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Daniel Zügner† , Amir Akbarnejad and Stephan Günnemann
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Abstract

Deep learning models for graphs have achieved
strong performance for the task of node classifi-
cation. Despite their proliferation, currently there
is no study of their robustness to adversarial at-
tacks. Yet, in domains where they are likely to be
used, e.g. the web, adversaries are common. Can
deep learning models for graphs be easily fooled?
In this extended abstract we summarize the key
findings and contributions of our work [Zügner
and Günnemann, 2019a], in which we introduce
the first study of adversarial attacks on attributed
graphs, specifically focusing on models exploiting
ideas of graph convolutions. In addition to at-
tacks at test time, we tackle the more challenging
class of poisoning/causative attacks, which focus
on the training phase of a machine learning model.
We generate adversarial perturbations targeting the
node’s features and the graph structure, thus, tak-
ing the dependencies between instances in account.
Moreover, we ensure that the perturbations remain
unnoticeable by preserving important data charac-
teristics. To cope with the underlying discrete do-
main we propose an efficient algorithm NETTACK
exploiting incremental computations. Our experi-
mental study shows that accuracy of node classi-
fication significantly drops even when performing
only few perturbations. Even more, our attacks are
transferable: the learned attacks generalize to other
state-of-the-art node classification models and un-
supervised approaches, and likewise are successful
given only limited knowledge about the graph.

1 Introduction
Graph data is the core of many high impact applications rang-
ing from the analysis of social and rating networks (Face-
book, Amazon), over gene interaction networks (BioGRID),
to interlinked document collections (PubMed, Arxiv). One of
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Figure 1: Adversarial attacks on graph neural networks.

the most frequently applied tasks on graph data is node clas-
sification: given a single large (attributed) graph and the class
labels of a few nodes, the goal is to predict the labels of the
remaining nodes. For example, one might wish to classify the
role of a protein in a biological interaction graph [Hamilton et
al., 2017], predict the customer type of users in e-commerce
networks [Eswaran et al., 2017], or assign scientific papers
from a citation network into topics [Kipf and Welling, 2017].

While many classical approaches have been introduced in
the past to tackle the node classification problem [London and
Getoor, 2014; Chapelle et al., 2006], the last years have seen
a tremendous interest in methods for deep learning on graphs
[Bojchevski and Günnemann, 2018; Monti et al., 2017;
Cai et al., 2018; Klicpera et al., 2019]. Specifically, ap-
proaches from the class of graph convolutional networks
[Kipf and Welling, 2017; Pham et al., 2017] have achieved
strong performance in many graph-learning tasks.

The strength of these methods — beyond their non-linear,
hierarchical nature – relies on their use of the graphs’ rela-
tional information to perform classification: instead of only
considering the instances individually (nodes and their fea-
tures), the relationships between them are exploited as well
(the edges). Put differently: the instances are not treated in-
dependently; we deal with a certain form of non-i.i.d. data
where so-called network effects such as homophily (that is,
nodes tend to connect to nodes similar to themselves) [Lon-
don and Getoor, 2014] support the classification.

However, there is one big catch: Many researchers have
noticed that deep learning architectures for classical learn-
ing tasks can easily be fooled/attacked [Szegedy et al., 2014;
Goodfellow et al., 2015] . Even only slight, deliberate per-
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turbations of an instance – also known as adversarial per-
turbations/examples – can lead to wrong predictions. Such
negative results significantly hinder the applicability of these
models, leading to unintuitive and unreliable results, and they
additionally open the door for attackers that can exploit these
vulnerabilities. Before our study [Zügner et al., 2018], how-
ever, the question of adversarial perturbations for deep learn-
ing methods on graphs had not been addressed. This is highly
critical, since especially in domains where graph-based learn-
ing is used (e.g. the web) adversaries are common and false
data is easy to inject: spammers add wrong information to
social networks; fraudsters frequently manipulate online re-
views and product websites [Hooi et al., 2016].

In our work, we close this gap and we investigate whether
such manipulations are possible. Can deep learning mod-
els for attributed graphs be easily fooled? How reliable are
their results? This extended abstract summarizes the key
findings and contributions of our work [Zügner et al., 2018],
where the interested reader can find more details and proofs
to our theorems. Since then, there has been increasing in-
terest in adversarial attacks [Zügner and Günnemann, 2019a;
Bojchevski and Günnemann, 2019] and the first work about
defenses [Zügner and Günnemann, 2019b].

The answer to this question is indeed not foreseeable:
On one hand the relational effects might improve robustness
since predictions are not based on individual instances only
but based on various instances jointly. On the other hand, the
propagation of information might also lead to cascading ef-
fects, where manipulating a single instance affects many oth-
ers. Indeed, compared to the existing works on adversarial
attacks, our work significantly differs in various aspects.

Opportunities. (1) Since we are operating on an attributed
graph, adversarial perturbations can manifest in two different
ways: by changing the nodes’ features or the graph struc-
ture. Manipulating the graph, i.e. the dependency structure
between instances, has not been studied so far, but is a highly
likely scenario in real-life. For example, one might add or
remove (fake) friendship relations to a social network. (2)
While existing works were limited to manipulating an in-
stance itself to enforce its wrong prediction1, the relational
effects give us more power: by manipulating one instance,
we might specifically misguide the prediction for another one.
Again, this scenario is highly realistic. Think about a fraud-
ster who hijacks some accounts, which he then manipulates
to enforce a wrong prediction for another account he has not
under control. Thus, in graph-based learning scenarios we
can distinguish between (i) nodes which we aim to misclas-
sify, called targets, and (ii) nodes which we can directly ma-
nipulate, called attackers. Figure 1 illustrates the goal of our
work and shows the result of our method on the Citeseer net-
work. Clearly, compared to classical attacks to learning mod-
els, graphs enable much richer potential for perturbations.
But likewise, constructing them is far more challenging.

1Due to the independence assumption, a misclassification for in-
stance i can only be achieved by manipulating instance i itself for
the commonly studied evasion (test-time) attacks. For the less stud-
ied poisioning attacks we might have indirect influence.

Challenges. (1) Unlike, e.g., images consisting of continu-
ous features, the graph structure – and often also the nodes’
features – is discrete. Therefore, gradient based approaches
[Goodfellow et al., 2015; Mei and Zhu, 2015] for finding per-
turbations are not suited. How to design efficient algorithms
that are able to find adversarial examples in a discrete do-
main? (2) Adversarial perturbations are aimed to be unno-
ticeable (by humans). For images, one often enforces, e.g.,
a maximum deviation per pixel value. How can we capture
the notion of ’unnoticeable changes’ in a (binary, attributed)
graph? (3) Last, node classification is usually performed in
a transductive learning setting. Here, the train and test data
are used jointly to learn a new classification model before
the predictions are performed on the specific test data. This
means, that the predominantly performed evasion attacks –
where the parameters of the classification model are assumed
to be static – are not realistic. The model has to be (re)trained
on the manipulated data. Thus, graph-based learning in a
transductive setting is inherently related to the challenging
poisoning/causative attacks [Biggio et al., 2014].

Given these challenges, we propose a principle for adver-
sarial perturbations of attributed graphs that aim to fool state-
of-the art deep learning models for graphs. In particular,
we focus on semi-supervised classification models based on
graph convolutions such as GCN [Kipf and Welling, 2017]
and Column Network (CLN) [Pham et al., 2017] – but we
will also showcase our methods’ potential on the unsuper-
vised model DeepWalk [Perozzi et al., 2014]. By default, we
assume an attacker with knowledge about the full data, which
can, however, only manipulate parts of it. This assumption
ensures reliable vulnerability analysis in the worst case. But
even when only parts of the data are known, our attacks are
still successful as shown by our experiments.

2 Preliminaries
We consider the task of (semi-supervised) node classification
in a single large graph having binary node features. For-
mally, let G = (A,X) be an attributed graph, where A ∈
{0, 1}N×N is the adjacency matrix representing the connec-
tions and X ∈ {0, 1}N×D represents the nodes’ features. We
denote with xv ∈ {0, 1}D the D-dim. feature vector of node
v. W.l.o.g. we assume the node-ids to be V = {1, . . . , N}
and the feature-ids to be F = {1, ..., D}.

Given a subset VL ⊆ V of labeled nodes, with class la-
bels from C = {1, 2, . . . , cK}, the goal of node classification
is to learn a function g : V → C which maps each node
v ∈ V to one class in C. Since the predictions are done for
the given test instances, which are already known before (and
also used during) training, this corresponds to a typical trans-
ductive learning scenario [Chapelle et al., 2006].

In this work, we focus on node classification employing
graph convolution layers. In particular, we will consider the
well established work [Kipf and Welling, 2017]. Here, the
hidden layer l + 1 is defined as

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
, (1)

where Ã = A + IN is the adjacency matrix of the (undi-
rected) input graph G after adding self-loops via the identity
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matrix IN . W (l) is the trainable weight matrix of layer l,
D̃ii =

∑
j Ãij , and σ(·) is an activation function (usually

ReLU). In the first layer we have H(0) = X , i.e. using the
nodes’ features as input. Since the latent representations H
are (recursively) relying on the neighboring ones (multiplica-
tion with Ã), all instances are coupled together. Following
the authors of [Kipf and Welling, 2017], we consider GCNS
with a single hidden layer:

fθ(A,X) = softmax
(
Â σ

(
ÂXW (1)

)
W (2)

)
, (2)

where Â = D̃−
1
2 ÃD̃−

1
2 . Here, we use θ to denote the set

of all parameters, i.e. θ = {W (1),W (2)}. The parameters θ
are then learned in a semi-supervised fashion by minimizing
cross-entropy on the output of the labeled samples VL.

3 Attack Model
In this section we provide an outline of our algorithm – read-
ers are invited to read [Zügner et al., 2018] for more details.

Given the node classification setting as described in Sec. 2,
our goal is to perform small perturbations on the graph
G(0) = (A(0),X(0)), leading to the graph G′ = (A′,X ′),
such that the classification performance drops when training
a classifier on the modified graph. Specifically, our goal is to
attack a specific target node vt ∈ V , i.e. we aim to change vt’s
prediction. This problem can be described by the following
bilevel problem:

max
G′∈Φ(G(0))

Lvt(fθ∗(A′,X ′)) (3)

subject to θ∗ = arg max
θ

L(fθ(A
′,X ′)).

Here, arg max denotes the model training, e.g. via gradient
descent and Φ(G(0)) denotes the set of admissible perturba-
tions of the input graph (which we will describe shortly). Lvt
is the loss (typically cross entropy) of the classification of
node vt. Solving this problem exactly is intractable for multi-
ple reasons. One of our main contributions is that we propose
an alternative problem formulation that is tractable.

First, we propose a surrogate model which has analytic
properties that we can exploit. For this we remove all non-
linearities from the two-layer GCN in Eq. (2) to get

Ẑ = f̂θ(A,X) = ÂÂXW (1)W (2) = Â2XW , (4)

where W = W (1)W (2). We propose the following adver-
sarial attack formulation:

max
G′∈Φ(G(0))

L̂vt(f̂θ∗(A′,X ′)) (5)

subject to θ∗ = arg max
θ

L(fθ(A,X)),

where L̂vt(Ẑ) = Ẑtc′ − Ẑtc∗ .

Note here that the loss L̂vt in the first line is the difference
of the log probabilities of some class c′ and the true class c∗
output by the surrogate model. If this difference is positive,
this corresponds to the model predicting a wrong class for the
target node vt. That is, we aim to find a perturbed graph G′

that classifies vt as c′ and has maximal ‘distance’ (in terms
of log-probabilities/logits) to c∗. Moreover, in our formula-
tion the optimal parameters θ∗ are obtained by training the
surrogate model on the original (not corrupted) graph G(0)

and not the modified graph G′ as in Eq. (3). This leads to
the problem being easier to optimize while, as shown by our
experiments, still leading to highly destructive adversarial ex-
amples for graph neural networks. Note that for evaluation of
the attacks, i.e. measuring their impact on classification per-
formance, we follow the poisoning procedure. That is, we
train the graph neural networks on graphs that were modified
by our algorithm. See [Zügner and Günnemann, 2019a] for
an alternative approach that explicitly operates on the bilevel
problem via meta gradients.

While exactly solving Eq. (5) is still intractable because
of its combinatorial nature (recall that the graph structure is
discrete), we can compute the change in the loss L̂vt given a
perturbation in closed form and constant time. We make use
of this fact in our greedy adversarial attack algorithm, which
works as follows. At each iteration, we compute the set of
admissible structure and feature perturbations; among these,
our algorithm selects the perturbation which maximizes the
resulting loss of the surrogate model that we would get if we
performed the perturbation.

So far we have not specified the set of admissible pertur-
bations Φ(G(0)). The next two sections briefly outline how
we constrain the set of nodes to which the attacker can insert
or remove edges or features, as well as our unnoticeability
constraint that ensures that the perturbations remain subtle.

3.1 Target vs Attackers
Recall that our goal is to attack a specific target node vt ∈ V ,
i.e. we aim to change vt’s prediction. Due to the non-i.i.d.
nature of the data, vt’s outcome not only depends on the node
itself, but also on the other nodes in the graph. Thus, we are
not limited to perturbing vt but we can achieve our aim by
also changing other nodes. Indeed, this reflects real world
scenarios since it is likely that an attacker has access to a few
nodes only, and not to the entire data or vt itself. Therefore,
besides the target node, we introduce the attacker nodes A ⊆
V . The perturbations on G(0) are constrained to these nodes.
If the target vt 6∈ A, we call the attack an influencer attack,
since vt gets not manipulated directly, but only indirectly via
some influencers. If {vt} = A, we call it a direct attack. To
ensure that the attacker cannot modify the graph completely,
we limit the number of allowed changes by a budget ∆.

3.2 Unnoticeable Perturbations
Typically, in an adversarial attack scenario, the attacker tries
to modify the input data such that the changes are unnotice-
able. Unlike to image data, where this can easily be verified
visually and by using simple constraints, in the graph setting
this is harder mainly for two reasons: (i) the graph structure
is discrete preventing to use infinitesimal small changes, and
(ii) large graphs are not suitable for visual inspection.

How can we ensure unnoticeable perturbations in our set-
ting? In particular, we argue that only considering the budget
∆ might not be enough. Especially if a large ∆ is required
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CORA-ML CITESEER POLBLOGS
GCN CLN DeepWalk GCN CLN DW GCN CLN DW

Clean 0.90 0.82 0.84 0.88 0.71 0.76 0.94 0.82 0.93
NETTACK 0.01 0.16 0.02 0.02 0.20 0.01 0.06 0.46 0.06
FGSM 0.03 0.18 0.10 0.07 0.23 0.05 0.41 0.54 0.37
RND 0.61 0.52 0.46 0.60 0.52 0.38 0.36 0.54 0.30
NETTACK-IN 0.64 0.67 0.65 0.62 0.56 0.48 0.86 0.62 0.91

Table 1: Classification accuracy when training on datasets poisoned
by different methods (∆ = dt + 2). Lower is better.
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Figure 2: Results on CORA-ML using different attack algorithms
(∆ = dt + 2). Clean indicates the original data. Lower is better.

due to complicated data, we still want realistically looking
perturbed graphsG′. Therefore, our core idea is to allow only
those perturbations that preserve specific inherent properties
of the input graph.

Graph Structure Preserving Perturbations
Undoubtedly, the most prominent characteristic of the graph
structure is its degree distribution, which often resembles a
power-law like shape in real networks. If two networks show
very different degree distributions, it is easy to tell them apart.

For this purpose we refer to a statistical two-sample test
for power-law distributions [Bessi, 2015]. That is, we es-
timate whether the two degree distributions of G(0) and G′
stem from the same or from individual distributions using a
likelihood ratio test. A perturbation is only admissible if, af-
ter the perturbation, the likelihood ratio cutoff is not violated.

Feature Statistics Preserving Perturbations
While the above principle could be applied to the nodes’ fea-
tures as well (e.g. preserving the distribution of feature oc-
currences), we argue that such a procedure is too limited.
In particular, such a test does not reflect the correlation/co-
occurrence of different features: If two features have never
occurred together in G(0), but they do in G′, the distribution
of feature occurrences would still be very similar. Such a
change, however, is easily noticeable – think about two words
which have never been used together but are suddenly used in
G′. Thus, we refer to a test based on feature co-occurrence.

4 Results
We evaluate the effectiveness of our adversarial attack algo-
rithm on three well-known datasets: CORA-ML [McCallum
et al., 2000], CITESEER [Sen et al., 2008], and POLBLOGS
[Adamic and Glance, 2005]. On each of the datasets we first
train our surrogate model once; among the test nodes that are
correctly classified we select (i) the 10 nodes with highest
confidence (ii) the 10 nodes with lowest confidence, (iii) 20

[1;5] [6;10] [11;20] [21;100] [100;∞)

Clean 0.878 0.823 1.0 1.0 1.0
NETTACK 0.003 0.009 0.014 0.036 0.05

Table 2: GCN accuracy after attack using NETTACK, by node degree

nodes sampled uniformly, which serve as the target nodes for
the attacks. We run all our experiments on five different ran-
dom splits of 20% labeled and 80% unlabeled nodes. The
budget ∆ is set to dt + 2, i.e. the degree of the respective tar-
get node plus two. For each target node and each random split
we train GCN [Kipf and Welling, 2017], Column Network
(CLN) [Pham et al., 2017], and DeepWalk (DW) [Perozzi et
al., 2014] on the graph modified by an adversarial attack for
ten times, and measure how often the target node is correctly
classified. If after the attacks, on average, the target nodes are
misclassified more often than when training on the original
data, we conclude that the attack was successful.

As baselines we have the performance on the original data
(‘Clean’), a random baseline which inserts edges from the tar-
get node to nodes from different classes (‘Rnd.’), and a gra-
dient method (‘FGSM’) where the attacker uses the gradient
of the trained model w.r.t. the adjacency matrix for attacks.

In Table 1 we can see that NETTACK leads to a dramatic
reduction in classification performance and outperforms all
baselines by a large margin. In Figures 2a and 2b we show
how the classification margins of the individual nodes are re-
duced for the different attack strategies. Again, NETTACK
has the strongest impact. We further want to highlight that
NETTACK-IN, the variant in which the attacker does not have
direct access to the target node, also leads to a consistent de-
crease in classification performance across datasets. Table 2
shows that high degree nodes are harder to attack than low-
degree nodes: they have higher classification accuracy both in
the clean graph and in the attacked graph. We refer interested
readers to [Zügner et al., 2018] for more experiments, where
we e.g. show that even when NETTACK can only observe a
small fraction of the network, its attacks are effective.

5 Conclusion
We present the first work on adversarial attacks on graph neu-
ral networks. Our attacks target the nodes’ features and the
graph structure. Exploiting the relational nature of the data,
we propose direct and influencer attacks. To ensure unnotice-
able changes even in a discrete, relational domain, we pro-
pose to preserve the graph’s degree distribution and feature
co-occurrences. Our algorithm enables efficient perturbations
on a discrete domain. Based on our extensive experiments we
conclude that our method is successful even on the challeng-
ing class of poisoning attacks. The classification performance
is consistently reduced, even when only partial knowledge of
the graph is available or the attack is restricted to a few in-
fluencers. Even more, the attacks generalize to other node
classification models. Studying the robustness of deep learn-
ing models for graphs is an important problem, and this work
provides essential insights for deeper study. As future work
we aim to derive extensions of existing models to become
more robust, and to study tasks beyond node classification.
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