is similar, where
the ball’s end-state depends on the robot joint angles, depend-
ing on whether the robot touched the ball or not. And in Fig-
ure (d) the contact points jump with the cube’s angle, which
leads to bifurcation and chaos, if iterated.

Our LGP approach is to use logic to chop the overall prob-
lem of inverting physics into its (smoothly) differentiable
pieces, which we call modes. It uses logic to explicitly enu-
merate these modes.

2.2 The Zero Gradient Problem, Relaxation, and
Local Optima

A physical world of hard objects has a very particular struc-
ture: objects interact only when they are in contact. Interac-
tion should here be understood in terms of gradient propaga-
tion: The gradient of an object w.r.t. any aspect of another
object at any previous time is zero, unless there was some
(chain of) contacts over time. Therefore, even if a configu-
ration may have thousands of degrees of freedom, gradient
propagation between these is rather sparse.

Purely gradient-based planning for physical interaction
planning has a serious problem with zero gradients. If the
initial configuration, or rather, the configuration path initial-
ization, does not already have an appropriate chain of contact
interactions to influence certain target objects, the gradient of
goal objective is exactly zero. Therefore, the gradient does
not help to decide on which objects should interact in a plan.

Previous work has proposed to relax the interaction of ob-
jects and proposed force exchange models that smoothly de-
cay with the distance between objects. This relaxation can be
scheduled to be very smooth in the initial phase of optimiza-
tion, which might allow the optimizer to find a rough inter-
action plan, and tighten it during optimization to the limit of
the exact hard contact model [Mordatch et al., 2012]. How-
ever, we should be clear that this approach still is greedy: it
will fixate on the first interaction schedule that gradient de-
scend in the initial relaxed phase converged to, without any
mechanisms to escape local optima. The problem of deciding
on an interaction sequence falls into the category of classical
PDDL planning, and it should be clear that gradient descent
on a relaxation cannot solve this inherently NP hard problem.

In LGP we employ classical search over possible mode se-
quences and then constrain the mathematical program to con-
verge to a solution within this mode sequence, exploiting the
smooth differentiability of this mode even in the early itera-
tions of optimization that are not yet within the mode. The
key for efficiency for this approach are good heuristics for
search, where we propose using a hierarchy of simpler math-
ematical problems that define lower bounds.

3 Logic-Geometric Programming
We consider the configuration space X = Rn × SE(3)m of
an n-dimensional robot and m rigid objects, in an initial con-
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figuration x0 ∈ X. We aim to find a path x : [0, T ]→ X

min
x

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0 ,

∀t ∈ [0, T ] : hpath(x̄(t)) = 0, gpath(x̄(t)) ≤ 0 ,
(1)

where (h, g)path define path constraints which depend on
x̄(t) = (x(t), ẋ(t), ẍ(t)) and describe what is physically
and kinematically feasible. The function fpath defines control
costs, which in our experiments we choose as sum-of-squares
of joint accelerations. And (f, h, g)goal specify arbitrary ob-
jectives or constraints on the final configuration. In our ex-
periments this will be a single equality constraint expressing
contact between an object and a target.

We augment this formulation with additional logic deci-
sion variables a1:K , s1:K , so that we may assume that the
path constraints (h, g)path are smooth for constant logical state
sk, and we have smooth constraints for transitioning between
logical states. We call this a Logic-Geometric Program [Tou-
ssaint, 2015; Toussaint and Lopes, 2017; Toussaint et al.,
2018],

min
x,a1:K ,s1:K

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0,

∀t ∈ [0, T ] : hpath(x̄(t), sk(t)) = 0,

gpath(x̄(t), sk(t)) ≤ 0

∀k ∈ {1, ..,K} : hswitch(x̂(tk), ak) = 0,

gswitch(x̂(tk), ak) ≤ 0,

sk ∈ succ(sk-1, ak) . (2)

Here, x̂ = (x, ẋ, ẋ′) captures the configuration velocity ẋ
before and after (ẋ′) an instantaneous impulse exchange at a
state transition.

In practice, feasible logical decision sequences a1:K are
described in PDDL. We call the sequence a1:K a skeleton
[Lozano-Pérez and Kaelbling, 2014], which uniquely defines
s1:K , and use the notation P(a1:K) to denote the path opti-
mization problem (2) for a given skeleton. As (h, g)path and
(h, g)switch are smooth conditional to the logic decisions, all
objectives and constraints in P(a1:K) are smooth and our im-
plementations are differentiable to provide constraint Jaco-
bians and pseudo-Hessians when the costs fpath,goal are sum-
of-squares terms. Solving P(a1:K) implicitly solves for all
action parameters jointly and optimally: E.g. when the se-
quence involves a grasp first, a hit second, and a placement
third, then all parameters of these actions (grasp pose, hit-
ting angle, placement pose) are jointly optimized to yield the
overall optimal manipulation path.

In [Toussaint et al., 2018] we detail the concrete predicates
used to represent geometric constraints (touch, inside, above)
and constraints on the system dynamics (e.g., impulse, sta-
bleFree, dynamicFree). For instance, dynamicFree imposes
the Newton-Euler equation on a particular object, impulse im-
poses instantaneous impulse exchange between two objects,

and touch imposes the distance between two convex shapes to
be zero. In this way, logic predicates are grounded as differ-
entiable constraints on the resulting path optimization prob-
lem.

4 Solver
We assume we have a generic NLP solver1 which, for any
NLP P returns either infeasible or a feasible solution x and
cost fP(x). Note that the NLP solver does not return further
insight in which constraints rendered a solution infeasible,
what would be a minimal constrained removal for feasibility,
or what are the origin of costs. The higher-level algorithm can
only send P-queries to the NLP solver and check feasibility
and costs.

As higher-level algorithm we use Multi-Bound Tree Search
(MBTS) [Toussaint and Lopes, 2017], which leverages a hier-
archy of bounds to prioritize search and NLP computations,
thereby integrating the concepts of branch-and-bound from
MIP. We sketch the method here briefly and defer to the orig-
inal publication for more details.

Assume that purely symbolic tree search (based on the
given PDDL) has found a node that represent a potential so-
lution skeleton a1:K . Trying to solve the full path problem
P(a1:K) is in the order of roughly ∼ 10 seconds and far too
expensive as a heuristic to guide search. We therefore de-
fine a hierarchy of lower bounds of P(a1:K), each of which is
a simplification of the full path problem, which essentially
drops constraints, cost terms and decision variables and is
straight-forward to prove to be a lower bound. Specifically,
the lower bound P1(a1:k) optimizes only over a single world
configuration x(tk) for k ∈ {1, ..,K}, a generalized form of
inverse kinematics, and we can compute this efficiently for
all k ∈ {1, ..,K} to check feasibility of intermediate config-
urations. If all these are feasible, we then evaluate feasibil-
ity of P2(a1:K), which jointly optimizes over all intermedi-
ate configurations (keyframes) (x(t1), .., x(tK)), but neglects
the motion paths connecting them. Only if P2(a1:K) is also
feasible, we eventually try solving for the full path P(a1:K).

MBTS maintains best-first queues for tree expansion as
well as for computations of poses (P1), sequences (P2), and
paths (P), and schedules computations following the above
principles. Importantly, it also prunes large parts of the tree if
some pose computations (P1) turn out infeasible: Similar to
the infeasible in [Srivastava et al., 2014] we add a predicate to
the PDDL description that rules out the corresponding action
also in other branches of the tree.

5 Summary of Experiments
We point the reader to2 for a collection of videos demonstrat-
ing the approach, and here3 for the available source code.

We investigated our method on 6 problems as illustrated
and described in Fig. 2. The problems were designed to

1We use KOMO [Toussaint, 2017], an Augmented Lagrangian
quasi-Newton method.

2Videos: http://ipvs.informatik.uni-stuttgart.de/mlr/lgp/
https://www.youtube.com/watch?v=-L4tCIGXKBE

3Source code: https://github.com/MarcToussaint/rai-python
https://github.com/MarcToussaint/18-RSS-PhysicalManipulation
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Figure 2: In the 6 investigated problems the goal is to reach for
the red ball or get the blue ball in the green area. Solutions involve
using a hook to pull a desired object, push-sliding a ball along a wall,
pushing a ball onto a strip of paper to then pull it closer, hitting a ball
with a stick, throwing a box at a ball, and using a hook to reach for
another hook to reach a ball.

cover a spectrum of types of interactions, including the need
to use tools, hit objects, or throw objects in order to reach the
goal. Fig. 3 displays a sequences of key frames for the dou-
ble hook problem; it is these keyframes that are optimized
in P2. The accompanying videos illustrate solutions to the
problems. The source code includes the precise scene de-
scriptions. Note that the videos display the computed paths
x, not a “simulation” of their execution. The fact that they
“look like a simulation” shows that the constraints we impose
on paths result in physically plausible paths.

The solver surprised us in finding much larger varieties of
solutions than anticipated. For instance, in problem 1 a natu-
ral solution is grasping the hook, pulling the ball, and grasp-
ing it. Our method also found solutions that involve hitting
the ball, or sliding the hook to the ball to hit it. Handovers are
much more frequent than anticipated. The solver exploited
the combinatorics of manipulations that are possible with the
given primitives beyond what we had in mind when designing
the problems.

The solver is an anytime method. For each problem we
ran it until 12 solutions (with different skeletons) were found
or 400 seconds were exceeded. The solver then presents and
ranks solutions by their cost. First reasonable solutions are
roughly found after 20-200 seconds, depending on depth of
the simplest solution. Interestingly, a major amount of com-
putation time is spend on trying to solve NLPs that eventually
turn out infeasible. Although the sub-problems are not guar-
anteed to be convex, we empirically tested how often restarts
converge to the same optimum and found a high degree of
consistency of convergence. See [Toussaint et al., 2018] for
more details.

6 Discussion
Our approach is, to our knowledge, the first to embed dy-
namic physical manipulations in a task and motion planning
(TAMP) framework, combining a discrete logic level for se-

Figure 3: Example sequence of key frames (subject to P2) for the
double hook problem.

quences of possible interaction modes with a continuous path
optimization level. We tackled sequential manipulation and
tool-use planning problems, a hallmark of intelligent behav-
ior. But the approach also raises a series of fundamental ques-
tions for future research, which we want to discuss here.

The current approach focuses on planning against a deter-
ministic model of physics. It therefore neither constructs a
reactive controller for execution, nor estimates the robustness
of plans under stochasticity. Extending our path optimization
approach to account for probabilities, e.g., to a stochastic op-
timal control setting, is therefore a core challenge. How to
effectively represent beliefs, that is, represent possible path
distributions, including the combinatorics implicit in the logic
as well as the complementarity condition of the KKT condi-
tions seems a key question.

In the present study we defined a concrete set of possible
modes by hand, including specific modes for stable grasps
and placements. We experimented with using only a sin-
gle and fundamental mode predicate which only represents
contact between objects and lets the NLP solver decide on
exchanged forces (using complementarity formulations sim-
ilar to [Posa et al., 2014]). The videos2 demonstrate simple
results. However, while being very general, it scales much
worse than the hand-designed interaction modes. The poten-
tial to learn efficient interaction modes is an interesting av-
enue for future research.

The present MBTS solver uses trivial tree search instead
of efficient PDDL solvers to find potential skeletons. This
can easily be replaced (assuming that PDDL solvers can be
made to enumerate all possible symbolic solutions), but com-
putation time spent on logic search is marginal in the current
applications. Scaling to larger domains is limited much more
by the large NLPs to be solved. Our approach can be viewed
as an extreme, where the eventual solution jointly optimizes
over all decision variables, whereas all previously existing
TAMP solvers construct solutions in a very decomposed man-
ner. Scaling to larger domains will require finding a compro-
mise between joint optimization and full decomposition.
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